1
|
Santos CIM, Almeida AC, Martins ALF, Araújo AR, Lourenço LMO, Gonçalves G, Neves MGPMS. Carbon dot-phthalocyanine hybrids: synergistic effects that boost their multifaceted applications. NANOSCALE 2025. [PMID: 40336371 DOI: 10.1039/d5nr00466g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Since their discovery, carbon dots (CDs) have been extensively studied for their potential in diverse applications owing to their unique properties such as high biocompatibility, excellent water solubility, low toxicity, minimal photobleaching, and exceptional chemical versatility. These characteristics position CDs as promising candidates for overcoming the limitations of various molecular compounds. This review provides a comprehensive analysis of the synergistic effects arising from the integration of CDs and phthalocyanines (Pcs) to form hybrids with distinct photophysical and photochemical properties. This study explores recent advances in the development of Pc@CD hybrids, focusing on their synthesis, conjugation strategies, and synergistic effects that impact their performance in several areas, including optical sensing, electrocatalysis, photodynamic processes and photocatalysis. Emphasis is given to chemical methods that enable efficient conjugation and the role of the generation of reactive oxygen species in driving these applications. Additionally, the discussion also addresses key challenges, highlighting innovative solutions and proposing future research directions to fully harness the potential of Pc@CD hybrids in diverse scientific and technological breakthroughs.
Collapse
Affiliation(s)
- Carla I M Santos
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana Catarina Almeida
- TEMA-Nanotechnology Research Group, Mechanical Engineering Department, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana L F Martins
- TEMA-Nanotechnology Research Group, Mechanical Engineering Department, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana R Araújo
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Leandro M O Lourenço
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Gil Gonçalves
- TEMA-Nanotechnology Research Group, Mechanical Engineering Department, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.
- Intelligent Systems Associate Laboratory (LASI), 4800-058 Guimarães, Portugal
| | - M Graça P M S Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Nunes PJ, Pereira RFP, Nunes SC, Correia SFH, Fu L, Ferreira RAS, Fernandes M, Bermudez VDZ. POE-Mediated Tunable Quantum Yield of Carbon Dots-Derived From Agapanthus Africanus (L.) Hoffmann Leaves. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404717. [PMID: 39359048 DOI: 10.1002/smll.202404717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/17/2024] [Indexed: 10/04/2024]
Abstract
The green synthesis of carbon dots (CDs) from natural sources is a challenging goal. Herein CDs are produced from Agapanthus africanus (L.) Hoffmann leaves by carbonization at 200/300 °C for 2/3 h. Samples are named CZ-X-Y, where Z, X, and Y represent carbonization, temperature, and time, respectively. CZ-200-3, CZ-300-2, and CZ-300-3 CDs have average sizes of 3.7 ± 0.7, 5.3 ± 1.2, and 5.1 ± 1.6 nm, respectively. Their surface, devoid of chlorophyll, contains ─OH, ─C═O, and ─C(═O)OH groups and sylvite. Isolated CZ-300-3 emits at 400 nm (excited at 260 nm) and exhibits an emission quantum yield (QY) value of 2 ± 1%. Embedding in the d-U(600)/d-(900) di-ureasil matrices resulted in transparent films with emission intensity maxima at 420/450 nm (360 nm), and QY values of 7 ± 1/16 ± 2% (400 nm). The enhancement of the QY value of the bare CDs agrees with an efficient passivation provided by the hybrid host. The hydrophilic CZ-300-3 CDs also exerted a marked surface modifying role, changing the surface roughness and the wettability of the hybrid films.
Collapse
Affiliation(s)
- Paulo J Nunes
- CQ-VR, University of Trás-os-Montes e Alto Douro, Vila Real, 5000-801, Portugal
| | - Rui F P Pereira
- Centre of Chemistry, University of Minho, Braga, 4710-057, Portugal
| | - S C Nunes
- Chemistry Department and FibEnTech - Fiber Materials and Environmental Technologies, University of Beira Interior, Covilhã, 6201-001, Portugal
| | - Sandra F H Correia
- Instituto de Telecomunicações and University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Lianshe Fu
- Physics Department and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Rute A S Ferreira
- Physics Department and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Mariana Fernandes
- CQ-VR, University of Trás-os-Montes e Alto Douro, Vila Real, 5000-801, Portugal
- Chemistry Department, University of Trás-os-Montes e Alto Douro, Vila Real, 5000-801, Portugal
| | - Verónica de Zea Bermudez
- CQ-VR, University of Trás-os-Montes e Alto Douro, Vila Real, 5000-801, Portugal
- Chemistry Department, University of Trás-os-Montes e Alto Douro, Vila Real, 5000-801, Portugal
| |
Collapse
|
3
|
Imtiyaz A, Singh A, Gaur R. Comparative Analysis and Applications of Green Synthesized Cobalt Oxide (Co3O4) Nanoparticles: A Systematic Review. BIONANOSCIENCE 2024; 14:3536-3554. [DOI: 10.1007/s12668-024-01452-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2024] [Indexed: 01/06/2025]
|
4
|
Guo Z, Liu G, Hao H, Yang J, Lei H, Shi X, Li W, Liu W. Polyaniline-graphene based composites electrode materials in supercapacitor: synthesis, performance and prospects. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:263001. [PMID: 38537284 DOI: 10.1088/1361-648x/ad386f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Supercapacitors (SCs) have become one of the most popular energy-storage devices for high power density and fast charging/discharging capability. Polyaniline is a class of conductive polymer materials with ultra-high specific capacitance, and the excellent mechanical properties will play a key role in the research of flexible SCs. The synergistic effect between polyaniline and graphene is often used to overcome their respective inherent shortcomings, thus the high-performance polyaniline-graphene based nanocomposite electrode materials can be prepared. The development of graphene-polyaniline nanocomposites as electrode materials for SCs depends on their excellent microstructure design. However, it is still difficult to seek a balance between graphene performance and functionalization to improve the weak interfacial interaction between graphene and polyaniline. In this manuscript, the latest preparation methods, research progress and research results of graphene-polyaniline nanocomposites on SCs are reviewed, and the optimization of electrode structures and performances is discussed. Finally, the prospect of graphene-polyaniline composites is expected.
Collapse
Affiliation(s)
- Zefei Guo
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Gengzheng Liu
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Huilian Hao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Jun Yang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Huayu Lei
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Xuerong Shi
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Wenyao Li
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Wenfu Liu
- College of Energy Engineering, Huanghai University, 76 Kaiyuan Road, Zhumadian, People's Republic of China
| |
Collapse
|
5
|
Wan W, Zhao Y, Meng J, Allen CS, Zhou Y, Patzke GR. Tailoring C─N Containing Compounds into Carbon Nanomaterials with Tunable Morphologies for Electrocatalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304663. [PMID: 37821413 DOI: 10.1002/smll.202304663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/26/2023] [Indexed: 10/13/2023]
Abstract
Carbon materials with unique sp2 -hybridization are extensively researched for catalytic applications due to their excellent conductivity and tunable physicochemical properties. However, the development of economic approaches to tailoring carbon materials into desired morphologies remains a challenge. Herein, a convenient "bottom-up" strategy by pyrolysis of graphitic carbon nitride (g-C3 N4 ) (or other carbon/nitrogen (C, N)-enriched compounds) together with selected metal salts and molecules is reported for the construction of different carbon-based catalysts with tunable morphologies, including carbon nano-balls, carbon nanotubes, nitrogen/sulfur (S, N) doped-carbon nanosheets, and single-atom catalysts, supported by carbon layers. The catalysts are systematically investigated through various microscopic, spectroscopic, and diffraction methods and they demonstrate promising and broad applications in electrocatalysis such as in the oxygen reduction reaction and water splitting. Mechanistic monitoring of the synthesis process through online thermogravimetric-gas chromatography-mass spectrometry measurements indicates that the release of C─N-related moieties, such as dicyan, plays a key role in the growth of carbon products. This enables to successfully predict other widely available precursor compounds beyond g-C3 N4 such as caffeine, melamine, and urea. This work develops a novel and economic strategy to generate morphologically diverse carbon-based catalysts and provides new, essential insights into the growth mechanism of carbon nanomaterials syntheses.
Collapse
Affiliation(s)
- Wenchao Wan
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, D-45470, Mülheim an der Ruhr, Germany
| | - Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Jie Meng
- Division of Chemical Physics, Lund University, Box 124, Lund, 22100, Sweden
| | - Christopher S Allen
- Electron Physical Science Imaging Center, Diamond Light Source Ltd, Didcot, Oxfordshire, OX11 0DE, UK
- Department of Materials, University of Oxford, Oxford, OX1 3HP, UK
| | - Ying Zhou
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- Institute of Carbon Neutrality & School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| |
Collapse
|
6
|
Shi Y, Su W, Yuan F, Yuan T, Song X, Han Y, Wei S, Zhang Y, Li Y, Li X, Fan L. Carbon Dots for Electroluminescent Light-Emitting Diodes: Recent Progress and Future Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210699. [PMID: 36959751 DOI: 10.1002/adma.202210699] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Carbon dots (CDs), as emerging carbon nanomaterials, have been regarded as promising alternatives for electroluminescent light-emitting diodes (LEDs) owing to their distinct characteristics, such as low toxicity, tuneable photoluminescence, and good photostability. In the last few years, despite remarkable progress achieved in CD-based LEDs, their device performance is still inferior to that of well-developed organic, heavy-metal-based QDs, and perovskite LEDs. To better exploit LED applications and boost device performance, in this review, a comprehensive overview of currently explored CDs is presented, focusing on their key optical characteristics, which are closely related to the structural design of CDs from their carbon core to surface modifications, and to macroscopic structural engineering, including the embedding of CDs in the matrix or spatial arrangement of CDs. The design of CD-based LEDs for display and lighting applications based on the fluorescence, phosphorescence, and delayed fluorescence emission of CDs is also highlighted. Finally, it is concluded with a discussion regarding the key challenges and plausible prospects in this field. It is hoped that this review inspires more extensive research on CDs from a new perspective and promotes practical applications of CD-based LEDs in multiple directions of current and future research.
Collapse
Affiliation(s)
- Yuxin Shi
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wen Su
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Fanglong Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ting Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xianzhi Song
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuyi Han
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Shuyan Wei
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yang Zhang
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yunchao Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiaohong Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Louzhen Fan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
7
|
Jerigova M, Markushyna Y, Teixeira IF, Badamdorj B, Isaacs M, Cruz D, Lauermann I, Muñoz‐Márquez MÁ, Tarakina NV, López‐Salas N, Savateev O, Jimenéz‐Calvo P. Green Light Photoelectrocatalysis with Sulfur-Doped Carbon Nitride: Using Triazole-Purpald for Enhanced Benzylamine Oxidation and Oxygen Evolution Reactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300099. [PMID: 36815368 PMCID: PMC10161101 DOI: 10.1002/advs.202300099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Indexed: 05/06/2023]
Abstract
Materials dictate carbon neutral industrial chemical processes. Visible-light photoelectrocatalysts from abundant resources will play a key role in exploiting solar irradiation. Anionic doping via pre-organization of precursors and further co-polymerization creates tuneable semiconductors. Triazole derivative-purpald, an unexplored precursor with sulfur (S) container, combined in different initial ratios with melamine during one solid-state polycondensation with two thermal steps yields hybrid S-doped carbon nitrides (C3 N4 ). The series of S-doped/C3 N4 -based materials show enhanced optical, electronic, structural, textural, and morphological properties and exhibit higher performance in organic benzylamine photooxidation, oxygen evolution, and similar energy storage (capacitor brief investigation). 50M-50P exhibits the highest photooxidation conversion (84 ± 3%) of benzylamine to imine at 535 nm - green light for 48 h, due to a discrete shoulder (≈700) nm, high sulfur content, preservation of crystal size, new intraband energy states, structural defects by layer distortion, and 10-16 nm pores with arbitrary depth. This work innovates by studying the concomitant relationships between: 1) the precursor decomposition while C3 N4 is formed, 2) the insertion of S impurities, 3) the S-doped C3 N4 property-activity relationships, and 4) combinatorial surface, bulk, structural, optical, and electronic characterization analysis. This work contributes to the development of disordered long-visible-light photocatalysts for solar energy conversion and storage.
Collapse
Affiliation(s)
- Maria Jerigova
- Department of Colloid ChemistryMax‐Planck‐Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Yevheniia Markushyna
- Department of Colloid ChemistryMax‐Planck‐Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Ivo F. Teixeira
- Department of Colloid ChemistryMax‐Planck‐Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of ChemistryFederal University of São CarlosSão CarlosSP13565–905Brazil
| | - Bolortuya Badamdorj
- Department of Colloid ChemistryMax‐Planck‐Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Mark Isaacs
- HarwellXPSResearch Complex at HarwellRutherford Appleton LabDidcotOX11 0FAUK
- Department of ChemistryUniversity College London20 Gower StreetLondonWC1H 0AJUK
| | - Daniel Cruz
- Department of Inorganic ChemistryFritz‐Haber‐Institut der Max‐Planck‐GesellschaftFaradayweg 4–614195BerlinGermany
| | - Iver Lauermann
- Department PVcomBHelmholtz‐Zentrum Berlin für Materialien und EnergieSchwarzschildstraße 312489BerlinGermany
| | | | - Nadezda V. Tarakina
- Department of Colloid ChemistryMax‐Planck‐Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Nieves López‐Salas
- Department of Colloid ChemistryMax‐Planck‐Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Present address:
Department of ChemistryChair of Sustainable Materials ChemistryUniversity of PaderbornWarburger Str. 10033098PaderbornGermany
| | - Oleksandr Savateev
- Department of Colloid ChemistryMax‐Planck‐Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Pablo Jimenéz‐Calvo
- Department of Colloid ChemistryMax‐Planck‐Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Present address:
Department of Materials Science WW4‐LKOUniversity of Erlangen‐NurembergMartensstraße 791058ErlangenGermany
| |
Collapse
|
8
|
Wyss KM, Li JT, Advincula PA, Bets KV, Chen W, Eddy L, Silva KJ, Beckham JL, Chen J, Meng W, Deng B, Nagarajaiah S, Yakobson BI, Tour JM. Upcycling of Waste Plastic into Hybrid Carbon Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209621. [PMID: 36694364 DOI: 10.1002/adma.202209621] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Graphitic 1D and hybrid nanomaterials represent a powerful solution in composite and electronic applications due to exceptional properties, but large-scale synthesis of hybrid materials has yet to be realized. Here, a rapid, scalable method to produce graphitic 1D materials from polymers using flash Joule heating (FJH) is reported. This avoids lengthy chemical vapor deposition and uses no solvent or water. The flash 1D materials (F1DM), synthesized using a variety of earth-abundant catalysts, have controllable diameters and morphologies by parameter tuning. Furthermore, the process can be modified to form hybrid materials, with F1DM bonded to turbostratic graphene. In nanocomposites, F1DM outperform commercially available carbon nanotubes. Compared to current 1D material synthetic strategies using life cycle assessment, FJH synthesis represents an 86-92% decrease in cumulative energy demand and 92-94% decrease in global-warming potential. This work suggests that FJH affords a cost-effective and sustainable route to upcycle waste plastic into valuable 1D and hybrid nanomaterials.
Collapse
Affiliation(s)
- Kevin M Wyss
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - John T Li
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Paul A Advincula
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Ksenia V Bets
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Weiyin Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Lucas Eddy
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Applied Physics Graduate Program, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Karla J Silva
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Jacob L Beckham
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Jinhang Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Wei Meng
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Bing Deng
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Satish Nagarajaiah
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Mechanical Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Welch Institute for Advanced Materials, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Boris I Yakobson
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Welch Institute for Advanced Materials, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Smalley-Curl Institute, NanoCarbon Center, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - James M Tour
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Welch Institute for Advanced Materials, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Smalley-Curl Institute, NanoCarbon Center, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
9
|
Liang W, Sonkar SK, Saini D, Sheriff K, Singh B, Yang L, Wang P, Sun YP. Carbon Dots: Classically Defined versus Organic Hybrids on Shared Properties, Divergences, and Myths. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206680. [PMID: 36932892 DOI: 10.1002/smll.202206680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Carbon dots are defined as small carbon nanoparticles with effective surface passivation via organic functionalization. The definition is literally a description of what carbon dots are originally found for the functionalized carbon nanoparticles displaying bright and colorful fluorescence emissions, mirroring those from similarly functionalized defects in carbon nanotubes. In literature more popular than classical carbon dots are the diverse variety of dot samples from "one-pot" carbonization of organic precursors. On the two different kinds of samples from the different synthetic approaches, namely, the classical carbon dots versus those from the carbonization method, highlighted in this article are their shared properties and apparent divergences, including also explorations of the relevant sample structural and mechanistic origins for the shared properties and divergences. Echoing the growing evidence and concerns in the carbon dots research community on the major presence of organic molecular dyes/chromophores in carbonization produced dot samples, demonstrated and discussed in this article are some representative cases of dominating spectroscopic interferences due to the organic dye contamination that have led to unfound claims and erroneous conclusions. Mitigation strategies to address the contamination issues, including especially the use of more vigorous processing conditions in the carbonization synthesis, are proposed and justified.
Collapse
Affiliation(s)
- Weixiong Liang
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India
| | - Deepika Saini
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India
| | - Kirkland Sheriff
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Buta Singh
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Liju Yang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA
| | - Ping Wang
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Ya-Ping Sun
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
10
|
Al-Ghamdi S, Darwish A, Hamdallah TA, Pasha A, Elnair ME, Al-Atawi A, Khasim S. Biological Synthesis of Novel Carbon Quantum Dots Using Halimeda Opuntia Green Algae with Improved Optical Properties and Electrochemical Performance for Possible Energy Storage Applications. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
11
|
Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
faiad naief M, Mishaal Mohammed A, Khalaf YH. Kinetic and thermodynamic study of ALP enzyme in the presence and absence MWCNTs and Pt-NPs nanocomposites. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
13
|
Hashmi S, Ahmed R, Rehman AU, García-Peñas A, Zahoor A, Khan F, Vatankhah-Varnosfaderani M, Alshahrani T, Stadler FJ. Study of the synergistic influence of zwitterionic interactions and graphene oxide on water diffusion mechanism and mechanical properties in hybrid hydrogel network. CHEMOSPHERE 2023; 314:137710. [PMID: 36592834 DOI: 10.1016/j.chemosphere.2022.137710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Hybrid hydrogels based on n-isopropylacrylamide, zwitterionic comonomer, and graphene oxide were synthesized to study their physical and mechanical properties. The compositional variation largely influenced the swelling characteristics of the hybrid hydrogels compared to mechanical properties, i.e., elongation and compression. Additionally, Rheometric swelling measurements on the swollen hydrogels were performed until they reached equilibrium showed a very low phase angle δ indicating strong covalent network, which intrun increases with increasing content of zwitterions and GO. Swelling kinetics were studied and found to follow Fickian dynamics, albeit zwitterion-containing gels showed a peculiar 2-step swelling pattern. Interestingly, differences in the swelling mechanism are also clear for the hydrogels with 2D GO (Graphene oxide) nano-fillers from its 1D nano-filler CNTs (Carbon nanotubes). In elongation, the samples break in a brittle fashion at Hencky strains εmax around 0.4-0.65 with the maximum stress being observed for samples with high Zw-content and 0.2% GO, which can be explained by the stress-rising properties of sharp edges of GO. In contrast, the data in compression profits from higher GO-contents as crack growth is less important in this deformation mode. This work will contribute to future composite gel applications.
Collapse
Affiliation(s)
- Saud Hashmi
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, 518055, PR China; Department of Polymer & Petrochemical Engineering NED University of Engineering & Technology, Pakistan
| | - Rafiq Ahmed
- Department of Polymer & Petrochemical Engineering NED University of Engineering & Technology, Pakistan
| | - Adeel Ur Rehman
- Department of Chemical Engineering, University of Karachi, Pakistan
| | - Alberto García-Peñas
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, 518055, PR China; Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911, Leganés, Madrid, Spain
| | - Awan Zahoor
- Department of Polymer & Petrochemical Engineering NED University of Engineering & Technology, Pakistan
| | - Firoz Khan
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | | | - Thamraa Alshahrani
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, 518055, PR China.
| |
Collapse
|
14
|
Tang Y, Yu H, Niu X, Wang Q, Liu Y, Wu Y. Aptamer-mediated carbon dots as fluorescent signal for ultrasensitive detection of carbendazim in vegetables and fruits. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
A stable glucose sensor with direct electron transfer, based on glucose dehydrogenase and chitosan hydro bonded multi-walled carbon nanotubes. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Bio-Inspired Synthesis of Carbon-Based Nanomaterials and Their Potential Environmental Applications: A State-of-the-Art Review. INORGANICS 2022. [DOI: 10.3390/inorganics10100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Providing safe drinking water and clean water is becoming a more challenging task all around the world. Although some critical issues and limits remain unsolved, implementing ecologically sustainable nanomaterials (NMs) with unique features, e.g., highly efficient and selective, earth-abundance, renewability, low-cost manufacturing procedures, and stability, has become a priority. Carbon nanoparticles (NPs) offer tremendous promise in the sectors of energy and the environment. However, a series of far more ecologically friendly synthesis techniques based on natural, renewable, and less expensive waste resources must be explored. This will reduce greenhouse gas emissions and harmful material extraction and assist the development of green technologies. The progress achieved in the previous 10 years in the fabrication of novel carbon-based NMs utilizing waste materials as well as natural precursors is reviewed in this article. Research on carbon-based NPs and their production using naturally occurring precursors and waste materials focuses on this review research. Water treatment and purification using carbon NMs, notably for industrial and pharmaceutical wastes, has shown significant potential. Research in this area focuses on enhanced carbonaceous NMs, methods, and novel nano-sorbents for wastewater, drinking water, groundwater treatment, as well as ionic metal removal from aqueous environments. Discussed are the latest developments and challenges in environmentally friendly carbon and graphene quantum dot NMs.
Collapse
|
17
|
Luo Y, Li J, Huang C, Wang X, Long D, Cao Y. Graphene oxide links alterations of anti-viral signaling pathways with lipid metabolism via suppressing TLR3 in vascular smooth muscle cells. Mol Omics 2022; 18:779-790. [PMID: 35912640 DOI: 10.1039/d2mo00086e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Vascular smooth muscle cells (VSMCs), the main cells constructing blood vessels, are important in the regulation of the pathophysiology of vascular systems; however, relatively few studies have investigated the influence of nanomaterials (NMs) on VSMCs. In this study, we found that the interaction between graphene oxide and human VSMCs led to the cytotoxicity and morphological changes of cells. Because transcriptomic data suggested that graphene oxide decreased anti-viral signaling pathways via decreasing Toll-like receptor 3 (TLR3), we further verified that graphene oxide decreased interferon induced protein with tetratricopeptide repeats 1 (IFIT1) and the radical S-adenosyl methionine domain containing 2 (RSAD2), and TLR3-downstream genes involved in anti-viral responses. Due to the involvement of RSAD2 in lipid dysfunction, we also verified that graphene oxide disrupted lipid homeostasis and increased adipose triglyceride lipase (ATGL). Adding TLR3 agonist polyinosinic:polycytidylic acid (Poly IC) partially increased TLR3-downstream protein interleukin-8 (IL-8) and some lipid classes, particularly lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), in graphene oxide-exposed VSMCs. In mice receiving repeated intravenous injection of graphene oxide, significantly decreased TLR3, IFIT1 and RSAD2 but increased ATGL proteins were observed in aortas. We conclude that graphene oxide altered anti-viral signaling pathways and lipid metabolism via decreasing TLR3 in VSMCs.
Collapse
Affiliation(s)
- Yingmei Luo
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, The third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510632, China
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| |
Collapse
|
18
|
Huang S, Hong X, Zhao M, Liu N, Liu H, Zhao J, Shao L, Xue W, Zhang H, Zhu P, Guo R. Nanocomposite hydrogels for biomedical applications. Bioeng Transl Med 2022; 7:e10315. [PMID: 36176618 PMCID: PMC9471997 DOI: 10.1002/btm2.10315] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Nanomaterials' unique structures at the nanometer level determine their incredible functions, and based on this, they can be widely used in the field of nanomedicine. However, nanomaterials do possess disadvantages that cannot be ignored, such as burst release, rapid elimination, and poor bioadhesion. Hydrogels are scaffolds with three-dimensional structures, and they exhibit good biocompatibility and drug release capacity. Hydrogels are also associated with disadvantages for biomedical applications such as poor anti-tumor capability, weak bioimaging capability, limited responsiveness, and so on. Incorporating nanomaterials into the 3D hydrogel network through physical or chemical covalent action may be an effective method to avoid their disadvantages. In nanocomposite hydrogel systems, multifunctional nanomaterials often work as the function core, giving the hydrogels a variety of properties (such as photo-thermal conversion, magnetothermal conversion, conductivity, targeting tumor, etc.). While, hydrogels can effectively improve the retention effect of nanomaterials and make the nanoparticles have good plasticity to adapt to various biomedical applications (such as various biosensors). Nanocomposite hydrogel systems have broad application prospects in biomedicine. In this review, we comprehensively summarize and discuss the most recent advances of nanomaterials composite hydrogels in biomedicine, including drug and cell delivery, cancer treatment, tissue regeneration, biosensing, and bioimaging, and we also briefly discussed the current situation of their commoditization in biomedicine.
Collapse
Affiliation(s)
- Shanghui Huang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Xiangqian Hong
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro‐Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)College of Physics and Optoelectronic Engineering, Shenzhen UniversityShenzhenChina
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen UniversityShenzhenChina
| | - Mingyi Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Nanbo Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Huiling Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Jun Zhao
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen UniversityShenzhenChina
- Department of OphthalmologyShenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
| | - Longquan Shao
- Stomatological Hospital, Southern Medical UniversityGuangzhouChina
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro‐Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)College of Physics and Optoelectronic Engineering, Shenzhen UniversityShenzhenChina
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| |
Collapse
|
19
|
Farmand M, Jahanpeyma F, Gholaminejad A, Azimzadeh M, Malaei F, Shoaie N. Carbon nanostructures: a comprehensive review of potential applications and toxic effects. 3 Biotech 2022; 12:159. [PMID: 35814038 PMCID: PMC9259781 DOI: 10.1007/s13205-022-03175-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/25/2022] [Indexed: 12/17/2022] Open
Abstract
There is no doubt that nanotechnology has revolutionized our life since the 1970s when it was first introduced. Nanomaterials have helped us to improve the current products and services we use. Among the different types of nanomaterials, the application of carbon-based nanomaterials in every aspect of our lives has rapidly grown over recent decades. This review discusses recent advances of those applications in distinct categories, including medical, industrial, and environmental applications. The first main section introduces nanomaterials, especially carbon-based nanomaterials. In the first section, we discussed medical applications, including medical biosensors, drug and gene delivery, cell and tissue labeling and imaging, tissue engineering, and the fight against bacterial and fungal infections. The next section discusses industrial applications, including agriculture, plastic, electronic, energy, and food industries. In addition, the environmental applications, including detection of air and water pollutions and removal of environmental pollutants, were vastly reviewed in the last section. In the conclusion section, we discussed challenges and future perspectives.
Collapse
Affiliation(s)
- Maryam Farmand
- Department of Biology, Tehran University, PO Box: 14155-6619, Tehran, Iran
| | - Fatemeh Jahanpeyma
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| | - Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, PO Box: 73461-81746, Isfahan, Iran
| | - Mostafa Azimzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, PO Box: 89195-999, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, PO Box: 89195-999, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, PO Box: 8916188635, Yazd, Iran
| | - Fatemeh Malaei
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| | - Nahid Shoaie
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| |
Collapse
|
20
|
Controlled Oxidation of Cobalt Nanoparticles to Obtain Co/CoO/Co3O4 Composites with Different Co Content. NANOMATERIALS 2022; 12:nano12152523. [PMID: 35893491 PMCID: PMC9331854 DOI: 10.3390/nano12152523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
The paper studies patterns of interaction of electroexplosive Co nanoparticles with air oxygen during heating. The characteristics of Co nanoparticles and composite Co/CoO/Co3O4 nanoparticles formed as a result of oxidation were studied using transmission electron microscopy, X-ray phase analysis, thermogravimetric analysis, differential scanning calorimetry, and vibrating sample magnetometry. It was established that nanoparticles with similar morphology in the form of hollow spheres with different content of Co, CoO, and Co3O4 can be produced by varying oxidation temperatures. The influence of the composition of composite nanoparticles on their magnetic characteristics is shown.
Collapse
|
21
|
Mokoloko LL, Forbes RP, Coville NJ. The Transformation of 0-D Carbon Dots into 1-, 2- and 3-D Carbon Allotropes: A Minireview. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2515. [PMID: 35893483 PMCID: PMC9330435 DOI: 10.3390/nano12152515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/20/2023]
Abstract
Carbon dots (CDs) represent a relatively new type of carbon allotrope with a 0-D structure and with nanoparticle sizes < 10 nm. A large number of research articles have been published on the synthesis, characteristics, mechanisms and applications of this carbon allotrope. Many of these articles have also shown that CDs can be synthesized from “bottom-up” and “top-down” methods. The “top-down” methods are dominated by the breaking down of large carbon structures such as fullerene, graphene, carbon black and carbon nanotubes into the CDs. What is less known is that CDs also have the potential to be used as carbon substrates for the synthesis of larger carbon structures such as 1-D carbon nanotubes, 2-D or 3-D graphene-based nanosheets and 3-D porous carbon frameworks. Herein, we present a review of the synthesis strategies used to convert the 0-D carbons into these higher-dimensional carbons. The methods involve the use of catalysts or thermal procedures to generate the larger structures. The surface functional groups on the CDs, typically containing nitrogen and oxygen, appear to be important in the process of creating the larger carbon structures that typically are formed via the generation of covalent bonds. The CD building blocks can also ‘aggregate’ to form so called supra-CDs. The mechanism for the formation of the structures made from CDs, the physical properties of the CDs and their applications (for example in energy devices and as reagents for use in medicinal fields) will also be discussed. We hope that this review will serve to provide valuable insights into this area of CD research and a novel viewpoint on the exploration of CDs.
Collapse
Affiliation(s)
| | | | - Neil J. Coville
- DSI-NRF Centre of Excellence in Catalysis and the Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa; (L.L.M.); (R.P.F.)
| |
Collapse
|
22
|
Barik B, Mohapatra S. Selective and sensitive fluorescence turn-on detection of bilirubin using resorcinol-sucrose derived carbon dot. Anal Biochem 2022; 654:114813. [PMID: 35863463 DOI: 10.1016/j.ab.2022.114813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022]
Abstract
Carbon dots have been prepared from resorcinol and sucrose (rsCDs) hydrothermally, which show green emission at 525 nm with a fluorescence quantum yield (PLQY) of 17.2%. The intense emission of rsCDs is quenched upon the addition of Cu2+. In the presence of bilirubin (BR), the emission intensity is enhanced due to the competitive binding of Cu2+ with bilirubin and hence releasing rsCDs to the sensing medium. It is the first time report on turn-on fluorescence sensing towards BR with a detection limit of 85 nM. Even in the presence of other comparable biomolecules, the sensor is selective and ultrasensitive to bilirubin. A cellulose paper-based sensor strip has also been designed for the naked-eye detection of BR in blood serum. Due to the specific recognition of this rsCDs towards BR, it can be applied to detect BR in practical human serum samples.
Collapse
Affiliation(s)
- Balaram Barik
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India
| | - Sasmita Mohapatra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India.
| |
Collapse
|
23
|
Cheng S, Wang X, Yan X, Xiao Y, Zhang Y. Simple synthesis of green luminescent N-doped carbon dots for malachite green determination. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2616-2622. [PMID: 35734888 DOI: 10.1039/d2ay00682k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper, novel N-doped carbon dots (N-CDs) were prepared from fuchsin basic and ethylenediamine tetraacetic acid-disodium salt (EDTA-2Na). The N-CDs were characterized by a series of techniques and it was found that the average particle size was 2.75 nm, and the surface had functional groups such as -NH2 and -COOH. Interestingly, N-CDs exhibited a fast and sensitive response to malachite green (MG), which may be due to the inner filter effect (IFE). A method for the detection of MG in water samples from Jinyang Lake was developed using N-CDs, with a limit of detection (LOD) as low as 27.28 nM. Furthermore, N-CDs were utilized in the biological imaging of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Sijie Cheng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Xin Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Xuerong Yan
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Yanteng Xiao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Yong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| |
Collapse
|
24
|
Hallaji Z, Bagheri Z, Oroujlo M, Nemati M, Tavassoli Z, Ranjbar B. An insight into the potentials of carbon dots for in vitro live-cell imaging: recent progress, challenges, and prospects. Mikrochim Acta 2022; 189:190. [PMID: 35419708 DOI: 10.1007/s00604-022-05259-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
Abstract
Carbon dots (CDs) are a strong alternative to conventional fluorescent probes for cell imaging due to their brightness, photostability, tunable fluorescence emission, low toxicity, inexpensive preparation, and chemical diversity. Improving the targeting efficiency by modulation of the surface functional groups and understanding the mechanisms of targeted imaging are the most challenging issues in cell imaging by CDs. Firstly, we briefly discuss important features of fluorescent CDs for live-cell imaging application in this review. Then, the newest modulated CDs for targeted live-cell imaging of whole-cell, cell organelles, pH, ions, small molecules, and proteins are elaborately discussed, and their challenges in these fields are explained.
Collapse
Affiliation(s)
- Zahra Hallaji
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, 14117-13116, Tehran, Iran
| | - Zeinab Bagheri
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983963113, Tehran, Iran.
| | - Mahdi Oroujlo
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983963113, Tehran, Iran
| | - Mehrnoosh Nemati
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983963113, Tehran, Iran
| | - Zeinab Tavassoli
- Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Bijan Ranjbar
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, 14117-13116, Tehran, Iran. .,Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, 14117-13116, Tehran, Iran.
| |
Collapse
|
25
|
Tuning the Sensing Properties of N and S Co-Doped Carbon Dots for Colorimetric Detection of Copper and Cobalt in Water. SENSORS 2022; 22:s22072487. [PMID: 35408102 PMCID: PMC9003535 DOI: 10.3390/s22072487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/05/2023]
Abstract
In this study, nitrogen and sulfur co-doped carbon dots (NS-CDs) were investigated for the detection of heavy metals in water through absorption-based colorimetric response. NS-CDs were synthesized by a simple one-pot hydrothermal method and characterized by TEM, STEM-coupled with energy dispersive X-ray analysis, NMR, and IR spectroscopy. Addition of Cu(II) ions to NS-CD aqueous solutions gave origin to a distinct absorption band at 660 nm which was attributed to the formation of cuprammonium complexes through coordination with amino functional groups of NS-CDs. Absorbance increased linearly with Cu(II) concentration in the range 1–100 µM and enabled a limit of detection of 200 nM. No response was observed with the other tested metals, including Fe(III) which, however, appreciably decreased sensitivity to copper. Increase of pH of the NS-CD solution up to 9.5 greatly reduced this interference effect and enhanced the response to Cu(II), thus confirming the different nature of the two interactions. In addition, a concurrent response to Co(II) appeared in a different spectral region, thus suggesting the possibility of dual-species multiple sensitivity. The present method neither requires any other reagents nor any previous assay treatment and thus can be a promising candidate for low-cost monitoring of copper onsite and by unskilled personnel.
Collapse
|
26
|
Sanni SO, Moundzounga THG, Oseghe EO, Haneklaus NH, Viljoen EL, Brink HG. One-Step Green Synthesis of Water-Soluble Fluorescent Carbon Dots and Its Application in the Detection of Cu 2. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:958. [PMID: 35335771 PMCID: PMC8952276 DOI: 10.3390/nano12060958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/29/2023]
Abstract
Renewable biowaste-derived carbon dots have garnered immense interest owing to their exceptional optical, fluorescence, chemical, and environmentally friendly attributes, which have been exploited for the detection of metals, non-metals, and organics in the environment. In the present study, water-soluble fluorescent carbon dots (CDs) were synthesized via facile green microwave pyrolysis of pine-cone biomass as precursors, without any chemical additives. The synthesized fluorescent pine-cone carbon dots (PC-CDs) were spherical in shape with a bimodal particle-size distribution (average diameters of 15.2 nm and 42.1 nm) and a broad absorption band of between 280 and 350 nm, attributed to a π-π* and n-π* transition. The synthesized PC-CDs exhibited the highest fluorescent (FL) intensity at an excitation wavelength of 360 nm, with maximum emission of 430 nm. The synthesized PC-CDs were an excellent fluorescent probe for the selective detection of Cu2+ in aqueous solution, amidst the presence of other metal ions. The FL intensity of PC-CDs was exceptionally quenched in the presence of Cu2+ ions, with a low detection limit of 0.005 μg/mL; this was largely ascribed to Cu2+ ion binding interactions with the enriched surface functional groups on the PC-CDs. As-synthesized PC-CDs are an excellent, cost effective, and sensitive probe for detecting and monitoring Cu2+ metal ions in wastewater.
Collapse
Affiliation(s)
- Saheed O. Sanni
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria 0028, South Africa
- Biosorption and Wastewater Treatment Research Laboratory, Department of Chemistry, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark 1900, South Africa; (T.H.G.M.); (E.L.V.)
| | - Theo H. G. Moundzounga
- Biosorption and Wastewater Treatment Research Laboratory, Department of Chemistry, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark 1900, South Africa; (T.H.G.M.); (E.L.V.)
| | - Ekemena O. Oseghe
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, Florida Campus, University of South Africa, Johannesburg 1709, South Africa;
| | - Nils H. Haneklaus
- Institute of Chemical Technology, Freiberg University of Mining and Technology, Leipziger Straße 29, 09599 Freiberg, Germany;
- Td Lab Sustainable Mineral Resources, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria
| | - Elvera L. Viljoen
- Biosorption and Wastewater Treatment Research Laboratory, Department of Chemistry, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark 1900, South Africa; (T.H.G.M.); (E.L.V.)
| | - Hendrik G. Brink
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
27
|
Development of fluorescence sensor and test paper based on molecularly imprinted carbon quantum dots for spiked detection of domoic acid in shellfish and lake water. Anal Chim Acta 2022; 1197:339515. [DOI: 10.1016/j.aca.2022.339515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/17/2022]
|
28
|
Visible light photodegradation performance of zinc oxide/carbon nanotubes/reduced graphene oxide nanocomposite. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Ng SF, Lau MYL, Ong WJ. Lithium-Sulfur Battery Cathode Design: Tailoring Metal-Based Nanostructures for Robust Polysulfide Adsorption and Catalytic Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008654. [PMID: 33811420 DOI: 10.1002/adma.202008654] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Lithium-sulfur (Li-S) batteries have a high specific energy capacity and density of 1675 mAh g-1 and 2670 Wh kg-1 , respectively, rendering them among the most promising successors for lithium-ion batteries. However, there are myriads of obstacles in the practical application and commercialization of Li-S batteries, including the low conductivity of sulfur and its discharge products (Li2 S/Li2 S2 ), volume expansion of sulfur electrode, and the polysulfide shuttle effect. Hence, immense attention has been devoted to rectifying these issues, of which the application of metal-based compounds (i.e., transition metal, metal phosphides, sulfides, oxides, carbides, nitrides, phosphosulfides, MXenes, hydroxides, and metal-organic frameworks) as sulfur hosts is profiled as a fascinating strategy to hinder the polysulfide shuttle effect stemming from the polar-polar interactions between the metal compounds and polysulfides. This review encompasses the fundamental electrochemical principles of Li-S batteries and insights into the interactions between the metal-based compounds and the polysulfides, with emphasis on the intimate structure-activity relationship corroborated with theoretical calculations. Additionally, the integration of conductive carbon-based materials to ameliorate the existing adsorptive abilities of the metal-based compound is systematically discussed. Lastly, the challenges and prospects toward the smart design of catalysts for the future development of practical Li-S batteries are presented.
Collapse
Affiliation(s)
- Sue-Faye Ng
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Sepang, Selangor Darul Ehsan, 43900, Malaysia
| | - Michelle Yu Ling Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor Darul Ehsan, 43900, Malaysia
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Sepang, Selangor Darul Ehsan, 43900, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
30
|
Jin J, Chen Z, Zhang Y, Qu H, Wan C, Zhu T, Zhong Q. NCoCu Carbon Dots Intertwined NiCo Double Hydroxide Nanorod Array for Efficient Electrocatalytic Hydrogen Evolution. ChemCatChem 2021. [DOI: 10.1002/cctc.202101104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jie Jin
- School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R. China
| | - Zhiqiang Chen
- School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R. China
| | - Yi Zhang
- School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R. China
| | - Hongxia Qu
- School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R. China
| | - Changwu Wan
- School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R. China
| | - Tenglong Zhu
- School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R. China
| | - Qin Zhong
- School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R. China
| |
Collapse
|
31
|
Hou L, Li WC, Liu CY, Zhang Y, Qiao WH, Wang J, Wang DQ, Jin CH, Lu AH. Selective Synthesis of Carbon Nanorings via Asymmetric Intramicellar Phase-Transition-Induced Tip-to-Tip Assembly. ACS CENTRAL SCIENCE 2021; 7:1493-1499. [PMID: 34584950 PMCID: PMC8461765 DOI: 10.1021/acscentsci.1c00735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Indexed: 05/21/2023]
Abstract
The selective synthesis of energetically less favorable ring-shaped nanostructures by liquid phase synthetic chemistry is a huge challenge. Herein, we report a precise synthesis of carbon nanorings with a well-defined morphology and tunable thickness based on asymmetric intramicellar phase-transition-induced tip-to-tip assembly via mixing hydrophobic long-chain octadecanol and block copolymer F127. This orientational self-assembly depends on the hydrophobicity difference of the intermediate's surface, which triggers directional interactions that surpass the entropy cost of undesired connections and help assemble intermediates into defined ringlike structures. Based on a ringlike template, carbon nanorings with adjustable sizes can be attained by changing synthetic variables. More importantly, diverse units including crescentlike, podlike, and garlandlike nanostructures can also be created through controlling the kinetics of the self-assembly process. This discovery lays a solid foundation for the challenging construction of such a precise configuration on the nanoscale, which would not only promote fundamental studies but also pave the way for the development of advanced nanodevices with unique properties.
Collapse
Affiliation(s)
- Lu Hou
- State
Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic
Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wen-Cui Li
- State
Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic
Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chen-Yu Liu
- State
Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic
Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yu Zhang
- State
Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic
Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wei-Hong Qiao
- State
Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic
Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jia Wang
- State
Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic
Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Dong-Qi Wang
- State
Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic
Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chuan-Hong Jin
- State
Key Laboratory of Silicon Materials, School of Materials Science and
Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
- Hunan
Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, P. R.
China
| | - An-Hui Lu
- State
Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic
Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- E-mail:
| |
Collapse
|
32
|
Ge G, Li L, Wang D, Chen M, Zeng Z, Xiong W, Wu X, Guo C. Carbon dots: synthesis, properties and biomedical applications. J Mater Chem B 2021; 9:6553-6575. [PMID: 34328147 DOI: 10.1039/d1tb01077h] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Carbon dots (CDs) are a new type of carbon nanomaterial that have unique physical and chemical properties, good biocompatibility, low toxicity, and easy surface functionalization, making them widely used in biological imaging, environmental monitoring, chemical analysis, targeted drug delivery, disease diagnosis, therapy, etc. In this review, our content is mainly divided into four parts. In the first part, we focused on the preparation methods of CDs, including arc discharge, laser ablation, electrochemical oxidation, chemical oxidation, combustion, hydrothermal/solvent thermal, microwave, template, method etc. Next, we summarized methods of CD modification, including heteroatom doping and surface functionalization. Then, we discussed the optical properties of CDs (ultraviolet absorption, photoluminescence, up-conversion fluorescence, etc.). Lastly, we reviewed the common applications of CDs in biomedicine from the aspects of in vivo and in vitro imaging, sensors, drug delivery, cancer theranostics, etc. Furthermore, we also discussed the existing problems and the future development direction of CDs.
Collapse
Affiliation(s)
- Guili Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410008, China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Batool M, Nazar MF, Awan A, Tahir MB, Rahdar A, Shalan AE, Lanceros-Méndez S, Zafar MN. Bismuth-based heterojunction nanocomposites for photocatalysis and heavy metal detection applications. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.nanoso.2021.100762] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Wu H, Xu H, Shi Y, Yuan T, Meng T, Zhang Y, Xie W, Li X, Li Y, Fan L. Recent Advance in Carbon Dots: From Properties to Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hao Wu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Huimin Xu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Yuxin Shi
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Ting Yuan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Ting Meng
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Yang Zhang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Wenjing Xie
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Xiaohong Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Yunchao Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Louzhen Fan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| |
Collapse
|
35
|
The electronic and optical absorption properties of pristine, homo and hetero Bi-nanoclusters. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Wang M, Li B, Du Y, Bu H, Tang Y, Huang Q. Fluorescence imaging-guided cancer photothermal therapy using polydopamine and graphene quantum dot-capped Prussian blue nanocubes. RSC Adv 2021; 11:8420-8429. [PMID: 35423381 PMCID: PMC8695181 DOI: 10.1039/d0ra10491d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
In recent years, imaging-guided photothermal tumor ablation has attracted intense research interest as one of the most exciting strategies for cancer treatment. Herein, we prepared polydopamine and graphene quantum dot-capped Prussian blue nanocubes (PB@PDA@GQDs, PBPGs) with high photothermal conversion efficiency and excellent fluorescence performance for imaging-guided cancer treatment. Transmission electron microscopy (TEM), UV-vis absorption spectroscopy (UV-vis), fluorescence spectroscopy, and X-ray photoelectron spectroscopy (XPS) were employed to characterize their morphology and structures. The photothermal conversion efficiency and therapeutic effect were evaluated in vitro and in vivo. Results revealed that this nanoagent had excellent biocompatibility and enhanced the photothermal effect compared to blue nanocubes (PBs) and polydopamine-capped Prussian blue nanocubes (PB@PDA, PBPs). Therefore, our study may open a new path for the production of PB-based nanocomposites as theranostic nanoagents for imaging-guided photothermal cancer treatment.
Collapse
Affiliation(s)
- Meng Wang
- Public Experimental Research Center, Xuzhou Medical University Tong Shan No. 209 Xuzhou City 221004 Jiangsu 221004 China +86-516-83262091
- Key Laboratory of Biotechnology for Medicinal Plants, Jiangsu Province and School of Life Sciences, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Baolong Li
- Public Experimental Research Center, Xuzhou Medical University Tong Shan No. 209 Xuzhou City 221004 Jiangsu 221004 China +86-516-83262091
| | - Yu Du
- Medical Technology School, Xuzhou Medical University Xuzhou Jiangsu 221000 China
| | - Huimin Bu
- Key Laboratory of Biotechnology for Medicinal Plants, Jiangsu Province and School of Life Sciences, Jiangsu Normal University Xuzhou Jiangsu 221116 China
- Department of Physiology, Xuzhou Medical University Xuzhou Jiangsu 221004 China
| | - Yanyan Tang
- Public Experimental Research Center, Xuzhou Medical University Tong Shan No. 209 Xuzhou City 221004 Jiangsu 221004 China +86-516-83262091
| | - Qingli Huang
- Public Experimental Research Center, Xuzhou Medical University Tong Shan No. 209 Xuzhou City 221004 Jiangsu 221004 China +86-516-83262091
| |
Collapse
|
37
|
Barium charge transferred doped carbon dots with ultra-high quantum yield photoluminescence of 99.6% and applications. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.05.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Han B, Jiang J, Yan Q, Xin Z, Yan Q. One-step straightfoward solid synthesis of high yield white fluorescent carbon dots for white light emitting diodes. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Waris A, Din M, Ali A, Afridi S, Baset A, Khan AU, Ali M. Green fabrication of Co and Co 3O 4 nanoparticles and their biomedical applications: A review. Open Life Sci 2021; 16:14-30. [PMID: 33817294 PMCID: PMC7968533 DOI: 10.1515/biol-2021-0003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/20/2020] [Accepted: 11/17/2020] [Indexed: 01/25/2023] Open
Abstract
Nanotechnology is the fabrication, characterization, and potential application of various materials at the nanoscale. Over the past few decades, nanomaterials have attracted researchers from different fields because of their high surface-to-volume ratio and other unique and remarkable properties. Cobalt and cobalt oxide nanoparticles (NPs) have various biomedical applications because of their distinctive antioxidant, antimicrobial, antifungal, anticancer, larvicidal, antileishmanial, anticholinergic, wound healing, and antidiabetic properties. In addition to biomedical applications, cobalt and cobalt oxide NPs have been widely used in lithium-ion batteries, pigments and dyes, electronic thin film, capacitors, gas sensors, heterogeneous catalysis, and for environmental remediation purposes. Different chemical and physical approaches have been used to synthesize cobalt and cobalt oxide NPs; however, these methods could be associated with eco-toxicity, cost-effectiveness, high energy, and time consumption. Recently, an eco-friendly, safe, easy, and simple method has been developed by researchers, which uses biotic resources such as plant extract, microorganisms, algae, and other biomolecules such as starch and gelatin. Such biogenic cobalt and cobalt oxide NPs offer more advantages over other physicochemically synthesized methods. In this review, we have summarized the recent literature for the understanding of green synthesis of cobalt and cobalt oxide NPs, their characterization, and various biomedical applications.
Collapse
Affiliation(s)
- Abdul Waris
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Misbahud Din
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asmat Ali
- Centre for Human Genetics, Hazara University Mansehra, Pakistan
| | - Shakeeb Afridi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Baset
- Department of Zoology, Bacha Khan University Charsadda, Pakistan
| | - Atta Ullah Khan
- Department of Biotechnology, University of Malakand, Chakdara Dir Lower, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
40
|
Das S, Ngashangva L, Goswami P. Carbon Dots: An Emerging Smart Material for Analytical Applications. MICROMACHINES 2021; 12:84. [PMID: 33467583 PMCID: PMC7829846 DOI: 10.3390/mi12010084] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
Carbon dots (CDs) are optically active carbon-based nanomaterials. These nanomaterials can change their light emission properties in response to various external stimuli such as pH, temperature, pressure, and light. The CD's remarkable stimuli-responsive smart material properties have recently stimulated massive research interest for their exploitation to develop various sensor platforms. Herein, an effort has been made to review the major advances made on CDs, focusing mainly on its smart material attributes and linked applications. Since the CD's material properties are largely linked to their synthesis approaches, various synthesis methods, including surface passivation and functionalization of CDs and the mechanisms reported so far in their photophysical properties, are also delineated in this review. Finally, the challenges of using CDs and the scope for their further improvement as an optical signal transducer to expand their application horizon for developing analytical platforms have been discussed.
Collapse
Affiliation(s)
| | | | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; (S.D.); (L.N.)
| |
Collapse
|
41
|
Permatasari FA, Irham MA, Bisri SZ, Iskandar F. Carbon-Based Quantum Dots for Supercapacitors: Recent Advances and Future Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E91. [PMID: 33401630 PMCID: PMC7824538 DOI: 10.3390/nano11010091] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 01/15/2023]
Abstract
Carbon-based Quantum dots (C-QDs) are carbon-based materials that experience the quantum confinement effect, which results in superior optoelectronic properties. In recent years, C-QDs have attracted attention significantly and have shown great application potential as a high-performance supercapacitor device. C-QDs (either as a bare electrode or composite) give a new way to boost supercapacitor performances in higher specific capacitance, high energy density, and good durability. This review comprehensively summarizes the up-to-date progress in C-QD applications either in a bare condition or as a composite with other materials for supercapacitors. The current state of the three distinct C-QD families used for supercapacitors including carbon quantum dots, carbon dots, and graphene quantum dots is highlighted. Two main properties of C-QDs (structural and electrical properties) are presented and analyzed, with a focus on the contribution to supercapacitor performances. Finally, we discuss and outline the remaining major challenges and future perspectives for this growing field with the hope of stimulating further research progress.
Collapse
Affiliation(s)
- Fitri Aulia Permatasari
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; (F.A.P.); (M.A.I.)
| | - Muhammad Alief Irham
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; (F.A.P.); (M.A.I.)
- RIKEN Center of Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | - Ferry Iskandar
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; (F.A.P.); (M.A.I.)
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| |
Collapse
|
42
|
Xu Q, Gao J, Wang S, Wang Y, Liu D, Wang J. Quantum dots in cell imaging and their safety issues. J Mater Chem B 2021; 9:5765-5779. [PMID: 34212167 DOI: 10.1039/d1tb00729g] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
When quantum dots are used as fluorescent probes or drug tracers for in vivo imaging, the quantum dots in the blood will come into direct contact with vascular endothelial cells. Thus, it is necessary to study whether quantum dots can affect endothelial function after being injected into blood vessels as imaging agents. In recent years, there have been numerous studies on the toxicity of quantum dots. Herein, we focused on five types of quantum dots (Cd-containing quantum dots, CuInS2 quantum dots, black phosphorus quantum dots, MXene quantum dots, and carbon-based quantum dots) for cell imaging and their toxicity in vivo and in vitro. Although current research on the toxicity of quantum dots has not reached a consistent conclusion, it can guide the next step in evaluating their cytotoxicity.
Collapse
Affiliation(s)
- Quan Xu
- State Key Laboraty of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jiajia Gao
- State Key Laboraty of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Siyang Wang
- State Key Laboraty of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yi Wang
- State Key Laboraty of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Dong Liu
- Strategic Support Force Medical Center Clinical Laboratory, Beijing, 100101, China.
| | - Juncheng Wang
- Department of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
43
|
Xu A, Wang G, Li Y, Dong H, Yang S, He P, Ding G. Carbon-Based Quantum Dots with Solid-State Photoluminescent: Mechanism, Implementation, and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004621. [PMID: 33145929 DOI: 10.1002/smll.202004621] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/18/2020] [Indexed: 05/24/2023]
Abstract
Carbon-based quantum dots (CQDs), including spherical carbon dots and graphene quantum dots, are an emerging class of photoluminescent (PL) materials with unique properties. Great progress has been made in the design and fabrication of high-performance CQDs, however, the challenge of developing solid-state PL CQDs have aroused great interest among researchers. A clear PL mechanism is the basis for the development of high-performance solid-state CQDs for light emission and is also a prerequisite for the realization of multiple practical applications. However, the extremely complex structure of a CQD greatly limits the understanding of the solid-state PL mechanism of CQDs. So far, a variety of models have been proposed to explain the PL of solid-state CQDs, but they have not been unified. This review summarizes the current understanding of the solid-state PL of solid-state CQDs from the perspective of energy band theory and electronic transitions. In addition, the common strategies for realizing solid-state PL in CQDs are also summarized. Furthermore, the applications of CQDs in the fields of light-emitting devices, anti-counterfeiting, fingerprint detection, etc., are proposed. Finally, a brief outlook is given, highlighting current problems, and directions for development of solid-state PL of CQDs.
Collapse
Affiliation(s)
- Anli Xu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS Center for Excellence in Superconducting Electronics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gang Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS Center for Excellence in Superconducting Electronics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China
| | - Yongqiang Li
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS Center for Excellence in Superconducting Electronics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Dong
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS Center for Excellence in Superconducting Electronics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Siwei Yang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS Center for Excellence in Superconducting Electronics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peng He
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS Center for Excellence in Superconducting Electronics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guqiao Ding
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS Center for Excellence in Superconducting Electronics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
44
|
Stasyuk AJ, Stasyuk OA, Solà M, Voityuk AA. Photoinduced electron transfer in nanotube⊃C 70 inclusion complexes: phenine vs. nanographene nanotubes. Chem Commun (Camb) 2020; 56:12624-12627. [PMID: 32959809 DOI: 10.1039/d0cc04261g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we computationally study the photoinduced electron transfer in fullerene inclusion complexes of two phenine nanotubes pre-pNT⊃C70 and pNT⊃C70 and their nanographene analog [4]CHBC⊃C70. Charge separation is shown to efficiently occur in [4]CHBC⊃C70. In contrast, the electron transfer process between the host and guest units in the pre-pNT⊃C70 and pNT⊃C70 complexes is blocked by the structural changes incorporated in the nanographene framework.
Collapse
Affiliation(s)
- Anton J Stasyuk
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona C/ M. Aurèlia Capmany, 69, 17003 Girona, Spain.
| | - Olga A Stasyuk
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona C/ M. Aurèlia Capmany, 69, 17003 Girona, Spain.
| | - Miquel Solà
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona C/ M. Aurèlia Capmany, 69, 17003 Girona, Spain.
| | - Alexander A Voityuk
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona C/ M. Aurèlia Capmany, 69, 17003 Girona, Spain. and ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
45
|
Gu M, Dai Z, Yan X, Ma J, Niu Y, Lan W, Wang X, Xu Q. Comparison of toxicity of Ti
3
C
2
and Nb
2
C Mxene quantum dots (QDs) to human umbilical vein endothelial cells. J Appl Toxicol 2020; 41:745-754. [DOI: 10.1002/jat.4085] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Manyu Gu
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials Science China University of Petroleum‐Beijing Beijing China
- Key Laboratory of Environment‐Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry Xiangtan University Xiangtan China
| | - Zhiqi Dai
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials Science China University of Petroleum‐Beijing Beijing China
- Key Laboratory of Environment‐Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry Xiangtan University Xiangtan China
| | - Xiang Yan
- School of Materials Science and Engineering Baise University Baise China
| | - Junfei Ma
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials Science China University of Petroleum‐Beijing Beijing China
| | - Yingchun Niu
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials Science China University of Petroleum‐Beijing Beijing China
| | - Wenjie Lan
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials Science China University of Petroleum‐Beijing Beijing China
| | - Xin Wang
- PLA Strategic Support Force Characteristic Medical Center Beijing China
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials Science China University of Petroleum‐Beijing Beijing China
| |
Collapse
|
46
|
Lin M, Ma X, Lin S, Zhang X, Dai Y, Xia F. Fluorescent probe based on N-doped carbon dots for the detection of intracellular pH and glutathione. RSC Adv 2020; 10:33635-33641. [PMID: 35519044 PMCID: PMC9056740 DOI: 10.1039/d0ra06636b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/31/2020] [Indexed: 01/07/2023] Open
Abstract
Carbon dots (CDs) as fluorescent probes have been widely exploited to detect biomarkers, however, tedious surface modification of CDs is generally required to achieve a relatively good detection ability. Here, we synthesized N-doped carbon dots (N-CDs) from triethylenetetramine (TETA) and m-phenylenediamine (m-PD) using a one-step hydrothermal method. When the pH increases from 3 to 11, the fluorescence intensity of the N-CDs gradually decreases. Furthermore, it displays a linear response to the physiological pH range of 5-8. Au3+ is reduced by amino groups on the surface of N-CDs to generate gold nanoparticles (AuNPs), causing fluorescence quenching of the N-CDs. If glutathione (GSH) is then added, the fluorescence of the N-CDs is recovered. The fluorescence intensity of the N-CDs is linearly correlated with the GSH concentration in the range of 50-400 μM with a limit of detection (LOD) of 7.83 μM. The fluorescence probe was used to distinguish cancer cells from normal cells using pH and to evaluate intracellular GSH. This work expands the application of CDs in multicomponent detection and provides a facile fluorescent probe for the detection of intracellular pH and GSH.
Collapse
Affiliation(s)
- Meihua Lin
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Xin Ma
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Shijun Lin
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Xiaojin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Yu Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| |
Collapse
|
47
|
Alexpandi R, Gopi CVVM, Durgadevi R, Kim HJ, Pandian SK, Ravi AV. Metal sensing-carbon dots loaded TiO 2-nanocomposite for photocatalytic bacterial deactivation and application in aquaculture. Sci Rep 2020; 10:12883. [PMID: 32733064 PMCID: PMC7393085 DOI: 10.1038/s41598-020-69888-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/23/2020] [Indexed: 11/08/2022] Open
Abstract
Nowadays, bioactive nanomaterials have been attracted the researcher's enthusiasm in various fields. Herein, Diplocyclos palmatus leaf extract-derived green-fluorescence carbon dots (DP-CDs) were prepared using the hydrothermal method. Due to the strong fluorescence stability, the prepared DP-CDs were coated on filter-paper to make a fluorometric sensor-strip for Fe3+ detection. After, a bandgap-narrowed DP-CDs/TiO2 nanocomposite (DCTN) was prepared using the methanolic extract of D. palmatus. The prepared DCTN exhibited improved photocatalytic bacterial deactivation under sunlight irradiation. The DCTN-photocatalysis slaughtered V. harveyi cells by the production of reactive oxygen species, which prompting oxidative stress, damaging the cell membrane and cellular constituents. These results suggest the plausible mode of bactericidal action of DCTN-photocatalysis under sunlight. Further, the DCTN has shown potent anti-biofilm activity against V. harveyi, and thereby, DCTN extended the survival of V. harveyi-infected shrimps during the in vivo trial with Litopenaeus vannamei. Notably, this is the first report for the disinfection of V. harveyi-mediated acute-hepatopancreatic necrosis disease (AHPND) using nanocomposite. The reduced internal-colonization of V. harveyi on the hepatopancreas as well as the rescue action of the pathognomonic effect in the experimental animals demonstrated the anti-infection potential of DCTN against V. harveyi-mediated AHPND in aquaculture.
Collapse
Affiliation(s)
- Rajaiah Alexpandi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi, 630 003, India
| | - Chandu V V Muralee Gopi
- Lab in Laser and Sensor Application, School of Electrical and Computer Engineering, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, South Korea
| | - Ravindran Durgadevi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi, 630 003, India
| | - Hee-Je Kim
- Lab in Laser and Sensor Application, School of Electrical and Computer Engineering, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, South Korea
| | - Shunmugiah Karutha Pandian
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi, 630 003, India
| | - Arumugam Veera Ravi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi, 630 003, India.
| |
Collapse
|
48
|
Askari F, Rahdar A, Dashti M, Trant JF. Detecting Mercury (II) and Thiocyanate Using "Turn-on" Fluorescence of Graphene Quantum Dots. J Fluoresc 2020; 30:1181-1187. [PMID: 32691262 DOI: 10.1007/s10895-020-02586-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/09/2020] [Indexed: 11/29/2022]
Abstract
In this work, 1.8 nm graphene quantum dots (GQDs), exhibiting bright blue fluorescence, were prepared using a bottom-up synthesis from citric acid. The fluorescence of the GQDs could be almost completely quenched (about 96%) by adding Hg2+. Quenching was far less efficient with other similar heavy metals, Tl+, Pb2+ and Bi3+. Fluorescence could be near quantitatively restored through the introduction of thiocyanate. This "turn-on" fluorescence can thus be used to detect both or either environmental and physiological contaminants mercury and thiocyanate and could prove useful for the development of simple point-of-care diagnostics in the future. Graphical Abstract.
Collapse
Affiliation(s)
- Faezeh Askari
- Department of Physics, University of Zabol, P. O. Box. 98613-35856, Zabol, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, P. O. Box. 98613-35856, Zabol, Iran.
| | - Mohadeseh Dashti
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
49
|
Ankireddy SR, Vo VG, An SSA, Kim J. Solvent-Free Synthesis of Fluorescent Carbon Dots: An Ecofriendly Approach for the Bioimaging and Screening of Anticancer Activity via Caspase-Induced Apoptosis. ACS APPLIED BIO MATERIALS 2020; 3:4873-4882. [DOI: 10.1021/acsabm.0c00377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Seshadri Reddy Ankireddy
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-Do 13120, South Korea
- Department of Chemistry, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour 173101, India
| | - Van Giau Vo
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam, Gyeonggi-Do 13120, South Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-Do 13120, South Korea
| |
Collapse
|
50
|
Dong X, Zhao H, Mi Y, Liu Y, Zhang Y, Liu Y, Chen Y, Xu Q. Near infrared molybdenum oxide quantum dots with high photoluminescence and photothermal performance. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|