1
|
Park MG, Hwang J, Deng YP, Lee DU, Fu J, Hu Y, Jang MJ, Choi SM, Feng R, Jiang G, Qian L, Ma Q, Yang L, Jun YS, Seo MH, Bai Z, Chen Z. Longevous Cycling of Rechargeable Zn-Air Battery Enabled by "Raisin-Bread" Cobalt Oxynitride/Porous Carbon Hybrid Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2311105. [PMID: 38085968 DOI: 10.1002/adma.202311105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 12/20/2023]
Abstract
Developing commercially viable electrocatalyst lies at the research hotspot of rechargeable Zn-air batteries, but it is still challenging to meet the requirements of energy efficiency and durability in realistic applications. Strategic material design is critical to addressing its drawbacks in terms of sluggish kinetics of oxygen reactions and limited battery lifespan. Herein, a "raisin-bread" architecture is designed for a hybrid catalyst constituting cobalt nitride as the core nanoparticle with thin oxidized coverings, which is further deposited within porous carbon aerogel. Based on synchrotron-based characterizations, this hybrid provides oxygen vacancies and Co-Nx -C sites as the active sites, resulting from a strong coupling between CoOx Ny nanoparticles and 3D conductive carbon scaffolds. Compared to the oxide reference, it performs enhanced stability in harsh electrocatalytic environments, highlighting the benefits of the oxynitride. Furthermore, the 3D conductive scaffolds improve charge/mass transportation and boost durability of these active sites. Density functional theory calculations reveal that the introduced N species into hybrid can synergistically tune the d-band center of cobalt and improve its bifunctional activity. As a result, the obtained air cathode exhibits bifunctional overpotential of 0.65 V and a battery lifetime exceeding 1350 h, which sets a new record for rechargeable Zn-air battery reported so far.
Collapse
Affiliation(s)
- Moon Gyu Park
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Henan Normal University, Xinxiang, 453007, China
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Jeemin Hwang
- Fuel Cell Research & Demonstration Center, Hydrogen Energy Research Division, Korea Institute of Energy Research (KIER), Buan-gun, 56332, Republic of Korea
| | - Ya-Ping Deng
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Dong Un Lee
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jing Fu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Yongfeng Hu
- Canadian Light Source, University of Saskatchewan, Saskatoon, SK, S7N 0×4, Canada
| | - Myeong Je Jang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Henan Normal University, Xinxiang, 453007, China
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Sung Mook Choi
- Department of Hydrogen Energy Materials, Surface & Nano Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
- Advanced Materials Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Renfei Feng
- Canadian Light Source, University of Saskatchewan, Saskatoon, SK, S7N 0×4, Canada
| | - Gaopeng Jiang
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lanting Qian
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Qianyi Ma
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lin Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Henan Normal University, Xinxiang, 453007, China
| | - Yun Seok Jun
- College of Engineering, Pukyong National University, Busan, 48547, Republic of Korea
| | - Min Ho Seo
- College of Engineering, Pukyong National University, Busan, 48547, Republic of Korea
| | - Zhengyu Bai
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Henan Normal University, Xinxiang, 453007, China
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
2
|
Tian K, Zhang Q, Liu X, Zhang C, Yang F. Synthesis of dendritic cobalt with flower-like structure by a facile wet chemistry method as an excellent electromagnetic wave absorber. J Colloid Interface Sci 2023; 649:58-67. [PMID: 37336154 DOI: 10.1016/j.jcis.2023.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
In this study, a three-dimensional (3D) floral dendritic cobalt (FDC) consisting of layered flakes was effectively synthesized using a facile wet chemistry method. The impact of the molar amount of NaOH on the microscopic morphology, magnetic characteristics, and electromagnetic wave (EMW) absorption properties of the FDC magnetic materials was comprehensively investigated. The results revealed that the prepared FDC features primary, secondary, and multi-level branches, with the majority of secondary branches being parallel to one another. The dendrites grew closely towards the flower's center at one end, while the tips extend in various directions, forming a dendritic flower cluster. The optimal reflection loss (RL) of S3 at 9.3 GHz was -56.34 dB with a thickness of 1.89 mm, and the maximum effective absorption bandwidth (EAB, RL < -10 dB) reached 6.0 GHz (12.0-18.0 GHz) at a thickness of 1.30 mm. Consequently, the FDC magnetic materials produced in this study presented a method for fabricating high-performance electromagnetic wave absorption (EMWA) materials.
Collapse
Affiliation(s)
- Konghu Tian
- Analysis and Test Center, Anhui University of Science and Technology, Huainan 232001, China; School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Qinghe Zhang
- School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China.
| | - Xiaowei Liu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Chao Zhang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Fawang Yang
- School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China
| |
Collapse
|
3
|
Huang K, Hui Y, Yang Z, Waqas M, Fan F, Wang L, Liu X, Huang Q, Huang D, Chen DH, Fan Y, Chen W. N, S co-doped carbon film wrapped Co nanoparticles for boosting oxygen reduction reaction. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Kausar A. Nanodendrite—promising nanoreinforcement for emerging next-generation nanocomposite. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2069040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Ayesha Kausar
- Nanosciences Division, National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
5
|
Yan Q, Sun RM, Wang LP, Feng JJ, Zhang L, Wang AJ. Cobalt nanoparticles/ nitrogen, sulfur-codoped ultrathin carbon nanotubes derived from metal organic frameworks as high-efficiency electrocatalyst for robust rechargeable zinc-air battery. J Colloid Interface Sci 2021; 603:559-571. [PMID: 34216952 DOI: 10.1016/j.jcis.2021.06.133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/13/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
It remains a challenge for efficient and facile synthesis of promising non-noble metal electrocatalysts with outstanding properties. This work reported a simple pyrolysis method to prepare cobalt nanoparticles/nitrogen, sulfur-codoped ultrathin carbon nanotubes (Co NPs/N,S-CNTs) with metal organic frameworks (cobalt 2-methylimidazole, ZIF-67), melamine, polyvinylpyrrolidone (PVP) and thiourea. The prepared catalyst exhibited superior catalytic activity towards oxygen reduction reaction (ORR) such as the more positive onset potential of 0.96 V, half-wave potential of 0.86 V and smaller Tafel slope of 67.9 mV dec-1, outperforming those of commercial Pt/C. Furthermore, the Co NPs/N,S-CNTs based Zn-air battery not only showed good cycling performance, but also displayed a notable peak power density (153.8 mW cm-2) and large open-circuit voltage (1.433 V). This study provides some valuable guidelines for synthesizing advanced electrocatalysts in renewable energy techniques.
Collapse
Affiliation(s)
- Qiao Yan
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Rui-Min Sun
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Li-Ping Wang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
6
|
Parkash A. Incorporation of Pt-Cr nanoparticles into highly porous MOF-5 as efficient oxygen reduction electrocatalysts. NANOTECHNOLOGY 2020; 31:445403. [PMID: 32702680 DOI: 10.1088/1361-6528/aba8bd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing new materials that can enhance the efficiency of energy conversion and storage systems is critical to meeting the rising energy demand of low-carbon economies. Mesoporous materials have the advantages of large specific surface area and multiple channels, which can increase efficiency and flexibility in terms of energy and power density. An active catalyst for oxygen reduction reaction (ORR) based on Pt-Cr nanoparticles with ultralow Pt content (0.90 wt%) has been studied in this paper. In contrast, electrocatalyst Pt/Cr/NPC-900 exhibited an ORR activity with onset potential (E o) of 1.01 V vs. RHE in an alkaline solution that was superior to commercial Pt/C (20 wt%) (0.96 V vs. RHE). The presence of metal oxides and optimal Pt content enhanced the ORR activity. Therefore, the synergistic effect of the high surface area increased charge transfer, and excellent structural stability can achieve significant ORR efficiency, which is conducive to excellent activity. These findings provide a new perspective for economical and practical ORR electrocatalysts to be designed and synthesized rationally.
Collapse
Affiliation(s)
- Anand Parkash
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710119, People's Republic of China. School of Chemistry and Chemical Engineering, Shanxi Normal University, Chang'an West Street 620, Xi'an 710119, People's Republic of China
| |
Collapse
|
7
|
Gao Y, Gong X, Zhong H, Li D, Tang P, Alonso‐Vante N, Feng Y. In Situ Self‐Supporting Cobalt Embedded in Nitrogen‐Doped Porous Carbon as Efficient Oxygen Reduction Electrocatalysts. ChemElectroChem 2020. [DOI: 10.1002/celc.202001090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Chemical Resource Engineering Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology No. 15 Beisanhuan East Road Beijing 100029 China
| | - Xiaoman Gong
- State Key Laboratory of Chemical Resource Engineering Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology No. 15 Beisanhuan East Road Beijing 100029 China
| | - Haihong Zhong
- State Key Laboratory of Chemical Resource Engineering Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology No. 15 Beisanhuan East Road Beijing 100029 China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology No. 15 Beisanhuan East Road Beijing 100029 China
| | - Pinggui Tang
- State Key Laboratory of Chemical Resource Engineering Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology No. 15 Beisanhuan East Road Beijing 100029 China
| | | | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology No. 15 Beisanhuan East Road Beijing 100029 China
- Anqing Research Institute Beijing University of Chemical Technology No. 8 Huanhu West Road, High-Tech district Anqing city Anhui 24600 China
| |
Collapse
|
8
|
Zhang J, Li C, Zhang M, Zhang J, Wu X, Li X, Lü W. Cobalt and nitrogen codoped carbon nanotubes derived from a graphitic C 3N 4 template as an electrocatalyst for the oxygen reduction reaction. NANOSCALE ADVANCES 2020; 2:3963-3971. [PMID: 36132801 PMCID: PMC9419829 DOI: 10.1039/d0na00502a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/30/2020] [Indexed: 05/16/2023]
Abstract
Sluggish oxygen reduction reaction kinetics have been a main obstacle for commercial application of fuel cells. To replace Pt-based noble metal electrocatalysts, it is crucial to develop economical materials as electrocatalysts. Herein, we provide a strategy to prepare Co and N codoped carbon nanotubes for efficient oxygen reduction reaction. The composites are synthesized by hydrothermal reaction followed by calcination at 900 °C. Graphitic carbon nitride is used as a template and nitrogen source, and citric acid and cobalt nitrate hexahydrate are used as carbon and cobalt sources, respectively. Due to the synergistic effect of Co and N codoping and increased specific surface area, the resulting Co and N codoped carbon nanotubes exhibit excellent catalytic performance. The present results provide experimental support for further development of electrocatalysts.
Collapse
Affiliation(s)
- Jichang Zhang
- Cardiology Department, The Second Hospital of Jilin University, Jilin University Changchun 130041 China
| | - Chenxia Li
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology Changchun 130012 China +86-431-85716577 +86-431-85716577
| | - Ming Zhang
- Cardiology Department, The Second Hospital of Jilin University, Jilin University Changchun 130041 China
| | - Jianqi Zhang
- Cardiology Department, The Second Hospital of Jilin University, Jilin University Changchun 130041 China
| | - Xi Wu
- Cardiology Department, The Second Hospital of Jilin University, Jilin University Changchun 130041 China
| | - Xuesong Li
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology Changchun 130012 China +86-431-85716577 +86-431-85716577
| | - Wei Lü
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology Changchun 130012 China +86-431-85716577 +86-431-85716577
| |
Collapse
|
9
|
Wen GL, Niu HJ, Feng JJ, Luo X, Weng X, Wang AJ. Well-dispersed Co3Fe7 alloy nanoparticles wrapped in N-doped defect-rich carbon nanosheets as a highly efficient and methanol-resistant catalyst for oxygen-reduction reaction. J Colloid Interface Sci 2020; 569:277-285. [DOI: 10.1016/j.jcis.2020.02.089] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022]
|