1
|
Shang K, Chen H, Yang W, He Y, Liu B, Yi X, Tan X, Fang M. Surface-modified carbon quantum dot for enhanced fluorescent-sensing of hexagonal valent chromium. ANAL SCI 2025; 41:427-437. [PMID: 39838232 DOI: 10.1007/s44211-025-00716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025]
Abstract
As one of the most harmful heavy metal pollutants, hexavalent chromium Cr(VI) is becoming a serious threat to human health. Thus pursuing a remarkably sensitive method to monitor the Cr(VI) concentration in natural conditions is favored for the fast response to prevent harm. In the present work, an ethylenediamine (En) and SiO2-modified wool keratin-based carbon quantum dot (CQD)(En@CQDs@SiO2) fluorescent sensor is prepared, and the En is found to improve the discrimination ability by binding the Cr(VI) with the surface carboxyl groups. Based on these designs, the En@CQDs@SiO2 achieves a significant improvement in the Cr(VI) detection ability, with a detection limit of 6.08 × 10-4 mg/L, which succeeded 6 times over CQDs, and is better than conventional UV-Vis and flame atomic absorption (AAS) techniques. Furthermore, the fluorescent sensor has good relative sensitivity, selectivity, good spectral reproducibility, and excellent structural stability. These properties make the sensor suitable for environmental Cr(VI) detection, which undoubtedly improves the economy and environmental friendliness of the fluorescent sensor.
Collapse
Affiliation(s)
- Kangle Shang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
- Xingzhi College, Zhejiang Normal University, Lanxi, 321000, People's Republic of China
| | - Hansong Chen
- Xingzhi College, Zhejiang Normal University, Lanxi, 321000, People's Republic of China
| | - Wenwen Yang
- Xingzhi College, Zhejiang Normal University, Lanxi, 321000, People's Republic of China
| | - Yucheng He
- Xingzhi College, Zhejiang Normal University, Lanxi, 321000, People's Republic of China
| | - Baoyi Liu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Xuxin Yi
- Xingzhi College, Zhejiang Normal University, Lanxi, 321000, People's Republic of China
| | - Xiaoli Tan
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Ming Fang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China.
| |
Collapse
|
2
|
Debnath R, Ikbal AMA, Ravi NK, Kargarzadeh H, Palit P, Thomas S. Carbon Nanodots-Based Polymer Nanocomposite: A Potential Drug Delivery Armament of Phytopharmaceuticals. Polymers (Basel) 2025; 17:365. [PMID: 39940566 PMCID: PMC11819804 DOI: 10.3390/polym17030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/31/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Carbon nanodots (CNDs) have garnered significant attention as viable drug delivery vehicles in recent years, especially in the field of phytomedicine. Although there is much promise for therapeutic applications with phytomedicine, its effectiveness is frequently restricted by its low solubility, stability, and bioavailability. This paper offers a thorough synopsis of the developing field of phytomedicine drug delivery based on CND. It explores CND synthesis processes, surface functionalization strategies, and structural and optical characteristics. Additionally, the advantages and difficulties of phytomedicine are examined, with a focus on the contribution of drug delivery methods to the increased effectiveness of phytomedicine. The applications of CNDs in drug delivery are also included in the review, along with the mechanisms that underlie their improved drug delivery capabilities. Additionally, it looks at controlled-release methods, stability augmentation, and phytomedicine-loading tactics onto CNDs. The potential of polymeric carbon nanodots in drug delivery is also covered, along with difficulties and prospective directions going forward, such as resolving toxicity and biocompatibility issues. In summary, the present review highlights the encouraging contribution of CNDs to the field of drug delivery, specifically in enhancing the potential of phytomedicine for therapeutic purposes.
Collapse
Affiliation(s)
- Rabin Debnath
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India; (R.D.); (A.M.A.I.); (N.K.R.)
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India; (R.D.); (A.M.A.I.); (N.K.R.)
| | - Neeraj Kr. Ravi
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India; (R.D.); (A.M.A.I.); (N.K.R.)
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland;
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India; (R.D.); (A.M.A.I.); (N.K.R.)
| | - Sabu Thomas
- School of Energy Materials, School of Nanoscience and Nanotechnology, School of Polymer Science and Technology, School of Chemical Science and International, Inter University Centre for Nanoscience and Nantechnology (IIUCNN), Mahatma Gandhi University, Kottayam 686560, India
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg P.O. Box 17011, South Africa
- TrEST Research Park, TC-4/2322, GEM Building, Opposite College of Engineering Trivandrum, Kulathoor Rd., Sreekariyam, Trivandrum 695016, India
| |
Collapse
|
3
|
Ullal N, Mehta R, Sunil D. Separation and purification of fluorescent carbon dots - an unmet challenge. Analyst 2024; 149:1680-1700. [PMID: 38407365 DOI: 10.1039/d3an02134c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Literature reports demonstrate versatile optical applications of fluorescent carbon dots (CDs) in biological imaging, full-color solid-state lighting, optoelectronics, sensing, anticounterfeiting and so on. The fluorescence associated with CDs may originate significantly from byproducts generated during their synthesis, which need to be eliminated to achieve error-free results. The significance of purification, specifically for luminescence-based characterizations, is highly critical and imperative. Thus, there is a pressing demand to implement consistent and adequate purification strategies to reduce sample complexity and thereby realize reliable results that can provide a tactical steppingstone towards the advancement of CDs as next-generation optical materials. The article focuses on the mechanism of origin of fluorescence from CDs and further demonstrates the different purification approaches including dialysis, centrifugation, filtration, solvent extraction, chromatography, and electrophoresis that have been adopted by various researchers. Furthermore, the fundamental separation mechanism, as well as the advantages and limitations of each of these purification techniques are discussed. The article finally provides the critical challenges of these purification techniques that need to be overcome to obtain homogeneous CD fractions that demonstrate coherent and reliable optical features for suitable applications.
Collapse
Affiliation(s)
- Namratha Ullal
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India.
| | - Riya Mehta
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India.
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India.
| |
Collapse
|
4
|
Wu D, Zhao Q, Zhang B, Tang X, Li Y, Sun J, Yang X. Iron-Doped Polymer Dots with Enhanced Fluorescence and Dual Enzyme Activity for Versatile Bioassays. Anal Chem 2024. [PMID: 38324754 DOI: 10.1021/acs.analchem.3c04514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Nanozymes with multiple functionalities endow biochemical sensing with more sensitive and efficient analytical performance by widening the sensing modes. Meanwhile, the target-oriented design of multifunctional nanozymes for certain biosensing remains challenging. Herein, a constructive strategy of doping iron into polymer dots (PDs) to achieve nanozymes with excellent oxidase-mimicking and peroxidase-mimicking activity is proposed. Compared with the Fe-free PDs prepared under the same mild condition, the Fe-doped PDs (Fe-PDs) exhibit greatly boosted fluorescence at 500 nm. While applying 3,3',5,5'-tetramethylbenzidine (TMB) as a chromogenic substrate, the fluorescence of the Fe-PDs can be further quenched by oxTMB due to the inner filter effect (IFE). Inspired by this, a simple but efficient colorimetric and fluorometric dual-mode sensing platform is developed for monitoring the reducing substances ascorbic acid (AA), α-glucosidase (α-Glu), and its inhibitors (AGIs). We believe that such multifunctional enzyme-mimic materials will provoke the exploration of multimode sensing strategy with strong practicality to serve as a versatile tool in biochemical sensing.
Collapse
Affiliation(s)
- Donghui Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qilin Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bing Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xianqing Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yushu Li
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Sun H, Xia P, Shao H, Zhang R, Lu C, Xu S, Wang C. Heating-free synthesis of red emissive carbon dots through separated processes of polymerization and carbonization. J Colloid Interface Sci 2023; 646:932-939. [PMID: 37235938 DOI: 10.1016/j.jcis.2023.05.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Polymerization and carbonization are believed as two basic processes for the bottom-up synthesis of carbon dots (CDs). Since these two processes usually occur simultaneously due to the high reaction temperature and fast reaction rate, it is still a challenge to separate and control these two processes. In the present work, we reported a new room temperature method, which achieved the separated and controlled polymerization and carbonization processes. The polymerization process is realized by dissolving o-phenylenediamine (OPD) in ethanol at room temperature, and finally obtained polymer dots (PDs) without any lattice with a sphere size of 29.6 nm. The carbonization process begins in a manual way by adding concentrated sulfuric acid. After carbonization, CDs (noted as CPDs in this work) with a size of 3.6 nm and a clear lattice can be obtained. Importantly, the separated polymerization and carbonization make us possible to adjust the composition or interactions of intermediate products during the synthesis process. As a prototype, we added acetic acid (AA) additives into OPD precursors during the polymerization stage. Due to the crosslink enhanced emission (CEE) effect via hydrogen bonds which are produced by the amide groups from AA reaction products with H in the -NH3+ or aromatic ring, the resulted CPDs show improved PLQY from an initial 6.87% (without AA) to 16.47%. The current work realized the separated and controllable polymerization and carbonization processes, opening up the door for tuning the composition and interactions of intermediate products before carbonization.
Collapse
Affiliation(s)
- Hongcan Sun
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Pengfei Xia
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Haibao Shao
- School of Electronics & Information, Nantong University, Nantong 226019, People's Republic of China
| | - Rong Zhang
- Department of Obstetrics and Gynecology, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, People's Republic of China
| | - Changgui Lu
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Shuhong Xu
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| | - Chunlei Wang
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| |
Collapse
|
6
|
Lagos KJ, García D, Cuadrado CF, de Souza LM, Mezzacappo NF, da Silva AP, Inada N, Bagnato V, Romero MP. Carbon dots: Types, preparation, and their boosted antibacterial activity by photoactivation. Current status and future perspectives. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1887. [PMID: 37100045 DOI: 10.1002/wnan.1887] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 04/28/2023]
Abstract
Carbon dots (CDs) correspond to carbon-based materials (CBM) with sizes usually below 10 nm. These nanomaterials exhibit attractive properties such us low toxicity, good stability, and high conductivity, which have promoted their thorough study over the past two decades. The current review describes four types of CDs: carbon quantum dots (CQDs), graphene quantum dots (GQDs), carbon nanodots (CNDs), and carbonized polymers dots (CPDs), together with the state of the art of the main routes for their preparation, either by "top-down" or "bottom-up" approaches. Moreover, among the various usages of CDs within biomedicine, we have focused on their application as a novel class of broad-spectrum antibacterial agents, concretely, owing their photoactivation capability that triggers an enhanced antibacterial property. Our work presents the recent advances in this field addressing CDs, their composites and hybrids, applied as photosensitizers (PS), and photothermal agents (PA) within antibacterial strategies such as photodynamic therapy (PDT), photothermal therapy (PTT), and synchronic PDT/PTT. Furthermore, we discuss the prospects for the possible future development of large-scale preparation of CDs, and the potential for these nanomaterials to be employed in applications to combat other pathogens harmful to human health. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Karina J Lagos
- Department of Materials, Escuela Politécnica Nacional (EPN), Quito, Ecuador
| | - David García
- Department of Materials, Escuela Politécnica Nacional (EPN), Quito, Ecuador
| | | | | | | | - Ana Paula da Silva
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, Brazil
| | - Natalia Inada
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, Brazil
| | - Vanderlei Bagnato
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, Brazil
| | | |
Collapse
|
7
|
Li T, Wu M, Wei Q, Xu D, He X, Wang J, Wu J, Chen L. Conjugated Polymer Nanoparticles for Tumor Theranostics. Biomacromolecules 2023; 24:1943-1979. [PMID: 37083404 DOI: 10.1021/acs.biomac.2c01446] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Water-dispersible conjugated polymer nanoparticles (CPNs) have demonstrated great capabilities in biological applications, such as in vitro cell/subcellular imaging and biosensing, or in vivo tissue imaging and disease treatment. In this review, we summarized the recent advances of CPNs used for tumor imaging and treatment during the past five years. CPNs with different structures, which have been applied to in vivo solid tumor imaging (fluorescence, photoacoustic, and dual-modal) and treatment (phototherapy, drug carriers, and synergistic therapy), are discussed in detail. We also demonstrated the potential of CPNs as cancer theranostic nanoplatforms. Finally, we discussed current challenges and outlooks in this field.
Collapse
Affiliation(s)
- Tianyu Li
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Mengqi Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Qidong Wei
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Dingshi Xu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Xuehan He
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiasi Wang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, SAR, China
| | - Lei Chen
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
8
|
Huang Q, Sun H, Lu C, Wang C, Xu S. Post-synthetic regulation of the fluorescence of CDs: insights into the fluorescence mechanism. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:353-360. [PMID: 36594675 DOI: 10.1039/d2ay01632j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploring the origin of emission is fundamental in the field of carbon dots (CDs). Due to the lack of suitable in situ probing techniques, it is necessary to explore effective alternative methods that can accurately reflect the relationship between the emission and the composition of the functional groups of CDs. Herein, we propose a new method of post-synthetic treatment of CDs by photo-oxidation to investigate the origin of emission for CDs. After the addition of a photo-oxidant into pre-prepared CDs under UV irradiation, the fluorescence of CDs can be regulated from the original orange emission to the final green emission due to the damage of original functional groups and the formation of new functional groups on CDs during the post-treatment process. The abundant dynamic information about the functional groups and emissions of CDs during the visible and ready-to-monitor post-treatment process makes it possible to quantitatively analyze the origin of the emission of CDs. Our results suggest that the emission sub-peaks at 560 nm and 600 nm relate to the CD surface-state-associated -NH3+ groups, while the emission sub-peak at 537 nm or 494 nm is associated with the CD surface-state-associated -OH groups or the CD surface-state-associated carbonyl groups (CO). Under UV irradiation, the CD surface-state-associated -NH3+ groups can be continuously converted into the CD surface-state-associated -OH groups and the CD surface-state-associated carbonyl groups (CO), leading to the changed emission color of CDs.
Collapse
Affiliation(s)
- Qingchun Huang
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| | - Hongcan Sun
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| | - Changgui Lu
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| | - Chunlei Wang
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| | - Shuhong Xu
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| |
Collapse
|
9
|
Durrani S, Yang Z, Zhang J, Wang Z, Wang H, Durrani F, Wu FG, Lin F. Nucleus-targeting pH-Responsive carbon dots for fast nucleus pH detection. Talanta 2023; 252:123855. [DOI: 10.1016/j.talanta.2022.123855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
|
10
|
The preparation, optical properties and applications of carbon dots derived from phenylenediamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Solvent-dependent carbon dots for multifunctional sensing of temperature, pH, and proton pump inhibitors. Anal Chim Acta 2022; 1228:340341. [DOI: 10.1016/j.aca.2022.340341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022]
|
12
|
Mohiuddin SMUG, Aydarous A, Alshahrie A, Saeed A, Memić A, Abdullahi S, Salah N. Structural, morphological, and optical properties of carbon nanoparticles unsheathed from date palm fronds. RSC Adv 2022; 12:27411-27420. [PMID: 36276045 PMCID: PMC9513680 DOI: 10.1039/d2ra04189h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/31/2022] [Indexed: 01/22/2023] Open
Abstract
Several studies have reported the synthesis of carbon nanoparticles (CNPs) by various methods. In this study, an easy one-step process to unsheathe CNPs from date palm fronds through a top-down ball milling method has been reported. The CNPs were characterized using various spectroscopic and microscopic methods to determine their structural and morphological features, optical properties, crystallinity, physicochemical properties, and particle stability. Transmission electron microscopy (TEM) revealed that the obtained CNPs' size ranged from 4 to 22 nm in a crystalline form. Scanning electron microscopy (SEM) confirmed their spherical shape, while the maximum photoluminescence (PL) intensity was recorded at 464 nm when excited at 375 nm. The unsheathed CNPs produced a good quantum yield (QY) of 3.24%. Furthermore, the CNPs exhibited high Raman ratios of I D/I G and I 2D/I G with values of 0.59 and 0.04, respectively, verifying their multilayer crystalline graphitic nature. These Raman ratios also agree with the X-ray diffractometry (XRD) results. The CNPs' sp2 and sp3 carbon bonds were confirmed by X-ray photoelectron spectroscopy (XPS), with oxygen on the surface forming carboxyl and carbonyl groups with no other observable impurities. Furthermore, the extracted CNPs showed excellent PL properties for up- and down-conversion. These properties are exemplary for low-cost biomass with potential applications in biomedicine. Therefore, the extracted CNPs reported in this study have potential applications in optical imaging.
Collapse
Affiliation(s)
- Shaik Muhammad U G Mohiuddin
- Department of Physics, Faculty of Sciences, King Abdulaziz University 21589 Jeddah Saudi Arabia
- Center of Nanotechnology, King Abdulaziz University 21589 Jeddah Saudi Arabia
| | - Abdulkadir Aydarous
- Department of Physics, Faculty of Sciences, King Abdulaziz University 21589 Jeddah Saudi Arabia
| | - Ahmed Alshahrie
- Department of Physics, Faculty of Sciences, King Abdulaziz University 21589 Jeddah Saudi Arabia
- Center of Nanotechnology, King Abdulaziz University 21589 Jeddah Saudi Arabia
| | - Abdu Saeed
- Department of Physics, Faculty of Sciences, King Abdulaziz University 21589 Jeddah Saudi Arabia
- Center of Nanotechnology, King Abdulaziz University 21589 Jeddah Saudi Arabia
- Department of Physics, Faculty of Science, Thamar University Thamar Yemen
| | - Adnan Memić
- Center of Nanotechnology, King Abdulaziz University 21589 Jeddah Saudi Arabia
| | - Shittu Abdullahi
- Department of Physics, Faculty of Sciences, King Abdulaziz University 21589 Jeddah Saudi Arabia
- Center of Nanotechnology, King Abdulaziz University 21589 Jeddah Saudi Arabia
- Department of Physics, Faculty of Science, Gombe State University Gombe Nigeria
| | - Numan Salah
- Center of Nanotechnology, King Abdulaziz University 21589 Jeddah Saudi Arabia
| |
Collapse
|
13
|
Wu D, Zhao Q, Sun J, Yang X. Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Long WJ, Li XQ, Yu Y, He C. Green synthesis of biomass-derived carbon dots as an efficient corrosion inhibitor. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Dimitriev OP. Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chem Rev 2022; 122:8487-8593. [PMID: 35298145 DOI: 10.1021/acs.chemrev.1c00648] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The exciton, an excited electron-hole pair bound by Coulomb attraction, plays a key role in photophysics of organic molecules and drives practically important phenomena such as photoinduced mechanical motions of a molecule, photochemical conversions, energy transfer, generation of free charge carriers, etc. Its behavior in extended π-conjugated molecules and disordered organic films is very different and very rich compared with exciton behavior in inorganic semiconductor crystals. Due to the high degree of variability of organic systems themselves, the exciton not only exerts changes on molecules that carry it but undergoes its own changes during all phases of its lifetime, that is, birth, conversion and transport, and decay. The goal of this review is to give a systematic and comprehensive view on exciton behavior in π-conjugated molecules and molecular assemblies at all phases of exciton evolution with emphasis on rates typical for this dynamic picture and various consequences of the above dynamics. To uncover the rich variety of exciton behavior, details of exciton formation, exciton transport, exciton energy conversion, direct and reverse intersystem crossing, and radiative and nonradiative decay are considered in different systems, where these processes lead to or are influenced by static and dynamic disorder, charge distribution symmetry breaking, photoinduced reactions, electron and proton transfer, structural rearrangements, exciton coupling with vibrations and intermediate particles, and exciton dissociation and annihilation as well.
Collapse
Affiliation(s)
- Oleg P Dimitriev
- V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, pr. Nauki 41, Kyiv 03028, Ukraine
| |
Collapse
|
16
|
Sajjad F, Jin H, Han Y, Wang L, Bao L, Chen T, Yan Y, Qiu Y, Chen ZL. Incorporation of green emission polymer dots into pyropheophorbide-α enhance the PDT effect and biocompatibility. Photodiagnosis Photodyn Ther 2022; 37:102562. [PMID: 34610430 DOI: 10.1016/j.pdpdt.2021.102562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/04/2021] [Accepted: 08/27/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND A green emission up-conversion carbon-based polymer dots (CPDs) owned excellent photophysical properties and good solubility. Most photosensitizers (PS) are hydrophobic which limits their application in biomedicine. Herein we synthesized and integrated green emitting CPDs into pyropheophorbide-α (PPa) to improve the overall properties of the PS. MATERIAL AND METHODS The nano-agent was incorporated through amide condensation and electrostatic interaction. The structure, size and morphology of the prepared conjugates were determined by FTIR, TEM, DLS, TGA, 1HNMR, Uv-vis, and fluorescence spectrophotometry. The dark and light toxicity, as well as cellular uptake, was also monitored on the human esophageal cancer cell line (Eca-109). RESULTS Our results illustrate that the conjugation improved the PDT efficacy by increasing the ROS generation. The nano-hybrids showed pH sensitivity as well as good hemocompatibility as the hemolysis ratio was decreased when treated with nano-conjugates. PPa-CPD1 and PPa-CPD2 had the pH response and stronger ability to absorb light and produce fluorescence in an acidic environment (pH 4.0 and pH 5.0) The synthesized nano-hybrids doesnot affect the clotting time. An increase in the absorbance wavelengths was observed. The results of MTT assay showed that dark toxicity was reduced after conjugation. CONCLUSION This CPDs-based drug enhanced tumor-inhibition efficiency as well as low dark toxicity in vitro, showing significant application potential for PDT-based treatment.
Collapse
Affiliation(s)
- Faiza Sajjad
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Hui Jin
- Pudong New Area People's Hospital, Shanghai 201200, China
| | - Yiping Han
- Shanghai Changhai Hospital, Shanghai 200433, China
| | - Laixing Wang
- Shanghai Changhai Hospital, Shanghai 200433, China
| | - Leilei Bao
- Shanghai Changhai Hospital, Shanghai 200433, China
| | - Ting Chen
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Yijia Yan
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Yan Qiu
- Pudong New Area People's Hospital, Shanghai 201200, China.
| | - Zhi-Long Chen
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| |
Collapse
|
17
|
Zou G, Chen S, Liu N, Yu Y. A ratiometric fluorescent probe based on carbon dots assembly for intracellular lysosomal polarity imaging with wide range response. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Sajjad F, Han Y, Bao L, Yan Y, O Shea D, Wang L, Chen Z. The improvement of biocompatibility by incorporating porphyrins into carbon dots with photodynamic effects and pH sensitivities. J Biomater Appl 2021; 36:1378-1389. [PMID: 34968148 DOI: 10.1177/08853282211050449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Photodynamic therapy (PDT) is a promising new treatment for cancer; however, the hydrophobic interactions and poor solubility in water of photosensitizers limit the use in clinic. Nanoparticles especially carbon dots have attracted the attention of the world's scientists because of their unique properties such as good solubility and biocompatibility. In this paper, we integrated carbon dots with different porphyrins to improve the properties of porphyrins and evaluated their efficacy as PDT drugs. The spectroscopic characteristics of porphyrins nano-conjugates were studied. Singlet oxygen generation rate and the light- and dark-induced toxicity of the conjugates were studied. Our results showed that the covalent interaction between CDs and porphyrins has improved the biocompatibility. The synthesized conjugates also inherit the pH sensitivity of the carbon dots, while the conjugation also decreases the hemolysis ratio making them a promising candidate for PDT. The incorporation of carbon dots into porphyrins improved their biocompatibility by reducing toxicity.
Collapse
Affiliation(s)
| | - Yiping Han
- Shanghai Changhai Hospital, Shanghai, China
| | - Leilei Bao
- Shanghai Changhai Hospital, Shanghai, China
| | - Yijia Yan
- Shanghai Xianhui Pharmaceutical Co., Ltd, Shanghai, China
| | - Donal O Shea
- Shanghai Xianhui Pharmaceutical Co., Ltd, Shanghai, China
| | | | | |
Collapse
|
19
|
Cheng CW, Lo KM, Li MF, Chiu TC, Hu CC. Facile synthesis of dual-emission fluorescent carbon nanodots for a multifunctional probe. RSC Adv 2021; 11:39958-39965. [PMID: 35494123 PMCID: PMC9044676 DOI: 10.1039/d1ra07826g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/06/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, we developed a facile method for synthesizing dual-emission carbon nanodots (CDs) through trimesic acid and o-phenylenediamine through electrolysis for 2 h. The synthesized CDs were mainly 3-7 nm in size, with an average size of 5.17 nm. The dual-emission fluorescent property of these CDs could be observed under two different excitation wavelengths. The green emission of the CDs could be quenched after the addition of mercury ions or copper ions, and the blue emission of the CDs could be inhibited using hydroxychloroquine (HCQ). Furthermore, the quenched fluorescence of CDs/Cu2+ could be recovered through the addition of glyphosate. We developed a multifunctional chemical sensor by using these special fluorescence materials. Under optimal conditions, the detection limits of mercury ions, glyphosate, and HCQ were 0.42 μM, 1.1 mg L-1, and 0.14 μM, respectively. Moreover, this method can be used to detect mercury ions, glyphosate, and HCQ in environmental water, cereals, and urine samples, respectively.
Collapse
Affiliation(s)
- Chin-Wei Cheng
- Department of Applied Science, National Taitung University Taiwan Republic of China
| | - Kuan-Min Lo
- Department of Applied Science, National Taitung University Taiwan Republic of China
| | - Min-Feng Li
- Department of Applied Science, National Taitung University Taiwan Republic of China
| | - Tai-Chia Chiu
- Department of Applied Science, National Taitung University Taiwan Republic of China
| | - Cho-Chun Hu
- Department of Applied Science, National Taitung University Taiwan Republic of China
| |
Collapse
|
20
|
Yu L, He M, Liu S, Dou X, Li L, Gu N, Li B, Liu Z, Wang G, Fan J. Fluorescent Egg White-Based Carbon Dots as a High-Sensitivity Iron Chelator for the Therapy of Nonalcoholic Fatty Liver Disease by Iron Overload in Zebrafish. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54677-54689. [PMID: 34756030 DOI: 10.1021/acsami.1c14674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Iron overload is the direct cause of many ferroptosis diseases, and it is essential to maintain iron homeostasis. In this paper, we report the Fe3+ chelation and therapy of the iron overload nonalcoholic fatty liver disease (NAFLD) by the fluorescent egg white-based carbon dots (EWCDs) obtained through the microwave-assisted pyrolysis method. As a high-sensitivity sensor, EWCDs show a high correlation between fluorescence emission and the concentration of Fe3+ (R2 = 0.993) in low concentration ranges of 0-25 μM. In vivo and in vitro, the EWCDs show characteristics of high biocompatibility and specific binding of Fe3+. As a novel type of the nano-iron-chelator, EWCDs can successfully attenuate the production of lethal reactive oxygen species. EWCDs not only alleviate the endoplasmic reticulum stress response but also regulate the NF-κB signaling pathway downstream of the Nrf2 signaling pathway. EWCDs prevent hepatocyte apoptosis, regulate fatty acid metabolism, and alleviate inflammation. Ultimately, they alleviate NAFLD induced by iron overload in zebrafish. This work may provide a new idea and method for the application of carbon dots in the field of disease detection and treatment.
Collapse
Affiliation(s)
- Lidong Yu
- School of Physics, Harbin Institute of Technology (HIT), Harbin 150080, P. R. China
| | - Mingyue He
- School of Life Science and Technology, HIT, Harbin 150080, P. R. China
| | - Sihan Liu
- School of Life Science and Technology, HIT, Harbin 150080, P. R. China
| | - Xinyue Dou
- School of Life Science and Technology, HIT, Harbin 150080, P. R. China
| | - Li Li
- School of Physics, Harbin Institute of Technology (HIT), Harbin 150080, P. R. China
- School of Life Science and Technology, HIT, Harbin 150080, P. R. China
| | - Ning Gu
- School of Life Science and Technology, HIT, Harbin 150080, P. R. China
| | - Bingsheng Li
- Key Laboratory of UV Light Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, P. R. China
| | - Zhiguo Liu
- School of Physics, Harbin Institute of Technology (HIT), Harbin 150080, P. R. China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| |
Collapse
|
21
|
Nanoscale Carbon-Polymer Dots for Theranostics and Biomedical Exploration. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2030008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In recent years, new carbonized nanomaterials have emerged in imaging, sensing, and various biomedical applications. Published literature shows that carbon dots (CDs) have been explored more extensively than any other nanomaterials. However, its polymeric version, carbon polymer dots (CPDs), did not get much attention. The non-conjugated and single-particle CPDs have all the merits of polymer and CDs, such as photoluminescent properties. The partially carbonized CPDs can be applied like CDs without surface passivation and functionalization. This merit can be further enhanced through the selection of desired precursors and control of carbonization synthesis. CPDs can absorb UV-visible-NIR light and can enhance the photoresponsive chemical and biochemical interactions. This review aims to introduce this area of renewed interest and provide insights into current developments of CPDs nanoparticles and present an overview of chemical, biological, and therapeutic applications.
Collapse
|
22
|
Sajjada F, Liua XY, Yanb YJ, Zhoua XP, Chena ZL. The Photodynamic Anti-Tumor Effects of New PPa-CDs Conjugate with pH Sensitivity and Improved Biocompatibility. Anticancer Agents Med Chem 2021; 22:1286-1295. [PMID: 33992066 DOI: 10.2174/1871520621666210513162457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/10/2020] [Accepted: 01/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Photodynamic therapy has been increasingly used to cope with the alarming problem of cancer. Porphyrins and its derivatives are widely used as potent photosensitizers (PS) for PDT. However, hydrophobicity of porphyrins poses a challenge for their use in clinics, while most of the carbon dots (CDs) are known for good biocompatibility, solubility, and pH sensitivity. OBJECTIVE To improve the properties/biocompatibility of the pyropheophorbide-α for PDT. METHODS PPa-CD conjugate was synthesized through covalent interaction using amide condensation. The structure of synthesized conjugate was confirmed by TEM, 1HNMR, and FTIR. The absorption and emission spectra were studied. In vitro, cytotoxicity of the conjugate was examined in the Human esophageal cancer cell line (Eca-109). RESULTS The results showed that the fluorescence of the drug was increased from its precursor. CD based conjugate could generate ROS as well as enhanced the biocompatibility by decreasing the cytotoxicity. The conjugated drug also showed pH sensitivity in different solutions. CONCLUSION The dark toxicity, as well as hemocompatibility, were improved.
Collapse
Affiliation(s)
- Faiza Sajjada
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Xu-Ying Liua
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Yi-Jia Yanb
- Shanghai Xianhui Pharmaceutical Co., Ltd, Shanghai, 200433, China
| | - Xing-Ping Zhoua
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Zhi-Long Chena
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| |
Collapse
|
23
|
Sajjad F, Yan YJ, Margetić D, Chen ZL. Synthesis and in vitro PDT evaluation of red emission polymer dots (R-CPDs) and pyropheophorbide-α conjugates. Sci Rep 2021; 11:10013. [PMID: 33976236 PMCID: PMC8113465 DOI: 10.1038/s41598-021-89081-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/19/2021] [Indexed: 11/09/2022] Open
Abstract
Carbon based polymer dots have piqued attention of researchers because of excellent biocompatibility, and good solubility. Most of the p-dots are able to generate ROS which is effective for photodynamic therapy for the treatment of cancer while some photosensitizers such as porphyrins possess some drawbacks such as hydrophobicity, and dark toxicity. Therefore in this study we conjugated red emission carbon based polymer with pyropheophorbide-α through amide condensation and π-π stacking. One pot synthesis of the conjugate was successfully achieved. Their photophysiological properties were studied and structures were characterized by FT-IR, TEM and 1HNMR. pH- sensitivity of the conjugates was confirmed using fluorescence and UV-vis spectroscopy. Photo toxicity and dark toxicity of the prepared conjugates were evaluated in human esophageal cancer cell line (Eca-109). Hemocompatibility of the synthesized conjugates was evaluated and proved that the conjugates are safe to use for the treatment of tumor. Our results showed the PS doped p-dots had less dark toxicity and increased light toxicity as well as ROS generation was high as compared to precursor drug. Therefore, incorporation of p-dots to porphyrin improved biocompatibility and enhanced the photodynamic effect.
Collapse
Affiliation(s)
- Faiza Sajjad
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, DongHua University, Shanghai, 201620, China
| | - Yi-Jia Yan
- Shanghai Xianhui Pharmaceutical Co., Ltd, Shanghai, 200433, China.
| | - Davor Margetić
- Division of Organic Chemistry and Biochemistry, RuđerBošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia.
| | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, DongHua University, Shanghai, 201620, China.
| |
Collapse
|
24
|
Men X, Wu C, Zhang X, Wei X, Chen ML, Yang T, Wang JH. Intracellular silver speciation by coupling capillary electrophoresis to ICP-MS integrating a high performance spiral flow spray chamber. Anal Chim Acta 2021; 1166:338540. [PMID: 34023001 DOI: 10.1016/j.aca.2021.338540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
The study of silver species and their distribution/transformation in cell interior is of high significance for the elucidation of toxicology of silver nanoparticles (AgNPs). The intracellular speciation of dissolved Ag(I) and AgNPs was reported. The analytical platform integrated capillary electrophoresis (CE) to inductively coupled plasma-mass spectrometry (ICP-MS) incorporating a high efficiency interface and a high performance spiral flow spray chamber (SFSC). The interface and the SFSC provide a favorable detection limit of 87 ng L-1 for the dissolved Ag(I). Total silver content was quantified by ICP-MS subject to digestion of the cell lysate, and quantification of AgNPs was carried out by subtraction. The speciation of dissolved Ag(I) and AgNPs in culture medium and HepG2 cells was performed, with RSDs of <3% for relative peak area and <2% for migration time, as well as spiking recoveries of 93.8%-94.3% in opti-MEM and 92.7%-106.6% in cell lysate. The present study indicated higher solubility of AgNPs in the cell interior with respect to that in the culture medium, due to oxidative stress or acidic microenvironment in the cancer cells.
Collapse
Affiliation(s)
- Xue Men
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Chengxin Wu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Xuan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
25
|
Liu C, Yang M, Hu J, Bao L, Tang B, Wei X, Zhao JL, Jin Z, Luo QY, Pang DW. Quantitatively Switchable pH-Sensitive Photoluminescence of Carbon Nanodots. J Phys Chem Lett 2021; 12:2727-2735. [PMID: 33705142 DOI: 10.1021/acs.jpclett.1c00287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
pH sensing plays a key role in the life sciences as well as the environmental, industrial, and agricultural fields. Carbon nanodots (C-dots) with small size, low toxicity, and excellent stability hold great potential in pH sensing as nanoprobes due to their intrinsic pH-sensitive photoluminescence (PL). Nonetheless, the undesirable sensitivity and response range of C-dot PL toward pH cannot meet the requirements of practical applications, and the unclear pH-sensitive PL mechanism makes it difficult to control their pH sensitivity. Herein, the quantitative correlation of pH-sensitive PL with specific surface structures of C-dots is uncovered for the first time, to our best knowledge. The association of carboxylate and H+ increases the ratio of nonradiation to radiation decay of C-dots through excited-state proton transfer, resulting in the decrease of PL intensity. Meanwhile, the dissociation of α-H in β-dicarbonyl forming enolate increases the extent of delocalization of the C-dots conjugated system, which induces the PL broadening to the red region and a decreasing intensity. Based on the understanding of the pH-sensitive PL mechanism, the pH-sensitive PL of C-dots can be switched by quantitative modulation of carboxyl and β-dicarbonyl groups to achieve a desirable pH response range with high sensitivity. This work contributes to a better understanding of the pH-sensitive PL of C-dots and therefore presents an effective strategy for controllably tuning their pH sensitivity, facilitating the rational design of C-dot-based pH sensors.
Collapse
Affiliation(s)
- Cui Liu
- Research Center for Micro/Nano System & Bionic Medicine, Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China
| | - Mengli Yang
- Research Center for Micro/Nano System & Bionic Medicine, Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China
| | - Jiao Hu
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China
| | - Lei Bao
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Bo Tang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaoyuan Wei
- Research Center for Micro/Nano System & Bionic Medicine, Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Jiang-Lin Zhao
- Research Center for Micro/Nano System & Bionic Medicine, Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Zongwen Jin
- Research Center for Micro/Nano System & Bionic Medicine, Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Qing-Ying Luo
- Research Center for Micro/Nano System & Bionic Medicine, Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
26
|
Khan WU, Qin L, Alam A, Zhou P, Peng Y, Wang Y. Water-soluble green-emitting carbon nanodots with enhanced thermal stability for biological applications. NANOSCALE 2021; 13:4301-4307. [PMID: 33595575 DOI: 10.1039/d0nr09131f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High stability and water solubility of fluorescent nanomaterials are considered key factors to evaluate their feasibility for fundamental applications. Herein, water-soluble and thermally stable, green-emitting carbon nanodots (CNDs) have been synthesized via a facile hydrothermal method with an average size of 1.9 nm. CNDs showed green emission centered at 544 nm with the photo-luminescence quantum yield (PLQY) of up to 10.1% under the excitation of 400 nm. The obtained CNDs demonstrated high resistance towards photo-bleaching and an ionic (KCl) environment. Moreover, the aqueous solution of CNDs exhibited excellent stability under harsh thermal conditions from 10 °C to 80 °C. The as-prepared CNDs showed stable performance at high temperatures, even after keeping them at 80 °C for 30 min. Furthermore, the green emissive CNDs were incubated in T-ca cancer cells for bio-imaging applications. The results indicated that CNDs can served as an effective thermally-stable bio-imaging agent in T-ca cells at the physiological temperature range of 25 °C-45 °C. Green emission and excellent thermal stability make these CNDs promising fluorescent materials for potential applications in the medical field, which requires long-wavelength fluorescence and high-temperature imaging.
Collapse
Affiliation(s)
- Waheed Ullah Khan
- National and Local Joint Engineering Laboratory of Optical-Conversion Materials and Technology & School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P.R. China.
| | - Liying Qin
- School of Stomotology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Abid Alam
- National and Local Joint Engineering Laboratory of Optical-Conversion Materials and Technology & School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P.R. China.
| | - Ping Zhou
- School of Stomotology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yong Peng
- Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology and Electron Microscope Center of Lanzhou University, Lanzhou 730000, P.R. China
| | - Yuhua Wang
- National and Local Joint Engineering Laboratory of Optical-Conversion Materials and Technology & School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P.R. China.
| |
Collapse
|
27
|
Liu C, Zhang F, Hu J, Gao W, Zhang M. A Mini Review on pH-Sensitive Photoluminescence in Carbon Nanodots. Front Chem 2021; 8:605028. [PMID: 33553104 PMCID: PMC7862559 DOI: 10.3389/fchem.2020.605028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/09/2020] [Indexed: 12/02/2022] Open
Abstract
Carbon nanodots (C-dots) with sp2/sp3 framework and diameter of <10 nm contain abundant functional groups or polymers on their surface. C-dots have attracted immense attention because of their unique optical properties, excellent biocompatibility, facile preparation, and low cost. With these merits, C-dots have been used in a wide range of applications including sensing, bioimaging, catalysis, and light-emitting devices. C-dots exhibit good optical properties, such as tunable emission wavelength, good photostability, nonblinking, up-conversion emission, etc. Of note, C-dots show intrinsic pH-sensitive photoluminescence (PL), indicating their great potential for pH sensing, especially in biotic pH sensing. In this review, we systematically summarize the pH-sensitive PL properties and the pH-sensitive PL mechanism, as well as recent research progress of C-dots in pH sensing. The current challenges of pH-sensitive C-dots and their future research focus are also proposed here. We anticipate this review might be of great significance for understanding the characteristics of pH-sensitive C-dots and the development of photoluminescent nanomaterials with pH-sensitive properties.
Collapse
Affiliation(s)
- Cui Liu
- Department of Biophysics, School of Basic Medical Sciences, Institute of Medical Engineering, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Fang Zhang
- Department of Biophysics, School of Basic Medical Sciences, Institute of Medical Engineering, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jiao Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, China
| | - Wenhui Gao
- Department of Biophysics, School of Basic Medical Sciences, Institute of Medical Engineering, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Mingzhen Zhang
- Department of Biophysics, School of Basic Medical Sciences, Institute of Medical Engineering, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
28
|
Yoshinaga T, Shinoda M, Iso Y, Isobe T, Ogura A, Takao KI. Glycothermally Synthesized Carbon Dots with Narrow-Bandwidth and Color-Tunable Solvatochromic Fluorescence for Wide-Color-Gamut Displays. ACS OMEGA 2021; 6:1741-1750. [PMID: 33490833 PMCID: PMC7818594 DOI: 10.1021/acsomega.0c05993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/29/2020] [Indexed: 05/06/2023]
Abstract
Fluorescent carbon dots (CDs) represent a promising eco-friendly next-generation phosphor. However, most CDs exhibit broad photoluminescence (PL) spectra [full width at half-maximum (fwhm) over 60 nm]; few works on CDs with sharp PL spectra (fwhm less than 40 nm) have been reported. In addition, their syntheses and color tuning require harsh conditions of high temperatures, long reaction times, and high pressures with catalysts. Here, we successfully prepared narrow-bandwidth emissive CDs (fwhm of 27-40 nm) from phloroglucinol in a glycol solvent of 1,2-pentanediol at temperatures as low as 180 °C for a reaction duration of as short as 6 h under ambient conditions without any catalysts via an open reaction system in which dehydration and condensation reactions among phloroglucinol molecules were enhanced. We shifted the emission peak from 463 to 511 nm by selecting seven kinds of solvents with different polarities, that is, emission colors could be tuned from blue to green by taking advantage of fluorescence solvatochromism. The CD-dispersed polymer films showed a similar solvatochromic behavior and sharp PL spectra, verifying the feasibility of applying the CDs to displays with a wide color gamut.
Collapse
Affiliation(s)
| | | | - Yoshiki Iso
- . Phone: +81 45 566 1558. Fax: +81 45 566 1551
| | | | | | | |
Collapse
|
29
|
Zhang H, Liu S. Mixing concentrated sulfuric acid and diethylenetriamine at room temperature: A rapid and facile approach to synthesize fluorescent carbon polymer hollow spheres as peroxidase mimics. J Colloid Interface Sci 2021; 582:405-411. [PMID: 32866807 DOI: 10.1016/j.jcis.2020.08.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 11/30/2022]
Abstract
Fluorescent carbon polymer nanomaterials driven by their important various applications are promising, however, their scalable usages are still hindered by the lack of facile and effective synthesis approaches. Herein, a rapid and facile approach is demonstrated for the preparation of fluorescent carbon polymer hollow spheres (CPHSs), which were synthesized by directly mixing concentrated sulfuric acid (H2SO4) and diethylenetriamine (DETA) at room temperature. Notably, both the solid powders and aqueous dispersion of CPHSs possess the fluorescence properties, similar with the reported carbon polymer dots. The formation of CPHSs could be attributed to the polymerization of DETA in the presence of H2SO4. The present strategy is universal and fluorescent nanomaterials could also be obtained by using hexamethylenetetramine or polyethylenepolayamine as precursors with the aid of concentrated H2SO4. Most importantly, the CPHSs possess peroxidase-like activity and can catalyze oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to its one-electron oxidation product, providing a new method for colorimetric detection of H2O2.
Collapse
Affiliation(s)
- Haiyan Zhang
- School of Materials Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Sen Liu
- College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
30
|
Weiss M, Fan J, Claudel M, Sonntag T, Didier P, Ronzani C, Lebeau L, Pons F. Density of surface charge is a more predictive factor of the toxicity of cationic carbon nanoparticles than zeta potential. J Nanobiotechnology 2021; 19:5. [PMID: 33407567 PMCID: PMC7789233 DOI: 10.1186/s12951-020-00747-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A positive surface charge has been largely associated with nanoparticle (NP) toxicity. However, by screening a carbon NP library in macrophages, we found that a cationic charge does not systematically translate into toxicity. To get deeper insight into this, we carried out a comprehensive study on 5 cationic carbon NPs (NP2 to NP6) exhibiting a similar zeta (ζ) potential value (from + 20.6 to + 26.9 mV) but displaying an increasing surface charge density (electrokinetic charge, Qek from 0.23 to 4.39 µmol/g). An anionic and non-cytotoxic NP (NP1, ζ-potential = - 38.5 mV) was used as control. RESULTS The 5 cationic NPs induced high (NP6 and NP5, Qek of 2.95 and 4.39 µmol/g, respectively), little (NP3 and NP4, Qek of 0.78 and 1.35 µmol/g, respectively) or no (NP2, Qek of 0.23 µmol/g) viability loss in THP-1-derived macrophages exposed for 24 h to escalating NP dose (3 to 200 µg/mL). A similar toxicity trend was observed in airway epithelial cells (A549 and Calu-3), with less viability loss than in THP-1 cells. NP3, NP5 and NP6 were taken up by THP-1 cells at 4 h, whereas NP1, NP2 and NP4 were not. Among the 6 NPs, only NP5 and NP6 with the highest surface charge density induced significant oxidative stress, IL-8 release, mitochondrial dysfunction and loss in lysosomal integrity in THP-1 cells. As well, in mice, NP5 and NP6 only induced airway inflammation. NP5 also increased allergen-induced immune response, airway inflammation and mucus production. CONCLUSIONS Thus, this study clearly reveals that the surface charge density of a cationic carbon NP rather than the absolute value of its ζ-potential is a relevant descriptor of its in vitro and in vivo toxicity.
Collapse
Affiliation(s)
- Maud Weiss
- Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - Jiahui Fan
- Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - Mickaël Claudel
- Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - Thomas Sonntag
- Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, UMR 7021, CNRS-Université de Strasbourg, Illkirch, France
| | - Carole Ronzani
- Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - Luc Lebeau
- Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - Françoise Pons
- Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France.
- Faculté de Pharmacie, UMR 7199, 74 route du Rhin, 67400, Illkirch, France.
| |
Collapse
|
31
|
Tang Y, Zhou X, Xu K, Dong X. One-pot synthesis of fluorescent non-conjugated polymer dots for Fe 3+ detection and temperature sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118626. [PMID: 32604052 DOI: 10.1016/j.saa.2020.118626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/04/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
The facile preparation of highly fluorescent polymer dots (PDs) still attracts substantial interest. Here, temperature/Fe3+ dual-responsive PDs are synthesized under mild conditions via the amidation reaction and self-assembly between hyperbranched polyethyleneimine and 5-aminosalicylic acid. The prepared PDs display strong green fluorescence with quantum yield of 15.5% and 53.3% in water and dimethylsulfoxide, respectively. The PDs also possess unique features, including excellent solubility, solvent polarity-dependent emission, remarkable photostability, as well as good salt-tolerance. Interestingly, the fluorescence intensity of PDs exhibits a reversible and sensitive response to temperature within 20-65 °C, which renders the PDs useful as a thermometer probe. Importantly, Fe3+ ion has the specific coordination ability toward the surface groups of PDs, leading to the aggregation and fluorescence quenching of PDs. Thus, the PDs are employed as a fluorescence probe for sensitive detecting Fe3+. The fluorescent intensity linearly decreases with increasing Fe3+ from 2 to 60 μM. Besides, Fe3+ concentration in river water samples is successfully assayed with this developed probe. The non-conjugated PDs with facile preparation, sensitive response to temperature and Fe3+ may hold potential applications in environmental monitoring.
Collapse
Affiliation(s)
- Yecang Tang
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China.
| | - Xin Zhou
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| | - Keke Xu
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| | - Xuemei Dong
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| |
Collapse
|
32
|
Tsai ES, Joud F, Wiesholler LM, Hirsch T, Hall EAH. Upconversion nanoparticles as intracellular pH messengers. Anal Bioanal Chem 2020; 412:6567-6581. [PMID: 32613570 PMCID: PMC7442772 DOI: 10.1007/s00216-020-02768-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 02/02/2023]
Abstract
Upconversion nanoparticles (UCNPs) should be particularly well suited for measurement inside cells because they can be imaged down to submicrometer dimensions in near real time using fluorescence microscopy, and they overcome problems, such as photobleaching, autofluorescence, and deep tissue penetration, that are commonly encountered in cellular imaging applications. In this study, the performance of an UCNP modified with a pH-sensitive dye (pHAb) is studied. The dye (emission wavelength 580 nm) was attached in a polyethylene imine (PEI) coating on the UCNP and excited via the 540-nm UCNP emission under 980-nm excitation. The UC resonance energy transfer efficiencies at different pHs ranged from 25 to 30% and a Förster distance of 2.56 nm was predicted from these results. Human neuroblastoma SH-SY5Y cells, equilibrated with nigericin H+/K+ ionophore to equalize the intra- and extracellular pH' showed uptake of the UCNP-pHAb conjugate particles and, taking the ratio of the intensity collected from the pHAb emission channel (565-630 nm) to that from the UCNP red emission channel (640-680 nm), produced a sigmoidal pH response curve with an apparent pKa for the UCNP-pHAb of ~ 5.1. The UCNP-pHAb were shown to colocalize with LysoBrite dye, a lysosome marker. Drug inhibitors such as chlorpromazine (CPZ) and nystatin (NYS) that interfere with clathrin-mediated endocytosis and caveolae-mediated endocytosis, respectively, were investigated to elucidate the mechanism of nanoparticle uptake into the cell. This preliminary study suggests that pH indicator-modified UCNPs such as UCNP-pHAb can report pH in SH-SY5Y cells and that the incorporation of the nanoparticles into the cell occurs via clathrin-mediated endocytosis. Graphical abstract.
Collapse
Affiliation(s)
- Evaline S Tsai
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr., Cambridge, CB3 0AS, UK
| | - Fadwa Joud
- Cancer Research UK Cambridge Institute, University of Cambridge, LiKa Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Lisa M Wiesholler
- Institute of Analytical Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Thomas Hirsch
- Institute of Analytical Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Elizabeth A H Hall
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr., Cambridge, CB3 0AS, UK.
| |
Collapse
|
33
|
Moniruzzaman M, Anantha Lakshmi B, Kim S, Kim J. Preparation of shape-specific (trilateral and quadrilateral) carbon quantum dots towards multiple color emission. NANOSCALE 2020; 12:11947-11959. [PMID: 32458861 DOI: 10.1039/d0nr02225j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Little progress has been achieved relating to the preparation of shape-specific carbon quantum dots (CQDs) with a well-ordered edge structure and multi-color fluorescence from a single precursor by monitoring and controlling the reaction time. Selecting phloroglucinol (having suitable three-fold symmetry, C3h; symmetry elements: E, C3, C32, σh, S3, S3-1) as a precursor of CQDs is useful for monitoring the shape and structure of CQDs during dehydration mediated controlled growth, which assists to better focus on their formation and PL emission mechanism. We report the rapid synthesis of novel shape-specific (trilateral and quadrilateral) CQDs with multi-color fluorescence emission [blue (B-CQDs), green (G-CQDs), and yellow (Y-CQDs)] by controlling the reaction time. The mechanism of controlled bottom-up growth involves six-membered ring cyclization of the single precursor (phloroglucinol) through the elimination of neighboring active -OH and -H groups in a sulfuric acid medium. Interestingly, wide-range multi-color fluorescence emission of non-nitrogenous CQDs is achieved based on solvatochromism. We consider that the evolution of the tunable photoluminescence (PL) emission can be attributed to both the size of the conjugated domain and oxygen-/sulfur-containing edge electronic states. Furthermore, the multi-color fluorescence CQDs are successfully used as propitious fluorescent probes for multi-color cell (HeLa) and zebra fish larvae imaging owing to an effective intracellular distribution and good biocompatibility.
Collapse
Affiliation(s)
- Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, Seongnam 1342, Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| | - Buddolla Anantha Lakshmi
- Department of Bio-nanotechnology, Gachon University, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea
| | - Sanghyo Kim
- Department of Bio-nanotechnology, Gachon University, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, Seongnam 1342, Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
34
|
Qu Z, Liu L, Sun T, Hou J, Sun Y, Yu M, Diao Y, Lu S, Zhao W, Wang L. Synthesis of bifunctional carbon quantum dots for bioimaging and anti-inflammation. NANOTECHNOLOGY 2020; 31:175102. [PMID: 31935712 DOI: 10.1088/1361-6528/ab6b9d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbon quantum dots (CDs) have attracted increased attention in recent decades because of their various applications in biosensing, bioimaging and drug delivery. In the present study, we have synthesized bifunctional ibuprofen-based carbon quantum dots (ICDs) using a simple one-step microwave-assisted method, for simultaneous bioimaging and anti-inflammatory effects. The ICDs exhibited high stability, low toxicity, negligible cytotoxicity and good biocompatibility in water. In particular, the produced ICDs demonstrated a decent imaging ability and excellent anti-inflammatory effects in vivo, making them potentially useful in bioimaging and future clinical treatment. Our results demonstrated that ICDs show promise in applications such as multifunctional biomaterials, depending on the selection of carbon sources, which would provide important guidance for the future design of multifunctional CDs in the field of biomedicine.
Collapse
Affiliation(s)
- Zheng Qu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin 150040, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Shuang E, Mao QX, Wang JH, Chen XW. Carbon dots with tunable dual emissions: from the mechanism to the specific imaging of endoplasmic reticulum polarity. NANOSCALE 2020; 12:6852-6860. [PMID: 32186547 DOI: 10.1039/c9nr10982j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Regulating the fluorescence of carbon dots (CDs) is important but highly challenging. Here, carbon dots with tunable dual emissions were facilely fabricated via modulating the polymerization and carbonization processes of o-phenylenediamine (OPD) with lysine (Lys) as the co-precursor and modulator, respectively. The self-polymerization/carbonization of the OPD molecules contributed to the blue/green emission of the OPD-derived CDs. The introduction of Lys in the CD fabrication process efficiently suppressed the carbonization of the OPD polymer chains and enhanced the self-polymerization of the OPD molecules. Meanwhile, the formed OPD-Lys co-polymer chains endowed the final CD product with a new green emission center. The dual-emissive CDs were distinctly sensitive to polarity fluctuations, providing a ratiometric fluorescence response towards solution polarity. Due to their specific distribution in the endoplasmic reticulum (ER), the as-prepared dual-emissive CDs successfully distinguished the polarity variations in ER under stress, which offers a new approach for the early diagnosis of cell injury.
Collapse
Affiliation(s)
- E Shuang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | | | | | | |
Collapse
|
36
|
Ali H, Ghosh S, Jana NR. Fluorescent carbon dots as intracellular imaging probes. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1617. [DOI: 10.1002/wnan.1617] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Haydar Ali
- School of Materials Science Indian Association for the Cultivation of Science Kolkata India
| | - Santu Ghosh
- School of Materials Science Indian Association for the Cultivation of Science Kolkata India
| | - Nikhil R. Jana
- School of Materials Science Indian Association for the Cultivation of Science Kolkata India
| |
Collapse
|
37
|
Liu Y, Gou H, Huang X, Zhang G, Xi K, Jia X. Rational synthesis of highly efficient ultra-narrow red-emitting carbon quantum dots for NIR-II two-photon bioimaging. NANOSCALE 2020; 12:1589-1601. [PMID: 31859306 DOI: 10.1039/c9nr09524a] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Despite the growing research interest in highly bio-compatible carbon quantum dots (CQDs) for bioimaging, the synthesis of red-emitting CQDs with high photoluminescence efficiency and a sharp emission spectrum remains a formidable challenge in this field. Herein, we established a rational strategy for the synthesis of highly efficient ultra-narrow red-emitting CQDs by adopting a conjugated aromatic amine precursor (tris(4-aminophenyl)amine, TAPA) and introducing oxidative radical reagents. The resultant CQDs, T-CQDs featured red PL (615 ± 2 nm) with a high photoluminescence quantum yield (84 ± 5%) and a narrow emission linewidth (FWHM = 27 ± 1 nm), which together represented one of the highest levels in the field of CQDs so far. The T-CQDs were then further analyzed from the spectral and structural aspects, and the repeatability and universality of this strategy have also been discussed. Finally, the T-CQDs were successfully applied for both one-photon imaging and two-photon imaging with various bio-samples, both in vitro and in vivo.
Collapse
Affiliation(s)
- Yanfeng Liu
- School of Chemistry & Chemical Engineering, Nanjing University, Qixia District, Xianlin Road No. 163, Nanjing, 210023, P. R. China.
| | | | | | | | | | | |
Collapse
|
38
|
Sato K, Sato R, Iso Y, Isobe T. Surface modification strategy for fluorescence solvatochromism of carbon dots prepared from p-phenylenediamine. Chem Commun (Camb) 2020; 56:2174-2177. [DOI: 10.1039/c9cc09333h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Surface modification of p-phenylenediamine-derived carbon dots with decanoic acid and perfluorodecanoic acid successfully modulated fluorescence solvatochromism.
Collapse
Affiliation(s)
- Kohei Sato
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Rina Sato
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Yoshiki Iso
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Tetsuhiko Isobe
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| |
Collapse
|
39
|
Hong D, Deng X, Liang J, Li J, Tao Y, Tan K. One-step hydrothermal synthesis of down/up-conversion luminescence F-doped carbon quantum dots for label-free detection of Fe3+. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104217] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Xia C, Zhu S, Feng T, Yang M, Yang B. Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901316. [PMID: 31832313 PMCID: PMC6891914 DOI: 10.1002/advs.201901316] [Citation(s) in RCA: 542] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/01/2019] [Indexed: 05/02/2023]
Abstract
Despite the various synthesis methods to obtain carbon dots (CDs), the bottom-up methods are still the most widely administrated route to afford large-scale and low-cost synthesis. However, as CDs are developed with increasing reports involved in producing many CDs, the structure and property features have changed enormously compared with the first generation of CDs, raising classification concerns. To this end, a new classification of CDs, named carbonized polymer dots (CPDs), is summarized according to the analysis of structure and property features. Here, CPDs are revealed as an emerging class of CDs with distinctive polymer/carbon hybrid structures and properties. Furthermore, deep insights into the effects of synthesis on the structure/property features of CDs are provided. Herein, the synthesis methods of CDs are also summarized in detail, and the effects of synthesis conditions of the bottom-up methods in terms of the structures and properties of CPDs are discussed and analyzed comprehensively. Insights into formation process and nucleation mechanism of CPDs are also offered. Finally, a perspective of the future development of CDs is proposed with critical insights into facilitating their potential in various application fields.
Collapse
Affiliation(s)
- Chunlei Xia
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Shoujun Zhu
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of Health35 Convent DrBethesda20892MDUSA
| | - Tanglue Feng
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Mingxi Yang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
- State Key Laboratory of Applied OpticsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchun130033P. R. China
| |
Collapse
|
41
|
Wang J, Liu H, Wu M, Liu X, Sun H, Zheng A. Water-soluble organic probe for pH sensing and imaging. Talanta 2019; 205:120095. [PMID: 31450452 DOI: 10.1016/j.talanta.2019.06.095] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/13/2019] [Accepted: 06/26/2019] [Indexed: 02/04/2023]
Abstract
pH value is one of the most important parameters, which show significant application in environmental monitoring, chemistry and biology. Abnormal pH values always associate with some serious diseases, including cancer and Alzheimer's disease. Thus, development of highly sensitive and selective method for pH sensing and imaging is of great importance. In this paper, we synthesized a water-soluble organic probe for pH sensing either through its absorption or through its fluorescent signals. The probe was synthesized from the intermediate containing a phenol group, and the reaction was carried out in concentrated H2SO4 at 90 °C. In this way, the probe can introduce a sulfonic acid group into its structure, and thus improve its water solubility. The synthesized probe is pH-responsive, and the response process is reversible, because that the phenol group in the probe can transfer to deprotonation state with increasing the pH values to improve the intramolecular charge transfer. Meanwhile, the synthesized probe also showed high specificity and excellent biocompatibility, which is suitable for cell imaging applications.
Collapse
Affiliation(s)
- Jing Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hui Liu
- Fifth People's Hospital, Ganzhou City, Jiangxi Province, China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Xiaolong Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Haiyan Sun
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| | - Aixian Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China.
| |
Collapse
|
42
|
Sato R, Iso Y, Isobe T. Fluorescence Solvatochromism of Carbon Dot Dispersions Prepared from Phenylenediamine and Optimization of Red Emission. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15257-15266. [PMID: 31702929 DOI: 10.1021/acs.langmuir.9b02739] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fluorescent carbon dots (CDs) are of interest as a promising alternative to quantum dots, partly because they do not include heavy metals. However, most CDs exhibit blue or green emission, while red-emitting CDs are required for a variety of applications. In the present work, CDs were synthesized by refluxing three phenylenediamine (PD) isomers with amino groups at different positions (o-PD, m-PD, and p-PD) in diphenyl ether at 250 °C for 4 h. Upon dispersing the resulting CDs in eight solvents with different polarities, emission colors ranging from green to red were observed. Among these CDs, p-PD-derived CDs exhibited both the longest emission wavelength range, from 538 to 635 nm, and the highest absolute red photoluminescence quantum yield (PLQY) of 15%. Herein the results are discussed based on a comparison of the polymerization processes of o-PD, m-PD, and p-PD. This work demonstrated that the optimum reaction time was 2 h, which yields a p-PD-derived CD dispersion in methanol with red emission and an absolute PLQY as high as 18%. Additionally, the use of 1-decanol and deuterated methanol in place of methanol improved the maximum absolute PLQY to 25% and 36%, respectively. These improved values are attributed to reduced concentration quenching by suppression of π-π stacking interactions and inhibition of the nonradiative relaxation process through the vibration of OH groups, respectively.
Collapse
Affiliation(s)
- Rina Sato
- Department of Applied Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi, Kohoku-ku , Yokohama 223-8522 , Japan
| | - Yoshiki Iso
- Department of Applied Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi, Kohoku-ku , Yokohama 223-8522 , Japan
| | - Tetsuhiko Isobe
- Department of Applied Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi, Kohoku-ku , Yokohama 223-8522 , Japan
| |
Collapse
|
43
|
Hua XW, Bao YW, Zeng J, Wu FG. Nucleolus-Targeted Red Emissive Carbon Dots with Polarity-Sensitive and Excitation-Independent Fluorescence Emission: High-Resolution Cell Imaging and in Vivo Tracking. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32647-32658. [PMID: 31381288 DOI: 10.1021/acsami.9b09590] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Red-emitting carbon dots (CDs) have attracted tremendous attention due to their wide applications in areas including imaging, sensing, drug delivery, and cancer therapy. However, it is still highly challenging for red-emitting CDs to simultaneously achieve high quantum yields (QYs), nucleus targeting, and super-resolution fluorescence imaging (especially the stimulated emission depletion (STED) imaging). Here, it is found that the addition of varied metal ions during the hydrothermal treatment of p-phenylenediamine (pPDA) leads to the formation of fluorescent CDs with emission wavelengths up to 700 nm. Strikingly, although metal ions play a crucial role in the synthesis of CDs with varied QYs, they are absent in the formed CDs, that is, the obtained CDs are metal-free, and the metal ions play a role similar to a "catalyst" during the CD formation. Besides, using pPDA and nickel ions (Ni2+) as raw materials, we prepare Ni-pPCDs which have the highest QY and exhibit various excellent fluorescence properties including excitation-independent emission (at ∼605 nm), good photostability, polarity sensitivity, and ribonucleic acid responsiveness. In vitro and in vivo experiments demonstrate that Ni-pPCDs are highly biocompatible and can realize real-time, wash-free, and high-resolution imaging of cell nuclei and high-contrast imaging of tumor-bearing mice and zebrafish. In summary, the present work may hold great promise in the synthesis and applications of red emissive CDs.
Collapse
|
44
|
Liu H, Sun Y, Li Z, Yang R, Yang J, Aryee AA, Zhang X, Ge J, Qu L, Lin Y. SciFinder-guided rational design of fluorescent carbon dots for ratiometric monitoring intracellular pH fluctuations under heat shock. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Fan J, Claudel M, Ronzani C, Arezki Y, Lebeau L, Pons F. Physicochemical characteristics that affect carbon dot safety: Lessons from a comprehensive study on a nanoparticle library. Int J Pharm 2019; 569:118521. [PMID: 31323371 DOI: 10.1016/j.ijpharm.2019.118521] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 11/16/2022]
Abstract
Carbon dots (CDs) are emerging nanomaterial in medicine and pharmacy. To explore the impact of physicochemical characteristics on their safety, we synthesized a library of 35 CDs exhibiting different size, charge, chemical composition and surface coating, using various starting materials (carbon source and passivation reagent) and carbonization procedures. The 35 CDs triggered different levels of viability loss when incubated with human macrophages at 3-200 µg/mL for 24 h. The smaller NPs (10-20 nm) were more toxic that larger ones (40-100 nm), whereas NPs that aggregated in culture medium were more toxic than dispersed ones. A positive correlation was found between CD charge or nitrogen content and toxicity. Furthermore, a greater toxicity was observed for CDs prepared from high molecular weight polyamines, suggesting a role of the CD global density of positive charges, rather than the charge at the CD surface, in the CD toxicity. At last, PEG decoration decreased the toxicity of cationic NPs. In conclusion, the size, aggregation in culture medium, charge, nitrogen content, nature of the passivation agent and synthesis procedure were found to influence CD toxicity, making it difficult to predict CD safety from a single characteristic.
Collapse
Affiliation(s)
- Jiahui Fan
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Mickaël Claudel
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Carole Ronzani
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Yasmin Arezki
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Luc Lebeau
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Françoise Pons
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| |
Collapse
|
46
|
Deng Z, Liu C, Jin Y, Pu J, Wang B, Chen J. High quantum yield blue- and orange-emitting carbon dots: one-step microwave synthesis and applications as fluorescent films and in fingerprint and cellular imaging. Analyst 2019; 144:4569-4574. [PMID: 31225569 DOI: 10.1039/c9an00672a] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A high quantum yield (QY) is the key requirement for implementing carbon dots (CDs) in nearly all applications. In this work, blue emissive N-doped CDs with a QY of 83% and orange emissive N-doped CDs with a QY of 47% were successfully prepared using resorcinol and phloroglucin as carbon resources in formamide by one-step microwave synthesis, respectively. Formamide not only plays a role as the solvent but also takes part in the formation of the high QY CDs. It is demonstrated that the as-prepared blue- and orange-emitting N-doped CDs with a high QY can be uniformly dispersed into glue and be fabricated as CD/glue fluorescent composites for fluorescent films and fingerprint imaging. Furthermore, these CDs also show excellent cellular imaging capability.
Collapse
Affiliation(s)
- Zhiqin Deng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Chang Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Yanzi Jin
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Jianlin Pu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Bin Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Jiucun Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China. and Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China
| |
Collapse
|
47
|
Liu H, Sun Y, Li Z, Yang J, Aryee AA, Qu L, Du D, Lin Y. Lysosome-targeted carbon dots for ratiometric imaging of formaldehyde in living cells. NANOSCALE 2019; 11:8458-8463. [PMID: 30994690 DOI: 10.1039/c9nr01678c] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Formaldehyde (FA) is involved in many biological processes and is closely connected with many diseases including Alzheimer's disease and cancer. Therefore, methods for sensitive and selective detection of FA in living cells are highly demanded. As a new class of carbon nanomaterials, carbon dots (CDs) have attracted great attention owing to their robust photostability, good biocompatibility and environmental friendliness. In this manuscript, the first lysosome-targeted CDs for ratiometric fluorescence detection of FA were efficiently prepared from dexamethasone and 1,2,4,5-tetraaminobenzene through the microwave-assisted hydrothermal method. These CDs show highly selective and sensitive sensing ability towards FA with fast response and great changes of ratio values. The CDs exhibit robust photostability and good biocompatibility and were successfully employed in ratiometric fluorescence bioimaging of FA fluctuations in lysosomes of living cells, which demonstrates their great practicability in FA-related bioanalysis and biological studies.
Collapse
Affiliation(s)
- Haifang Liu
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Xia J, Yu YL, Wang JH. Fe3+-Catalyzed low-temperature preparation of multicolor carbon polymer dots with the capability of distinguishing D2O from H2O. Chem Commun (Camb) 2019; 55:12467-12470. [DOI: 10.1039/c9cc06848a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Carbon polymer dots (CPDs) exhibit differential optical responses to H2O and D2O due to the different surface states of CPDs.
Collapse
Affiliation(s)
- Jie Xia
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Yong-Liang Yu
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Jian-Hua Wang
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| |
Collapse
|