1
|
Duan Q, Kang H, Guan C, Zhao X, Zhao H, Jing B, Lu Z, Feng F. One-Step Microwave Synthesis of NiSb/NiSe Nanomaterials for High Performance Supercapacitors. Molecules 2025; 30:2168. [PMID: 40430340 PMCID: PMC12114247 DOI: 10.3390/molecules30102168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
This paper investigated the preparation of NiSb/NiSe nanomaterials using a microwave method and explored their electrochemical properties and potential applications in supercapacitors. The NiSb/NiSe nanomaterials were synthesized on nickel foam using microwave radiation, resulting in uniformly distributed flower-like nanostructures. This structure not only provided abundant electrochemical reaction sites, but also improved the electrical conductivity and ion diffusion, contributing to the overall performance of supercapacitors. Electrochemical tests showed that the NiSb/NiSe material exhibited a high specific capacity of 525 mAh g-1 at 1 A g⁻1 and maintained 65% capacity after 8000 cycles, demonstrating excellent cycling stability and battery-type charge storage capability. In addition, a hybrid supercapacitor assembled using NiSb/NiSe as the anode material and activated carbon (AC) as the cathode material achieved an energy density of 100.34 Wh kg-1 at a power density of 774.9 W kg-1, significantly enhancing energy storage efficiency. The effect of different microwave powers and reaction times on the morphology and electrochemical properties of the materials were further investigated, with the optimal preparation conditions found to be 800 W and 150 s. The NiSb/NiSe materials synthesized under this condition not only have the best electrochemical properties, but also exhibit low charge transfer impedance and excellent electrical conductivity. In summary, NiSb/NiSe flower-like nanomaterials as supercapacitor electrode materials demonstrate great potential for energy storage applications due to their high specific capacity, good cycling stability and high energy density.
Collapse
Affiliation(s)
| | | | | | | | | | - Buqin Jing
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (Q.D.); (H.K.); (C.G.); (X.Z.); (H.Z.)
| | - Zhen Lu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (Q.D.); (H.K.); (C.G.); (X.Z.); (H.Z.)
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (Q.D.); (H.K.); (C.G.); (X.Z.); (H.Z.)
| |
Collapse
|
2
|
Ali Khan B, Haider F, Zhang T, Zahra S. Advances in Graphene-Transition Metal Selenides Hybrid Materials for High-Performance Supercapacitors: A Review. CHEM REC 2025:e202500037. [PMID: 40165724 DOI: 10.1002/tcr.202500037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Supercapacitors have attracted significant attention as energy storage devices due to their high power density, rapid charge-discharge capability, and long cycle life. Their performance is primarily influenced by electrode materials, electrolytes, and operational voltage windows. Among these, the development of advanced electrode materials is crucial for enhancing energy density, specific capacitance, and cyclic stability. This review focuses on recent advancements in graphene-based hybrid materials, particularly their integration with transition metal selenides (TMSs) for supercapacitor applications. Combining graphene and its derivatives with TMSs, which possess multiple oxidation states and high theoretical capacitance, results in hybrids with superior electrochemical performance. Studies show that these materials achieve higher specific capacitance, energy density, and power density compared to graphene composites with carbides, nitrides, phosphides, and oxides. Key findings include synthesis strategies, structural modifications, and electrochemical properties of graphene-TMS hybrids. Notably, these hybrids have demonstrated specific capacitances exceeding 3105 F/g at 1 A/g, power densities up to 5597.77 W/kg, and energy densities reaching 126.3 Wh/kg, making them highly promising for next-generation supercapacitors. This review critically evaluates the current state-of-the-art, explores the synergistic effects between graphene and TMSs, such as improved charge transfer kinetics and structural stability, and identifies challenges and future directions in graphene-TMS hybrid supercapacitors.
Collapse
Affiliation(s)
- Basit Ali Khan
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P.R. China
| | - Farasast Haider
- Student, Graduate School of Nanoscience and technology, Chulalonkorn University, Bangkok, Thailand, 10330
| | - Tongsheng Zhang
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P.R. China
| | - Sana Zahra
- University of science and technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Zia J, Tejaswini MSSR. Advancements in binary and ternary transition metal-based composites for high-performance supercapacitors: a comprehensive review. RSC Adv 2025; 15:9055-9080. [PMID: 40134689 PMCID: PMC11934234 DOI: 10.1039/d5ra00528k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
As the demand for efficient and high-performance energy storage devices continues to rise, supercapacitors have emerged as a promising technology due to their rapid charge-discharge capabilities and long cycle life. Among the various strategies to enhance supercapacitor performance, binary and ternary transition metal-based composites have garnered significant attention. These composites offer a unique approach by combining multiple transition metals, which synergistically enhance electrochemical performance through both physical and chemical charge storage mechanisms. This review provides an in-depth analysis of the latest research on binary and ternary transition metal composites, discussing their electrochemical properties, synthesis methods, and performance metrics in supercapacitor applications. The combination of different transition metals in composite materials as energy storage electrodes allows for a broader voltage window, increased energy density, enhanced power density, and improved cycling stability. Additionally, we discuss the structural and morphological features of these composite materials, such as porosity, surface area, and conductivity, which play critical roles in determining overall performance. Furthermore, the review highlights the challenges faced in optimizing these composites, including material scalability, cost-effectiveness, and long-term stability. The paper also outlines future research directions, emphasizing the potential of binary and ternary transition metal-based composites in supercapacitor applications, providing insights into potential avenues for the next generation of high-performance energy storage systems. This review thus provides valuable insights into both the current state and future potential of these composite materials in high-performance supercapacitors.
Collapse
Affiliation(s)
- Jannatun Zia
- Department of Chemistry, School of Engineering, Siddhartha Academy of Higher Education Deemed to be University Vijayawada A. P. India
| | - M S S R Tejaswini
- Department of Chemistry, School of Applied Sciences and Humanities, Vignan's Foundation for Science, Technology and Research Vadlamudi Guntur A. P. India
| |
Collapse
|
4
|
Mohammadi Zardkhoshoui A, Hosseiny Davarani SS. Revolutionizing energy storage with advanced reduced graphene oxide-wrapped MnSe@CoSe@FeSe 2 nanowires. Dalton Trans 2024; 53:16993-17006. [PMID: 39354882 DOI: 10.1039/d4dt01909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Thanks to their good redox activity properties and exceptional conductivity, metal selenides (MSs) have attracted great attention as prospective positive electrodes for hybrid supercapacitors. However, they demonstrate low-rate capacities and poor endurance. Nanomaterials fabricated from MSs and reduced graphene oxide (rGO) with a porous skeleton can effectively mitigate the above-mentioned problems. Herein, porous MnSe@CoSe@FeSe2 nanowires wrapped with rGO on nickel foam (NF@MCFS-rGO) are manufactured as a binder-free electrode for a hybrid supercapacitor. The obtained NF@MCFS-rGO, acting as a positive electrode, has distinct advantages such as (1) the porous nanowires are helpful for fast electrolyte penetration, (2) the conductivity of the MCFS is further improved when combined with rGO, and (3) wrapping MCFS within the rGO endows the nanomaterial with much better structural durability. Capitalizing on the high conductivity of the rGO and the porous morphology, the fabricated NF@MCFS-rGO manifests impressive characteristics with a capacitance of 1830 F g-1 at 1 A g-1 and only 6.75% capacitance loss within 10 000 cycles. By matching NF@MCFS-rGO with activated carbon (AC), the fabricated apparatus (AC\\NF@MCFS-rGO) reveals an energy density (ED) of 64.6 W h kg-1 and a long lastingness of 90.55% after 10 000 cycles.
Collapse
Affiliation(s)
- Akbar Mohammadi Zardkhoshoui
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran 3313193685, Iran.
| | | |
Collapse
|
5
|
Lu Z, Kang H, Duan Q, Lv C, Liu R, Feng F, Zhao H. The Preparation of N, P-Doped NiSe Nanorod Electrode Materials on Nickel Foam Using the Microwave Method for High-Performance Supercapacitors. Molecules 2024; 29:3224. [PMID: 38999175 PMCID: PMC11243357 DOI: 10.3390/molecules29133224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Transition metal selenides have the leading position in the field of energy storage and conversion due to their high theoretical capacity, good electrical conductivity, and cycling stability. Nickel is widely used for the construction of positive electrodes in devices due to its good conductivity, variable valence state, and ideal redox activity. NiSe materials have high internal resistance and are prone to volume change during charging and discharging, thus affecting the practical application of this electrode material, and the reported NiSe materials have not achieved a more desirable capacity value. Therefore, in this study, N, P-NiSe nanoelectrode materials were prepared using nickel foam as the nickel source and hexachlorocyclotriphonitrile as the nitrogen and phosphorus dopant using an efficient, energy-saving, and simple microwave method. It was also characterised by XRD and XPS to confirm the successful preparation of N, P-NiSe materials. In addition, the material yielded a high capacitance value (3184 F g-1) and good cycling stability (72% of the initial capacitance value was retained after 4000 cycles) in electrochemical tests. To demonstrate its excellent suitability for practical applications, an asymmetric supercapacitor was assembled using N, P-NiSe as the anode and activated carbon as the cathode. At an operating voltage of 1.6 V, the device achieved an energy density of 289.06 Wh kg-1 and a power density of 799.26 W kg-1 and retained 80% of its initial capacity after 20,000 cycles.
Collapse
Affiliation(s)
- Zhen Lu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Hongjie Kang
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Qianwen Duan
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Chao Lv
- School of Coal Engineering, Shanxi Datong University, Datong 037009, China
| | - Rui Liu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Haidong Zhao
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| |
Collapse
|
6
|
Chaudhary K, Zulfiqar S, Abualnaja KM, Shahid M, Abo-Dief HM, Farooq Warsi M, Cochran EW. Ti 3C 2T x MXene reinforcement: a nickel-vanadium selenide/MXene based multi-component composite as a battery-type electrode for supercapacitor applications. Dalton Trans 2024; 53:11147-11164. [PMID: 38895825 DOI: 10.1039/d4dt01230e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Designing innovative microstructures and implementing efficient multicomponent strategies are still challenging to achieve high-performance and chemo-mechanically stable electrode materials. Herein, a hierarchical three-dimensional (3D) graphene oxide (GO) assisted Ti3C2Tx MXene aerogel foam (MXene-GAF) impregnated with battery-type bimetallic nickel vanadium selenide (NiVSe) has been prepared through a hydrothermal method followed by freeze-drying (denoted as NiVSe-MXene-GAF). 3D-oriented cellular pore networks benefit the energy storage process through the effective lodging of NiVSe particles, improving the access of the electrolyte to the active sites, and alleviating volume changes during redox reactions. The 3D MXene-GAF conductive matrix and heterostructured interface of MXene-rGO and NiVSe facilitated the rapid transport of electrical charges and ions during the charge-discharge process. As a result of the synergism of these effects, NiVSe-MXene-GAF exhibited remarkable electrochemical performance with a specific capacity of 305.8 mA h g-1 at 1 A g-1 and 99.2% initial coulombic efficiency. The NiVSe-MXene-GAF electrode delivered a specific capacity of 235.1 mA h g-1 even at a high current density of 12 A g-1 with a 76.8% rate performance. The impedance measurements indicated a low bulk solution resistance (Rs = 0.71 Ω) for NiVSe-MXene-GAF. Furthermore, the structural robustness of NiVSe-MXene-GAF guaranteed long-term stability with a 91.7% capacity retention for successive 7000 cycles. Thus, developing NiVSe-MXene-GAF provides a progressive strategy for fabricating high-performance 3D heterostructured electrode materials for energy storage applications.
Collapse
Affiliation(s)
- Khadija Chaudhary
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan.
| | - Sonia Zulfiqar
- Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, Ostrava, 701 03, Czech Republic
- Department of Chemical and Biological Engineering, Iowa State University, Sweeney Hall, 618 Bissell Road, Ames, Iowa, 50011, USA.
| | - Khamael M Abualnaja
- Department of Chemistry, College of Science, Taif University, P. O. Box 11099, Taif, 21944, Saudi Arabia
| | - Muhammad Shahid
- Department of Chemistry, College of Science, University of Hafr Al Batin, P. O. Box 1803, Hafr Al Batin, 31991, Saudi Arabia
| | - Hala M Abo-Dief
- Department of Science and Technology, University College-Ranyah, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Muhammad Farooq Warsi
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan.
| | - Eric W Cochran
- Department of Chemical and Biological Engineering, Iowa State University, Sweeney Hall, 618 Bissell Road, Ames, Iowa, 50011, USA.
| |
Collapse
|
7
|
Potbhare AK, Aziz SKT, Ayyub MM, Kahate A, Madankar R, Wankar S, Dutta A, Abdala A, Mohmood SH, Adhikari R, Chaudhary RG. Bioinspired graphene-based metal oxide nanocomposites for photocatalytic and electrochemical performances: an updated review. NANOSCALE ADVANCES 2024; 6:2539-2568. [PMID: 38752147 PMCID: PMC11093270 DOI: 10.1039/d3na01071f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
Considering the rapidly increasing population, the development of new resources, skills, and devices that can provide safe potable water and clean energy remains one of the vital research topics for the scientific community. Owing to this, scientific community discovered such material for tackle this issue of environment benign, the new materials with graphene functionalized derivatives show significant advantages for application in multifunctional catalysis and energy storage systems. Herein, we highlight the recent methods reported for the preparation of graphene-based materials by focusing on the following aspects: (i) transformation of graphite/graphite oxide into graphene/graphene oxide via exfoliation and reduction; (ii) bioinspired fabrication or modification of graphene with various metal oxides and its applications in photocatalysis and storage systems. The kinetics of photocatalysis and the effects of different parameters (such as photocatalyst dose and charge-carrier scavengers) for the optimization of the degradation efficiency of organic dyes, phenol compounds, antibiotics, and pharmaceutical drugs are discussed. Further, we present a brief introduction on different graphene-based metal oxides and a systematic survey of the recently published research literature on electrode materials for lithium-ion batteries (LIBs), supercapacitors, and fuel cells. Subsequently, the power density, stability, pseudocapacitance charge/discharge process, capacity and electrochemical reaction mechanisms of intercalation, and conversion- and alloying-type anode materials are summarized in detail. Furthermore, we thoroughly distinguish the intrinsic differences among underpotential deposition, intercalation, and conventional pseudocapacitance of electrode materials. This review offers a meaningful reference for the construction and fabrication of graphene-based metal oxides as effective photocatalysts for photodegradation study and high-performance optimization of anode materials for LIBs, supercapacitors, and fuel cells.
Collapse
Affiliation(s)
- Ajay K Potbhare
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| | - S K Tarik Aziz
- Chemistry Department, Indian Institute of Technology, Bombay Powai 400076 India
| | - Mohd Monis Ayyub
- New Chemistry Unit, International Centre for Materials Science and Sheikh Saqr Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore India
| | - Aniket Kahate
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| | - Rohit Madankar
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| | - Sneha Wankar
- Post Graduate Teaching Department of Chemistry, Gondwana University Gadchiroli 442605 India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology, Bombay Powai 400076 India
| | - Ahmed Abdala
- Chemical Engineering Program, Texas A&M University at Qatar POB 23784 Doha Qatar
| | - Sami H Mohmood
- Department of Physics, The University of Jordan Amman 11942 Jordan
| | - Rameshwar Adhikari
- Central Department of Chemistry and Research Centre for Applied Science and Technology (RECAST), Tribhuvan University Kathmandu Nepal
| | - Ratiram G Chaudhary
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| |
Collapse
|
8
|
Khaladkar SR, Maurya O, Gund G, Sinha B, Dubal D, Deshmukh R, Kalekar A. Extrinsic Pseudocapacitive NiSe/rGO/g-C 3N 4 Nanocomposite for High-Performance Hybrid Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11408-11420. [PMID: 38410916 DOI: 10.1021/acsami.3c16010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Battery-type materials with ultrahigh energy density show great potential for hybrid supercapacitors (HSCs). In this work, we have developed a nickel selenide (NiSe)/reduced graphene oxide (rGO)/graphitic carbon nitride (g-C3N4) ternary composite as a promising positive electrode for hybrid supercapacitors (HSCs). The extended π-conjugated planar layers of g-C3N4 promote strong interconnectivity with rGO, which further enhances surface area, surface free energy, and efficient electron/ionic path. Additionally, it establishes clear ion diffusion pathways, serving as ion reservoirs during charge and discharge and facilitating efficient redox reactions. As a result, the NiSe/g-C3N4/rGO nanocomposite electrode displayed a specific capacity of 412.6 mA h g-1 at 1 A g-1. Later, the HSC device was assembled using the nanocomposite as the positive electrode and activated carbon as the negative electrode, which delivered an energy density of 65.2 Wh kg-1 at a power density of 750 W kg-1. Notably, the HSC device maintained excellent cyclic stability, preserving 93.3% of its initial performance and Coulombic efficiency of 86.6% for 10,000 charge-discharge cycles at 5 A g-1. These findings underscore the potential utility of NiSe/g-C3N4/rGO as a versatile and effective electrode material for the strategic development of HSC devices.
Collapse
Affiliation(s)
- Somnath R Khaladkar
- Department of Physics, Institute of Chemical Technology (ICT), Matunga, Mumbai, Maharashtra 400019, India
| | - Oshnik Maurya
- Department of Physics, Institute of Chemical Technology (ICT), Matunga, Mumbai, Maharashtra 400019, India
| | - Girish Gund
- Department of Physics, Mahatma Phule Arts, Science and Commerce College, Panvel, Mumbai, Maharashtra 410206, India
| | - Bhavesh Sinha
- National Center for Nanoscience and Nanotechnology, University of Mumbai, Mumbai, Maharashtra 400032, India
| | - Deepak Dubal
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Rajendra Deshmukh
- Department of Physics, Institute of Chemical Technology (ICT), Matunga, Mumbai, Maharashtra 400019, India
| | - Archana Kalekar
- Department of Physics, Institute of Chemical Technology (ICT), Matunga, Mumbai, Maharashtra 400019, India
| |
Collapse
|
9
|
Scarpa D, Cirillo C, Ponticorvo E, Cirillo C, Attanasio C, Iuliano M, Sarno M. Iron Selenide Particles for High-Performance Supercapacitors. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5309. [PMID: 37570012 PMCID: PMC10419825 DOI: 10.3390/ma16155309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Nowadays, iron (II) selenide (FeSe), which has been widely studied for years to unveil the high-temperature superconductivity in iron-based superconductors, is drawing increasing attention in the electrical energy storage (EES) field as a supercapacitor electrode because of its many advantages. In this study, very small FeSe particles were synthesized via a simple, low-cost, easily scalable, and reproducible solvothermal method. The FeSe particles were characterized using cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) measurements, and electrochemical impedance spectroscopy (EIS), revealing enhanced electrochemical properties: a high capacitance of 280 F/g at 0.5 A/g, a rather high energy density of 39 Wh/kg and a corresponding power density of 306 W/kg at 0.5 A/g, an extremely high cycling stability (capacitance retention of 92% after 30,000 cycles at 1 A/g), and a rather low equivalent series resistance (RESR) of ~2 Ω.
Collapse
Affiliation(s)
- Davide Scarpa
- Department of Physics “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (C.C.); (E.P.); (C.A.); (M.I.)
- NANO_MATES Research Centre, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Claudia Cirillo
- Department of Physics “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (C.C.); (E.P.); (C.A.); (M.I.)
- NANO_MATES Research Centre, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Eleonora Ponticorvo
- Department of Physics “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (C.C.); (E.P.); (C.A.); (M.I.)
- NANO_MATES Research Centre, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Carla Cirillo
- CNR-SPIN, c/o University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Carmine Attanasio
- Department of Physics “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (C.C.); (E.P.); (C.A.); (M.I.)
- NANO_MATES Research Centre, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Mariagrazia Iuliano
- Department of Physics “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (C.C.); (E.P.); (C.A.); (M.I.)
- NANO_MATES Research Centre, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Maria Sarno
- Department of Physics “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (C.C.); (E.P.); (C.A.); (M.I.)
- NANO_MATES Research Centre, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
10
|
Sun H, Yi SQ, Li N, Zou KK, Li J, Xu L, Wang YY, Yan DX, Li ZM. Polyvinylpyrrolidone induced uniform coating of nickel nanoparticles on carbon nanotubes for efficient microwave absorption. J Colloid Interface Sci 2023; 649:501-509. [PMID: 37356151 DOI: 10.1016/j.jcis.2023.06.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
The impedance matching performance of carbon nanotubes (CNTs) can be effectively enhanced by developing a uniform magnetic impedance matching layer, which can take on critical significance in achieving the desirable microwave absorption (MA) performance. To obtain a uniform coating of Nickel (Ni) nanoparticles on CNTs, several methods have been developed (e.g., the γ-irradiation technique, electroless deposition, as well as microwave welding method). However, the intricate and complicated conditions of the above-mentioned methods limit their wide application. Therefore, controlling the distribution of Ni nanoparticles with the aid of a concise and effective method remains a great challenge. Herein, in view of the uniform dispersion effect of polyvinylpyrrolidone (PVP) on CNTs and its complexation with Ni ions, uniform coating of Ni nanoparticles on CNTs is well developed after it is introduced in the hydrothermal process. The prepared Ni/CNTs composites exhibited excellent MA performance in comparison with those of reported Ni/CNTs composites for the ideal impedance matching performance and microwave attenuation ability. When the filler content was only 15 wt%, the minimum reflection loss (RLmin) reached -39.5 dB, and the effective bandwidth (EB) with RL < -10 dB reached 5.2 GHz at the thickness of 1.15 mm. A scalable strategy of regulating the distribution of Ni nanoparticles and preparing a lightweight microwave absorber based on CNTs was developed in this study, which can serve as a vital guideline for preparing novel MA composite materials.
Collapse
Affiliation(s)
- He Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shuang-Qin Yi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Nan Li
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Kang-Kang Zou
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Jie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ling Xu
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China.
| | - Yue-Yi Wang
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China.
| | - Ding-Xiang Yan
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
11
|
Abdullah M, John P, Fawy KF, Manzoor S, Butt KY, Abid AG, Messali M, Najam-Ul-Haq M, Ashiq MN. Facile synthesis of the SnTe/SnSe binary nanocomposite via a hydrothermal route for flexible solid-state supercapacitors. RSC Adv 2023; 13:12009-12022. [PMID: 37077269 PMCID: PMC10108834 DOI: 10.1039/d3ra01028g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/26/2023] [Indexed: 04/21/2023] Open
Abstract
Environmental degradation and energy shortage are the two biggest problems facing the world right now. Because of the limited supply of non-renewable sources, the production of environment-friendly energy and its storage has gained significant importance. Pseudocapacitors have lately caught the interest of energy specialists due to their greater energy/power density and prolonged cycle life. In this work, binding-free SnTe/SnSe (STSS) electrodes deposited onto Ni foam (NF) as the conductive substrate have been developed by a facile hydrothermal route for supercapacitor applications. Several analytical tools were utilized to study the morphological, structural and textural characteristics. The electrochemical results obtained from a three-electrode system suggest that the STSS electrode material exhibits great specific capacitance (C s) of 1276 F g-1, specific energy (E d) of 46.45 W h kg-1 and specific power (P d) of 256 W kg-1 @ 1 A g-1. The results of C dl indicate that the STSS (31.28 mF) has a larger C dl value than those of SnTe (23.22 mF) and SnSe (26.35 mF). The analysis of electrochemical stability indicates that the STSS displays structural stability over 5000 cycles with a maximum capacitance retention of 96%. The Nyquist plot profile displayed a smaller R ct value for STSS (0.89 Ω) than SnSe (1.13 Ω) and SnTe (1.97 Ω). The symmetric behavior of STSS was determined in 2.0 M potassium hydroxide. The results reveal that this material has a specific capacitance of 537.72 F g-1 and specific energy of 78.32 W h kg-1. These findings suggest that the STSS electrode might serve as a potential candidate for supercapacitors and other energy-saving equipment.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Department of Chemistry, Government College University Lahore Pakistan
| | - Peter John
- Department of Chemistry, Government College University Lahore Pakistan
| | - Khaled Fahmi Fawy
- Department of Chemistry, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Sumaira Manzoor
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | | | - Abdul Ghafoor Abid
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Mouslim Messali
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University P.O. Box, 90950 Riyadh 11623 Saudi Arabia
| | | | - Muhammad Naeem Ashiq
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| |
Collapse
|
12
|
Lee NE, Cheon SU, Lee J, Cho SO. Tin Oxide/Vertically Aligned Graphene Hybrid Electrodes Prepared by Sonication-Assisted Sequential Chemical Bath Deposition for High-Performance Supercapacitors. ACS OMEGA 2023; 8:6621-6631. [PMID: 36844528 PMCID: PMC9948212 DOI: 10.1021/acsomega.2c07075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Hybrid electrodes comprising metal oxides and vertically aligned graphene (VAG) are promising for high-performance supercapacitor applications because they enhance the synergistic effect owing to the large contact area between the two constituent materials. However, it is difficult to form metal oxides (MOs) up to the inner surface of a VAG electrode with a narrow inlet using conventional synthesis methods. Herein, we report a facile approach to fabricate SnO2 nanoparticle-decorated VAG electrodes (SnO2@VAG) with excellent areal capacitance and cyclic stability using sonication-assisted sequential chemical bath deposition (S-SCBD). The sonication treatment during the MO decoration process induced a cavitation effect at the narrow inlet of the VAG electrode, allowing the precursor solution to reach the inside of the VAG surface. Furthermore, the sonication treatment promoted MO nucleation on the entire VAG surface. Thus, the SnO2 nanoparticles uniformly covered the entire electrode surface after the S-SCBD process. SnO2@VAG exhibited an outstanding areal capacitance (4.40 F cm-2) up to 58% higher than that of VAG electrodes. The symmetric supercapacitor with SnO2@VAG electrodes showed an excellent areal capacitance (2.13 F cm-2) and a cyclic stability of 90% after 2000 cycles. These results suggest a new avenue for sonication-assisted fabrication of hybrid electrodes in the field of energy storage.
Collapse
|
13
|
Runfa L, Chen X, Hongliang C, Wei Y, Yuanfang Z, Siyu C, Wenrui J, Qi Z, Yi E, Meng J, Abdullah M, Tan L. Facile synthesis of Ni 3Se 4/Ni 0.6Zn 0.4O/ZnO nanoparticle as high-performance electrode materials for electrochemical energy storage device. NANOTECHNOLOGY 2023; 34:185401. [PMID: 36669193 DOI: 10.1088/1361-6528/acb4f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
To enhance the performance of transition metal chalcogenide composite electrode material, a key point is a composite design and preparation based on the synergistic effect between the oxide and selenide materials. With a facile 'one step template-annealing' step, Ni3Se4, Ni0.6Zn0.4O and ZnO are simultaneously synthesized, by 500 °C annealing. With the increase of annealing temperature from 350 °C to 600 °C, nickel selenides change from NiSe2to Ni3Se4to NiSe. The charge storage capacity increases first and then decreases with the increase of annealing temperature, and the 500 °C annealing obtained three compound composite Ni3Se4/Ni0.6Zn0.4O/ZnO (NNZ-500) nanoparticle material displayed a high specific capacitance of 1089.2 F g-1at 1 A g-1, and excellent cycle stability of 99.8% capacitance retention after 2000 cycles at 5 A g-1. Moreover, an asymmetric supercapacitor was assembled with NNZ-500 as the positive electrode material and activated carbon as the negative electrode material. This kind of asymmetric supercapacitor demonstrated a high energy density of 53.4 Wh kg-1at 819.0 W kg-1, and cycle stability with 98.6% capacitance retention after 2000 cycles. This material preparation approach provides great potential for the future development of high performance transition metal composite electrode materials in energy storage applications.
Collapse
Affiliation(s)
- Li Runfa
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xin Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Cao Hongliang
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yan Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Zhang Yuanfang
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Cheng Siyu
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jiang Wenrui
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Zhang Qi
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - E Yi
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jiang Meng
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Muhammad Abdullah
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Liyi Tan
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
14
|
Selvaraj B, Shanmugam G, Kamaraj S, Mathew V, Kim J. A versatile iron [1-(naphthalen-2-ylmethyl)-2-(pyridin-2-yl)-1 H-benzo[ d]imidazole] 3 metal complex redox active material for energy conversion and storage systems. NEW J CHEM 2023. [DOI: 10.1039/d2nj06016g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Novel Fe2+/3+ [npbi]3 redox electrolytes contributed to competitive performances in both DSC and SC applications.
Collapse
Affiliation(s)
- Balamurugan Selvaraj
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Ganesan Shanmugam
- Advanced Inorganic Chemistry Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India
| | - Santhosh Kamaraj
- Advanced Inorganic Chemistry Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India
| | - Vinod Mathew
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Jaekook Kim
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, South Korea
| |
Collapse
|
15
|
Reddy Inta H, Koppisetti HVSRM, Ghosh S, Roy A, Mahalingam V. Ni
3
Se
4
Nanostructure as a Battery‐type Positive Electrode for Hybrid Capacitors. ChemElectroChem 2022. [DOI: 10.1002/celc.202201041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Harish Reddy Inta
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research, (IISER) Kolkata Mohanpur, West Bengal 741246 India
| | - Heramba V. S. R. M. Koppisetti
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research, (IISER) Kolkata Mohanpur, West Bengal 741246 India
| | - Sourav Ghosh
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research, (IISER) Kolkata Mohanpur, West Bengal 741246 India
| | - Avishek Roy
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research, (IISER) Kolkata Mohanpur, West Bengal 741246 India
| | - Venkataramanan Mahalingam
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research, (IISER) Kolkata Mohanpur, West Bengal 741246 India
| |
Collapse
|
16
|
One-step solvothermal synthesis of heterostructured nanocomposite Ni0.85Se/MnSe as the high-performance electrode material for supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Jang M, Cho Y, Kim Y, Hahn M, Jung D, Park SY, Lee W, Piao Y. Redox-active conjugated microporous anthraquinonylamine-based polymer network grafted with activated graphene toward high-performance flexible asymmetric supercapacitor electrodes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Hydrogenated V2O5 with fast Zn-ion migration kinetics as high-performance cathode material for aqueous zinc-ion batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Nnamdi Azikiwe University, Faculty of Engineering, Awka, Nigeria
| |
Collapse
|
20
|
Nazari M, Noori A, Rahmanifar MS, El-Kady MF, Hassani N, Neek-Amal M, Kaner RB, Mousavi MF. Phase-Dependent Energy Storage Performance of the Ni xSe y Polymorphs for Supercapacitor-Battery Hybrid Devices. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50900-50912. [PMID: 36318606 DOI: 10.1021/acsami.2c14412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transition-metal chalcogenides have emerged as a promising class of materials for energy storage applications due to their earth abundance, high theoretical capacity, and high electrical conductivity. Herein, we introduce a facile and one-pot electrodeposition method to prepare high-performance nickel selenide NixSey (0.5 ≤ x/y ≤ 1.5) nanostructures (specific capacity = 180.3 mA h g-1 at 1 A g-1). The as-synthesized nickel selenide (NS) nanostructure is however converted to other polymorphs of nickel selenide including orthorhombic NiSe2, trigonal Ni3Se2, hexagonal NiSe, and orthorhombic Ni6Se5 over cycling. Interestingly, NiSe2 and Ni3Se2 polymorphs that display a more metallic character and superior energy storage performance are the predominant phases after a few hundred cycles. We fabricated a hybrid device using activated carbon (AC) as a supercapacitor-type negative electrode and NS as a high-rate battery-type positive electrode (AC||NS). This hybrid device provides a high specific energy of 71 W h kg-1, an excellent specific power of up to 31 400 W kg-1, and exceptional cycling stability (80% retention of the initial capacity after 20 000 cycles). The higher energy storage performance of the device is a result of the development of high-performance NiSe2 and Ni3Se2 polymorphs. Moreover, the reduction of the critical dimension of the NS particles to the nanoscale partially induces an extrinsic pseudocapacitive behavior that improves the rate capability and durability of the device. We also explored the origin of the superior energy storage performance of the NS polymorphs using density functional theory calculations in terms of the computed density of states around the Fermi level, electrical conductivity, and quantum capacitance that follows the trend NiSe2 > Ni3Se2 > NiSe > Ni6Se5. The present study thus provides an appealing approach for tailoring the phase composition of NS as an alternative to the commonly used templated synthesis methods.
Collapse
Affiliation(s)
- Mahrokh Nazari
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-175, Iran
| | - Abolhassan Noori
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-175, Iran
| | | | - Maher F El-Kady
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles (UCLA)90095, California, United States
| | - Nasim Hassani
- Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran P.O. Box: 16875-163, Iran
| | - Mehdi Neek-Amal
- Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran P.O. Box: 16875-163, Iran
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, AntwerpB-2020, Belgium
| | - Richard B Kaner
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles (UCLA)90095, California, United States
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA)90095, California, United States
| | - Mir F Mousavi
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-175, Iran
| |
Collapse
|
21
|
Quantum capacitance of vacancy-defected and co-doped stanene for supercapacitor electrodes: A theoretical study. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Priyadharshini M, Pazhanivel T, Maiyalagan T, Albaqami MD, Ganesh P. Electrochemical investigation on hierarchical sea urchin shaped zinc nickel selenide for efficient supercapacitor. CERAMICS INTERNATIONAL 2022; 48:29011-29017. [DOI: 10.1016/j.ceramint.2022.04.209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
23
|
Wang Y, Zheng X, Cao X, Yang C, Zhao Q, Zhang Y, Xia X. Facile Synthesis of CoSe/Co 3O 4-CNTs/NF Composite Electrode for High-Performance Asymmetric Supercapacitor. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5841. [PMID: 36079226 PMCID: PMC9457315 DOI: 10.3390/ma15175841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Electrode materials are key factors for supercapacitors to endow them with excellent electrochemical properties. Here, a novel hybrid structure of a CoSe/Co3O4-CNTs binder free composite electrode on nickel foam was prepared via a facile flame method, followed by an electrodeposition process. Benefitting from the synergetic effects of the multicomponent (with low resistances of 1.542 Ω cm2 and a moderate mesoporous size of 3.12 nm) and the enlarged specific surface area of the composite material (77.4 m2 g-1), the CoSe/Co3O4-CNTs composite electrode delivers a high specific capacitance of 2906 F g-1 at 5 mV s-1 with an excellent rate stability. The fabricated CoSe/Co3O4-CNTs/NF//AC ASC exhibits a high energy density of 43.4 Wh kg-1 at 0.8 kW kg-1 and a long cycle life (92.7% capacitance retention after 10,000 cycles).
Collapse
Affiliation(s)
- Ying Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Xiang Zheng
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xianjun Cao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chengtao Yang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Qiang Zhao
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yongqi Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xinhui Xia
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| |
Collapse
|
24
|
Mao B, Xu D, Meng T, Cao M. Advances and challenges in metal selenides enabled by nanostructures for electrochemical energy storage applications. NANOSCALE 2022; 14:10690-10716. [PMID: 35861338 DOI: 10.1039/d2nr02304k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of nanomaterials and their related electrochemical energy storage (EES) devices can provide solutions for improving the performance and development of existing EES systems owing to their high electronic conductivity and ion transport and abundant embeddable sites. Recent progress has demonstrated that metal selenides are attracting increasing attention in the field of EES because of their unique structures, high theoretical capacities, rich element resources, and high conductivity. However, there are still many challenges in their application in EES, and thus the use of nanoscale metal selenide materials in commercial devices is limited. In this review, we summarize recent advances in the nanostructured design of metal selenides (e.g., zero-, one-, two-, and three-dimensional, and self-supported structures) and present their advantages in terms of EES performance. Moreover, some remarks on the potential challenges and research prospects of nanostructured metal selenides in the field of EES are presented.
Collapse
Affiliation(s)
- Baoguang Mao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Dan Xu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Tao Meng
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Minhua Cao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
25
|
Electrochemical Performance of MoO3-RuO2/Ti in H2SO4 electrolyte as anodes for Asymmetric Supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Wang J, Zhu Y, Li S, Zhai S, Fu N, Niu Y, Hou S, Luo J, Mu S, Huang Y. Ni-soc-MOF derived carbon hollow sphere encapsulated Ni 3Se 4 nanocrystals for high-rate supercapacitors. Chem Commun (Camb) 2022; 58:8846-8849. [PMID: 35849002 DOI: 10.1039/d2cc01951e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Carbon hollow sphere encapsulated Ni3Se4 (Ni3Se4@CHS) nanocrystals are prepared using the Ni-soc-MOF by pyrolysis and further selenization. Ni3Se4@CHS exhibits a capacitance of 1720 F g-1 at 1 A g-1 and a capacitance retention of 97% after 6000 cycles at 5 A g-1. Moreover, the asymmetric supercapacitor of Ni3Se4@CHS//AC displays a wide potential window of 1.6 V, an energy density of 45.2 W h kg-1 at a power density of 800 W kg-1, and excellent cycling stability (89% capacitance retention) after 5000 cycles. Overall, this work establishes a significant step to synthesize a new carbon-based material with appreciable capacitance and long cycling durability for potential applications in energy storage and beyond.
Collapse
Affiliation(s)
- Jing Wang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Yue Zhu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Shuo Li
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Shengxian Zhai
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Ning Fu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Yongsheng Niu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Shaogang Hou
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Jiahuan Luo
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China. .,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan, 528200, China
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
27
|
Waheed IF, Yasin Thayee Al-Janabi O, Foot PJ. Novel MgFe2O4-CuO/GO heterojunction magnetic nanocomposite: Synthesis, characterization, and batch photocatalytic degradation of methylene blue dye. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Hussain I, Ahmad M, Chen X, Abbas N, Al Arni S, Salih AA, Benaissa M, Ashraf M, Ayaz M, Imran M, Ansari MZ, Zhang K. Glycol-assisted Cu-doped ZnS polyhedron-like structure as binder-free novel electrode materials. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Cobalt-molybdenum selenide double-shelled hollow nanocages derived from metal-organic frameworks as high performance electrodes for hybrid supercapacitor. J Colloid Interface Sci 2022; 616:141-151. [DOI: 10.1016/j.jcis.2022.02.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 12/30/2022]
|
30
|
Facile Synthesis of NiCo2S4/rGO Composites in a Micro-Impinging Stream Reactor for Energy Storage. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Using a process-enhanced micro-impinging stream reactor (MISR) and a co-precipitation route, NiCo2S4 and NiCo2S4/rGO electrode materials were successfully prepared, respectively. Owing to its excellent micromixing performance, the MISR-prepared NiCo2S4/rGO composites had a smaller size and less agglomeration than the same composites prepared in a traditional stirred reactor (STR). The specific capacity of the MISR-prepared composites was as high as 198.0 mAh g−1 under the current density of 1 A g−1. The cycling stability of the composites also improved significantly after being modified with reduced graphene oxide (rGO), and they displayed a fine cycling stability, which maintained a retention rate of 83.6% after 1000 cycles of charging and discharging.
Collapse
|
31
|
Manickam S, Kuzhandaivel H, Selvaraj Y, Franklin MC, Sivalingam Nallathambi K. One-pot synthesis of TEA functionalized and NiSe embedded rGO nanocomposites for supercapacitor application. Dalton Trans 2022; 51:1542-1552. [PMID: 34989723 DOI: 10.1039/d1dt03399a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NiSe and NG-NiSe (triethanolamine functionalized and NiSe embedded rGO), as electrode materials for supercapacitor application, were prepared by a hydrothermal technique. XRD confirmed the formation of pure NiSe and NG-NiSe nanocomposites, which showed a hexagonal crystalline structure of NiSe. The structural morphology and particle size of NiSe and NG-NiSe were measured using FESEM and HRTEM analysis, respectively. The oxidation states and elemental compositions of NG-NiSe were investigated by XPS. The electrochemical behaviours of the materials were studied using CV, GCD, and EIS spectra. NG-NiSe showed higher capacitance performance compared to pure NiSe, due to the synergetic effects on the rGO/TEA/NiSe nanocomposite during one-pot synthesis. The energy density and power density of a N-rGO//NG-NiSe asymmetric cell were 28.25 W h kg-1 and 700 W kg-1, respectively.
Collapse
Affiliation(s)
- Sornalatha Manickam
- Department of Chemistry, Coimbatore Institute of Technology, Coimbatore, 641014, India.
| | | | - Yogapriya Selvaraj
- Department of Chemistry, Coimbatore Institute of Technology, Coimbatore, 641014, India.
| | - Manik Clinton Franklin
- Electrochemical Materials and Devices Lab, Department of Chemistry, Bharathiar University, Coimbatore, 641046, India.
| | | |
Collapse
|
32
|
Yu Y, Han Y, Cui J, Wang C. Cobalt-based metal-organic framework electrodeposited on nickel foam as a binder-free electrode for high-performance supercapacitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj01870e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt-based metal-organic framework (Co-MOF) has been in-situ grown on nickel foam (NF) by cathodic electrodeposition using highly active cobalt surface modifier to enable uniform nucleation and tight growth of Co-MOF....
Collapse
|
33
|
Dahiya Y, Hariram M, Kumar M, Jain A, Sarkar D. Modified transition metal chalcogenides for high performance supercapacitors: Current trends and emerging opportunities. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214265] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Ji SM, Kumar A. Cellulose-Derived Nanostructures as Sustainable Biomass for Supercapacitors: A Review. Polymers (Basel) 2022; 14:169. [PMID: 35012192 PMCID: PMC8747565 DOI: 10.3390/polym14010169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/24/2022] Open
Abstract
Sustainable biomass has attracted a great attention in developing green renewable energy storage devices (e.g., supercapacitors) with low-cost, flexible and lightweight characteristics. Therefore, cellulose has been considered as a suitable candidate to meet the requirements of sustainable energy storage devices due to their most abundant nature, renewability, hydrophilicity, and biodegradability. Particularly, cellulose-derived nanostructures (CNS) are more promising due to their low-density, high surface area, high aspect ratio, and excellent mechanical properties. Recently, various research activities based on CNS and/or various conductive materials have been performed for supercapacitors. In addition, CNS-derived carbon nanofibers prepared by carbonization have also drawn considerable scientific interest because of their high conductivity and rational electrochemical properties. Therefore, CNS or carbonized-CNS based functional materials provide ample opportunities in structure and design engineering approaches for sustainable energy storage devices. In this review, we first provide the introduction and then discuss the fundamentals and technologies of supercapacitors and utilized materials (including cellulose). Next, the efficacy of CNS or carbonized-CNS based materials is discussed. Further, various types of CNS are described and compared. Then, the efficacy of these CNS or carbonized-CNS based materials in developing sustainable energy storage devices is highlighted. Finally, the conclusion and future perspectives are briefly conferred.
Collapse
Affiliation(s)
- Seong Min Ji
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Korea;
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
| |
Collapse
|
35
|
Jin J, Xiao T, Zhang YF, Zheng H, Wang H, Wang R, Gong Y, He B, Liu X, Zhou K. Hierarchical MXene/transition metal chalcogenide heterostructures for electrochemical energy storage and conversion. NANOSCALE 2021; 13:19740-19770. [PMID: 34821248 DOI: 10.1039/d1nr05799e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MXenes have gained rapidly increasing attention owing to their two-dimensional (2D) layered structures and unique mechanical and physicochemical properties. However, MXenes have some intrinsic limitations (e.g., the restacking tendency of the 2D structure) that hinder their practical applications. Transition metal chalcogenide (TMC) materials such as SnS, NiS, MoS2, FeS2, and NiSe2 have attracted much interest for energy storage and conversion by virture of their earth-abundance, low costs, moderate overpotentials, and unique layered structures. Nonetheless, the intrinsic poor electronic conductivity and huge volume change of TMC materials during the alkali metal-ion intercalation/deintercalation process cause fast capacity fading and poor-rate and poor-cycling performances. Constructing heterostructures based on metallic conductive MXenes and highly electrochemically active TMCs is a promising and effective strategy to solve these problems and enhance the electrochemical performances. This review highlights and discusses the recent research development of MXenes and hierarchical MXene/TMC heterostructures, with a focus on the synthesis strategies, surface/heterointerface engineering, and potential applications for lithium-ion batteries, sodium-ion batteries, lithium-sulfur batteries, supercapacitors, electrocatalysis, and photocatalysis. The critical challenges and perspectives of the future development of MXenes and hierarchical MXene/TMC heterostructures for electrochemical energy storage and conversion are forecasted.
Collapse
Affiliation(s)
- Jun Jin
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Tuo Xiao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - You-Fang Zhang
- Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Han Zheng
- Environmental Process Modeling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141.
| | - Huanwen Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Rui Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yansheng Gong
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Beibei He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Kun Zhou
- Environmental Process Modeling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141.
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
36
|
Pavlović MM, Pantović Pavlović MR, Eraković Pantović SG, Stevanović JS, Stopić SR, Friedrich B, Panić VV. The roles of constituting oxides in rare-earth cobaltite-based perovskites on their pseudocapacitive behavior. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Chen X, Li Y, Li C, Cao H, Wang C, Cheng S, Zhang Q. A Novel Strategy of Multi‐element Nanocomposite Synthesis for High Performance
ZnO‐CoSe
2
Supercapacitor Material Development. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xin Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Yan Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chang Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
- Analytical and Testing Center Anhui University of Science & Technology Huainan Anhui 232001 China
| | - Hongliang Cao
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre East China University of Science and Technology Shanghai 200237 China
| | - Chuanzhen Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Siyu Cheng
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Qi Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
38
|
Yang S, Liu X, Zhang X, Tang S. Insights into the effect of hydroxyl-, epoxy-, and carboxyl-pores on the desolvation of K +with water as a solvent: a first-principles study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:445201. [PMID: 34396978 DOI: 10.1088/1361-648x/ac1af1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The oxygen-containing functional group is particularly effective at the capacity and cycle performance of porous carbon, but there are few reports on the influence of ionic desolvation. The desolvated behavior in porous carbon could be availably simulated through the bilayer graphene with the interlayer spacings of 4-10 Å as the flat pore model by a first-principles calculation. The desolvated behavior of hydrated potassium ion ([K(H2O)]+) is calculated in AA- and AB-stacking hydroxyl-, epoxy-, carboxyl-flat pores. The results show that the fully desolvated sizes of [K(H2O)]+in hydroxyl-, epoxy-, carboxyl-pores are 4.6 Å, 4.7 Å, and 4.2 Å, respectively. The fully desolvated pore size increases under the modification of hydroxyl- and epoxy-groups in pores and the size slightly reduces in carboxyl-pores compared with the fully desolvated size of (4.4 Å) [K(H2O)]+in flat pores without oxygen-containing functional group. Electron density difference and Hirshfeld charge analysis show that K+primarily interacts with the oxygen-containing functional groups of pores. Our present results are helpful to improve the capacity of supercapacitors by adjusting the types of oxygen-containing functional groups on the pore walls of porous carbon materials.
Collapse
Affiliation(s)
- Shaobin Yang
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, Liaoning Province, People's Republic of China
| | - Xueli Liu
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, Liaoning Province, People's Republic of China
| | - Xu Zhang
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, Liaoning Province, People's Republic of China
- College of Mining, Liaoning Technical University, Fuxin 123000, Liaoning Province, People's Republic of China
| | - Shuwei Tang
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, Liaoning Province, People's Republic of China
| |
Collapse
|
39
|
Maurya O, Khaladkar S, Horn MR, Sinha B, Deshmukh R, Wang H, Kim T, Dubal DP, Kalekar A. Emergence of Ni-Based Chalcogenides (S and Se) for Clean Energy Conversion and Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100361. [PMID: 34019738 DOI: 10.1002/smll.202100361] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Nickel chalcogenide (S and Se) based nanostructures intrigued scientists for some time as materials for energy conversion and storage systems. Interest in these materials is due to their good electrochemical stability, eco-friendly nature, and low cost. The present review compiles recent progress in the area of nickel-(S and Se)-based materials by providing a comprehensive summary of their structural and chemical features and performance. Improving properties of the materials, such as electrical conductivity and surface characteristics (surface area and morphology), through strategies like nano-structuring and hybridization, are systematically discussed. The interaction of the materials with electrolytes, other electro-active materials, and inactive components are analyzed to understand their effects on the performance of energy conversion and storage devices. Finally, outstanding challenges and possible solutions are briefly presented with some perspectives toward the future development of these materials for energy-oriented devices with high performance.
Collapse
Affiliation(s)
- Oshnik Maurya
- Department of Physics, Institute of Chemical Technology (ICT), Matunga, Mumbai, Maharashtra, 400019, India
| | - Somnath Khaladkar
- Department of Physics, Institute of Chemical Technology (ICT), Matunga, Mumbai, Maharashtra, 400019, India
| | - Michael R Horn
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Bhavesh Sinha
- National Centre for Nanoscience and Nanotechnology, University of Mumbai (NCNNUM), Mumbai, 400098, India
| | - Rajendra Deshmukh
- Department of Physics, Institute of Chemical Technology (ICT), Matunga, Mumbai, Maharashtra, 400019, India
| | - Hongxia Wang
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - TaeYoung Kim
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, 13120, South Korea
| | - Deepak P Dubal
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Archana Kalekar
- Department of Physics, Institute of Chemical Technology (ICT), Matunga, Mumbai, Maharashtra, 400019, India
| |
Collapse
|
40
|
Cao H, Peng C, Zheng Z, Lan Z, Pan Q, Nielsen UG, Norby P, Xiao X, Mossin S. Orientation effect of zinc vanadate cathode on zinc ion storage performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Cai KZ, Huo YQ, Teng Y, Liu X, Chen HY. One-step solvothermal method to obtain flower-like NiCoMn Hydroxides for Super Capacitance Performance. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Madaswamy SL, Wabaidur SM, Khan MR, Lee SC, Dhanusuraman R. Polyaniline-Graphitic Carbon Nitride Based Nano-Electrocatalyst for Fuel Cell Application: A Green Approach with Synergistic Enhanced Behaviour. Macromol Res 2021. [DOI: 10.1007/s13233-021-9044-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Ameri B, Mohammadi Zardkhoshoui A, Hosseiny Davarani SS. Metal-organic-framework derived hollow manganese nickel selenide spheres confined with nanosheets on nickel foam for hybrid supercapacitors. Dalton Trans 2021; 50:8372-8384. [PMID: 34037022 DOI: 10.1039/d1dt01215k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic framework (MOF) derived nanoarchitectures have special features, such as high surface area (SA), abundant active sites, exclusive porous networks, and remarkable supercapacitive performance when compared to traditional nanoarchitectures. Herein, we propose a viable strategy for the synthesis of hollow manganese nickel selenide spheres comprising nanosheets supported on the nickel foam (denoted as MNSe@NF) from the MOF. The MNSe nanostructures can demonstrate enriched active sites, and shorten the ion-electron diffusion pathways. When the MNSe@NF electrode is used as a cathode electrode for a hybrid supercapacitor, the electrode reflected impressive supercapacitive properties with a high capacity of 325.6 mA h g-1 (1172.16 C g-1) at 2 A g-1, an exceptional rate performance of 86.6% at 60 A g-1, and remarkable longevity (3.2% capacity decline after 15 000 cycles). Also, the assembled MNSe@NF∥AC@NF hybrid supercapacitors employing activated carbon on the nickel foam (AC@NF, anode electrode) and MNSe@NF (cathode electrode) revealed an impressive energy density of 66.1 W h kg-1 at 858.45 W kg-1 and an excellent durability of 94.1% after 15 000 cycles.
Collapse
Affiliation(s)
- Bahareh Ameri
- Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran.
| | | | | |
Collapse
|
44
|
Iqbal M, Niazi MBK, Jahan Z, Ahmad T, Hussain Z, Sher F. Fabrication and characterization of carbon-based nanocomposite membranes for packaging application. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03763-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
45
|
Qin Y, Ou Z, Xu C, Zhang Z, Yi J, Jiang Y, Wu J, Guo C, Si Y, Zhao T. Progress of carbon-based electrocatalysts for flexible zinc-air batteries in the past 5 years: recent strategies for design, synthesis and performance optimization. NANOSCALE RESEARCH LETTERS 2021; 16:92. [PMID: 34032941 PMCID: PMC8149500 DOI: 10.1186/s11671-021-03548-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
The increasing popularity of wearable electronic devices has led to the rapid development of flexible energy conversion systems. Flexible rechargeable zinc-air batteries (ZABs) with high theoretical energy densities demonstrate significant potential as next-generation flexible energy devices that can be applied in wearable electronic products. The design of highly efficient and air-stable cathodes that can electrochemically catalyze both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are highly desirable but challenging. Flexible carbon-based catalysts for ORR/OER catalysis can be broadly categorized into two types: (i) self-supporting catalysts based on the in situ modification of flexible substrates; (ii) non-self-supporting catalysts based on surface coatings of flexible substrates. Methods used to optimize the catalytic performance include doping with atoms and regulation of the electronic structure and coordination environment. This review summarizes the most recently proposed strategies for the synthesis of designer carbon-based electrocatalysts and the optimization of their electrocatalytic performances in air electrodes. And we significantly focus on the analysis of the inherent active sites and their electrocatalytic mechanisms when applied as flexible ZABs catalysts. The findings of this review can assist in the design of more valuable carbon-based air electrodes and their corresponding flexible ZABs for application in wearable electronic devices.
Collapse
Affiliation(s)
- Yuan Qin
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Zihao Ou
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Chuanlan Xu
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Zubang Zhang
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Junjie Yi
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Ying Jiang
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Jinyan Wu
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Chaozhong Guo
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Yujun Si
- College of Chemistry and Materials Science, Sichuan University of Science and Engineering, Zigong, 643000, China.
| | - Tiantao Zhao
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| |
Collapse
|
46
|
Gupta GK, Sagar P, Pandey SK, Srivastava M, Singh AK, Singh J, Srivastava A, Srivastava SK, Srivastava A. In Situ Fabrication of Activated Carbon from a Bio-Waste Desmostachya bipinnata for the Improved Supercapacitor Performance. NANOSCALE RESEARCH LETTERS 2021; 16:85. [PMID: 33987738 PMCID: PMC8119520 DOI: 10.1186/s11671-021-03545-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/05/2021] [Indexed: 06/01/2023]
Abstract
Herein, we demonstrate the fabrication of highly capacitive activated carbon (AC) using a bio-waste Kusha grass (Desmostachya bipinnata), by employing a chemical process followed by activation through KOH. The as-synthesized few-layered activated carbon has been confirmed through X-ray powder diffraction, transmission electron microscopy, and Raman spectroscopy techniques. The chemical environment of the as-prepared sample has been accessed through FTIR and UV-visible spectroscopy. The surface area and porosity of the as-synthesized material have been accessed through the Brunauer-Emmett-Teller method. All the electrochemical measurements have been performed through cyclic voltammetry and galvanometric charging/discharging (GCD) method, but primarily, we focus on GCD due to the accuracy of the technique. Moreover, the as-synthesized AC material shows a maximum specific capacitance as 218 F g-1 in the potential window ranging from - 0.35 to + 0.45 V. Also, the AC exhibits an excellent energy density of ~ 19.3 Wh kg-1 and power density of ~ 277.92 W kg-1, respectively, in the same operating potential window. It has also shown very good capacitance retention capability even after 5000th cycles. The fabricated supercapacitor shows a good energy density and power density, respectively, and good retention in capacitance at remarkably higher charging/discharging rates with excellent cycling stability. Henceforth, bio-waste Kusha grass-derived activated carbon (DP-AC) shows good promise and can be applied in supercapacitor applications due to its outstanding electrochemical properties. Herein, we envision that our results illustrate a simple and innovative approach to synthesize a bio-waste Kusha grass-derived activated carbon (DP-AC) as an emerging supercapacitor electrode material and widen its practical application in electrochemical energy storage fields.
Collapse
Affiliation(s)
- Gopal Krishna Gupta
- Department of Physics, TDPG College, VBS Purvanchal University, Jaunpur, 222001, India
| | - Pinky Sagar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sumit Kumar Pandey
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Monika Srivastava
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - A K Singh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jai Singh
- Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, India
| | - Anchal Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - S K Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Amit Srivastava
- Department of Physics, TDPG College, VBS Purvanchal University, Jaunpur, 222001, India.
| |
Collapse
|
47
|
Tian Z, Zhao Z, Wang X, Chen Y, Li D, Linghu Y, Wang Y, Wang C. A high-performance asymmetric supercapacitor-based (CuCo)Se 2/GA cathode and FeSe 2/GA anode with enhanced kinetics matching. NANOSCALE 2021; 13:6489-6498. [PMID: 33885528 DOI: 10.1039/d1nr00288k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The performance of asymmetric supercapacitors (ASCs) is limited by the poorly matched electrochemical kinetics of available electrode materials, which generally results in reduced energy density and inadequate voltage utilization. Herein, a porous conductive graphene aerogel (GA) scaffold was decorated with copper cobalt selenide ((CuCo)Se2) or iron selenide (FeSe2) to construct positive and negative electrodes, respectively. The (CuCo)Se2/GA and FeSe2/GA electrodes exhibited high specific capacitances of 672 and 940 F g-1, respectively, at 1 A g-1. The capacitance contributions from the Co3+/Co2+ and Fe3+/Fe2+ redox couple for the positive and negative electrodes were determined to elucidate the energy storage mechanism. Furthermore, the kinetics study of the two electrodes was performed, revealing b values ranging between 0.7 and 1 at various scan rates and demonstrating that the surface-controlled processes played the dominant role, leading to fast charge storage capability for both electrodes. Fabrication of an ASC device with a configuration of (CuCo)Se2/GA//FeSe2/GA resulted in a voltage of 1.6 V, a high energy density of 39 W h kg-1, and a power density of 702 W kg-1. The excellent electrochemical performances of the (CuCo)Se2/GA and FeSe2/GA electrodes demonstrate their potential applications in energy storage devices.
Collapse
Affiliation(s)
- Zhen Tian
- School of Materials Science and Engineering, North University of China, 030051 Taiyuan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Arya N, Avasthi P, Balakrishnan V. A light-fostered supercapacitor performance of multi-layered ReS 2 grown on conducting substrates. NANOSCALE ADVANCES 2021; 3:2089-2102. [PMID: 36133083 PMCID: PMC9419459 DOI: 10.1039/d0na00901f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/13/2021] [Indexed: 06/14/2023]
Abstract
The light-fostered supercapacitor performance introduces a new realm in the field of smart energy storage applications. Transition metal dichalcogenides (TMDCs) with direct band gap are intriguing candidates for developing a light-induced supercapacitor that can enhance energy storage when shined with light. Many TMDCs show a transition from a direct to indirect band gap as the layer number increases, while ReS2 possesses a direct band gap in both bulk and monolayer forms. The growth of such multi-layered 2D materials with high surface area on conducting substrates makes them suitable for smart energy storage applications with the ability to tune their performance with light irradiation. In this report, we present the growth of vertically aligned multi-layered ReS2 with large areal coverage on various conducting and non-conducting substrates, including stainless steel via chemical vapor deposition (CVD). To investigate the effect of light illumination on the charge storage performance, electrochemical measurements have been performed in dark and light conditions. Cyclic voltammetry (CV) curves showed an increase in the area enclosed by the curve, manifesting the increased charge storage capacity under light illumination as compared to dark. The volumetric capacitance value calculated from charging-discharging curves has increased from 17.9 F cm-3 to 29.8 F cm-3 with the irradiation of light for the as-grown ReS2 on a stainless steel plate. More than 1.5 times the capacitance enhancement is attributed to excess electron-hole pairs generated upon light illumination, contributing to the charge storage in the presence of light. The electrochemical impedance spectroscopy further augments these results. The high cyclic stability is attained with a capacitance retention value of 81% even after 10 000 repeated charging-discharging cycles.
Collapse
Affiliation(s)
- Nitika Arya
- School of Engineering, Indian Institute of Technology, Mandi Himachal Pradesh 175005 India
| | - Piyush Avasthi
- School of Engineering, Indian Institute of Technology, Mandi Himachal Pradesh 175005 India
| | - Viswanath Balakrishnan
- School of Engineering, Indian Institute of Technology, Mandi Himachal Pradesh 175005 India
| |
Collapse
|
49
|
Mohammadi Zardkhoshoui A, Ameri B, Hosseiny Davarani SS. A high-energy-density supercapacitor with multi-shelled nickel-manganese selenide hollow spheres as cathode and double-shell nickel-iron selenide hollow spheres as anode electrodes. NANOSCALE 2021; 13:2931-2945. [PMID: 33503101 DOI: 10.1039/d0nr08234a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thanks to the attractive structural characteristics and unique physicochemical properties, mixed metal selenides (MMSes) can be considered as encouraging electrode materials for energy storage devices. Herein, a straightforward and efficient approach is used to construct multi-shelled nickel-manganese selenide hollow spheres (MSNMSeHSs) as cathode and double-shell nickel-iron selenide hollow spheres (DSNFSeHSs) as anode electrode materials by tuning shell numbers for supercapacitors. The as-designed MSNMSeHS electrode can deliver a splendid capacity of ∼339.2 mA h g-1/1221.1 C g-1, impressive rate performances of 78.8%, and considerable longevity of 95.7%. The considerable performance is also observed for the DSNFSeHS electrode with a capacity of 258.4 mA h g-1/930.25 C g-1, rate performance of 75.5%, and longevity of 90.9%. An efficient asymmetric apparatus (MSNMSeHS||DSNFSeHS) fabricated by these two electrodes depicts the excellent electrochemical features (energy density of ≈112.6 W h kg-1 at 900.8 W kg-1) with desirable longevity of ≈94.4%.
Collapse
Affiliation(s)
| | - Bahareh Ameri
- Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran.
| | | |
Collapse
|
50
|
Sun H, Wang C, Qi Z, Hu W, Zhang Z. Nanostructure Nickel-Based Selenides as Cathode Materials for Hybrid Battery-Supercapacitors. Front Chem 2021; 8:611032. [PMID: 33604327 PMCID: PMC7884856 DOI: 10.3389/fchem.2020.611032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/17/2020] [Indexed: 12/02/2022] Open
Abstract
Supercapacitors (SCs) have attracted many attentions and already became part of some high-power derived devices such as Tesla's electric cars because of their higher power density. Among all types of electrical energy storage devices, battery-supercapacitors are the most promising for superior performance characteristics, including short charging time, high power density, safety, easy fabrication procedures, and long operational life. An SC usually consists of two foremost components, namely electrode materials, and electrolyte. The selection of appropriate electrode materials with rational nanostructured designs have resulted in improved electrochemical properties for high performance and has reduced the cost of SCs. In this review, we mainly spotlight the nickel-based selenides nanostructured which applied as high-performance cathode materials for SCs. Different nickel-based selenides materials are highlighted in various categories, such as nickel-cobalt-based bimetallic chalcogenides and nickel-M based selenides. Also, we mentioned material modification for this material type. Finally, the designing strategy and future improvements on nickel-based selenides materials for the application of SCs are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Zhijie Zhang
- Huazhong Institute of Electro-Optics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| |
Collapse
|