1
|
Xu W, Tan H, Hu P, Liu S, Song J, Chen X, Suo H. Advancements in fluorescent labeling in assessing the probiotic adhesion capacity - A review. World J Microbiol Biotechnol 2025; 41:73. [PMID: 40011303 DOI: 10.1007/s11274-024-04186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/29/2024] [Indexed: 02/28/2025]
Abstract
Adhesion capacity of probiotics is closely related to their intestinal-protective effects. The conventional techniques used to evaluate probiotic adhesion capacity have limitations in terms of imaging resolution and quantitative analysis. Fluorescent labelling technology has shown immense potential in recent years owing to its high specificity and sensitivity for resolving probiotic adhesion mechanisms. Although there are still problems with the fluorescence signal intensity and hysteresis effect, this technology has significantly advanced the accurate detection and evaluation of probiotic adhesion capacity. This review examines the critical role of probiotic adhesion and its detection methods, with a special focus on the application of fluorescent-labeling technology. Our objective was to identify more accurate and efficient approaches for evaluating the adhesion capacity of probiotic bacteria while promoting in-depth research into the underlying mechanisms that govern probiotic adhesion.
Collapse
Affiliation(s)
- Weiping Xu
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Han Tan
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Peiling Hu
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Shijian Liu
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing, 400715, China.
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Lee M, Shin S, Kim S, Park N. Recent Advances in Biological Applications of Aptamer-Based Fluorescent Biosensors. Molecules 2023; 28:7327. [PMID: 37959747 PMCID: PMC10647268 DOI: 10.3390/molecules28217327] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Aptamers have been spotlighted as promising bio-recognition elements because they can be tailored to specific target molecules, bind to targets with a high affinity and specificity, and are easy to chemically synthesize and introduce functional groups to. In particular, fluorescent aptasensors are widely used in biological applications to diagnose diseases as well as prevent diseases by detecting cancer cells, viruses, and various biomarkers including nucleic acids and proteins as well as biotoxins and bacteria from food because they have the advantages of a high sensitivity, selectivity, rapidity, a simple detection process, and a low price. We introduce screening methods for isolating aptamers with q high specificity and summarize the sequences and affinities of the aptamers in a table. This review focuses on aptamer-based fluorescence detection sensors for biological applications, from fluorescent probes to mechanisms of action and signal amplification strategies.
Collapse
Affiliation(s)
- Minhyuk Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (M.L.); (S.K.)
| | - Seonhye Shin
- Department of Chemistry, The Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea;
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (M.L.); (S.K.)
| | - Nokyoung Park
- Department of Chemistry, The Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea;
| |
Collapse
|
3
|
Rebenku I, Lloyd CB, Szöllősi J, Vereb G. Pixel-by-pixel autofluorescence corrected FRET in fluorescence microscopy improves accuracy for samples with spatially varied autofluorescence to signal ratio. Sci Rep 2023; 13:2934. [PMID: 36804608 PMCID: PMC9941493 DOI: 10.1038/s41598-023-30098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The actual interaction between signaling species in cellular processes is often more important than their expression levels. Förster resonance energy transfer (FRET) is a popular tool for studying molecular interactions, since it is highly sensitive to proximity in the range of 2-10 nm. Spectral spillover-corrected quantitative (3-cube) FRET is a cost effective and versatile approach, which can be applied in flow cytometry and various modalities of fluorescence microscopy, but may be hampered by varying levels of autofluorescence. Here, we have implemented pixel-by-pixel autofluorescence correction in microscopy FRET measurements, exploiting cell-free calibration standards void of autofluorescence that allow the correct determination of all spectral spillover factors. We also present an ImageJ/Fiji plugin for interactive analysis of single images as well as automatic creation of quantitative FRET efficiency maps from large image sets. For validation, we used bead and cell based FRET models covering a range of signal to autofluorescence ratios and FRET efficiencies and compared the approach with conventional average autofluorescence/background correction. Pixel-by-pixel autofluorescence correction proved to be superior in the accuracy of results, particularly for samples with spatially varying autofluorescence and low fluorescence to autofluorescence ratios, the latter often being the case for physiological expression levels.
Collapse
Affiliation(s)
- István Rebenku
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032 Hungary ,grid.7122.60000 0001 1088 8582ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032 Hungary
| | - Cameron B. Lloyd
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032 Hungary
| | - János Szöllősi
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032 Hungary ,grid.7122.60000 0001 1088 8582ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032 Hungary
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary. .,ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary. .,Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary.
| |
Collapse
|
4
|
Bioorthogonal Ligation‐Activated Fluorogenic FRET Dyads. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Albitz E, Kern D, Kormos A, Bojtár M, Török G, Biró A, Szatmári Á, Németh K, Kele P. Bioorthogonal Ligation-Activated Fluorogenic FRET Dyads. Angew Chem Int Ed Engl 2022; 61:e202111855. [PMID: 34861094 PMCID: PMC9305863 DOI: 10.1002/anie.202111855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 12/04/2022]
Abstract
An energy transfer-based signal amplification relay concept enabling transmission of bioorthogonally activatable fluorogenicity of blue-excitable coumarins to yellow/red emitting cyanine frames is presented. Such relay mechanism resulted in improved cyanine fluorogenicities together with increased photostabilities and large apparent Stokes-shifts allowing lower background fluorescence even in no-wash bioorthogonal fluorogenic labeling schemes of intracellular structures in live cells. These energy transfer dyads sharing the same donor moiety together with their parent donor molecule allowed three-color imaging of intracellular targets using one single excitation source with separate emission windows. Sub-diffraction imaging of intracellular structures using the bioorthogonally activatable FRET dyads by STED microscopy is also presented.
Collapse
Affiliation(s)
- Evelin Albitz
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
- Hevesy György PhD School of ChemistryEötvös Loránd UniversityPázmány Péter sétány 1/a1117BudapestHungary
| | - Dóra Kern
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
- Hevesy György PhD School of ChemistryEötvös Loránd UniversityPázmány Péter sétány 1/a1117BudapestHungary
| | - Attila Kormos
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| | - Márton Bojtár
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| | - György Török
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
- Department of Biophysics and Radiation BiologySemmelweis UniversityTűzoltó u. 37–471094BudapestHungary
| | - Adrienn Biró
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| | - Ágnes Szatmári
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| | - Krisztina Németh
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| | - Péter Kele
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesEötvös Loránd Research NetworkMagyar tudósok krt. 21117BudapestHungary
| |
Collapse
|
6
|
Mabrouk M, Hammad SF, Abdella AA, Mansour FR. A novel strategy for ketorolac detection based on turn-on plasmonic enhanced FRET synchronous fluorometric sensor employing micellized chitosan/ AgNPs nanocomposites: Preparation and mechanism investigation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Söveges B, Imre T, Póti ÁL, Sok P, Kele Z, Alexa A, Kele P, Németh K. Tracking down protein-protein interactions via a FRET-system using site-specific thiol-labeling. Org Biomol Chem 2018; 16:5756-5763. [PMID: 29947400 DOI: 10.1039/c8ob00742j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Förster resonance energy transfer is among the most popular tools to follow protein-protein interactions. Although limited to certain cases, site-specific fluorescent labeling of proteins via natural functions by means of chemical manipulations can redeem laborious protein engineering techniques. Herein we report on the synthesis of a heterobifunctional tag and its use in site-specific protein labeling studies aiming at exploring protein-protein interactions. The oxadiazole-methylsulfonyl functionality serves as a thiol specific warhead that enables easy and selective installation of fluorescent labels through a bioorthogonal motif. Mitogen activated protein kinase (MAPK14) and its substrate mitogen activated protein kinase activated kinase (MAPKAP2) or its docking motif, a 22 amino acid-long peptide fragment, were labeled with a donor and an acceptor, respectively. Evolution of strong FRET signals upon protein-protein interactions supported the specific communication between the partners. Using an efficient FRET pair allowed the estimation of dissociation constants for protein-protein and peptide-protein interactions (145 nM and 240 nM, respectively).
Collapse
Affiliation(s)
- B Söveges
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Institute of Organic Chemistry, Chemical Biology Research Group, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| | - T Imre
- Research Centre for Natural Sciences of Hungarian Academy of Sciences, Instrumentation Center, MS Metabolomics Research Group, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Á L Póti
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Institute of Enzymology, Protein Research Group, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - P Sok
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Institute of Enzymology, Protein Research Group, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Zs Kele
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Institute of Organic Chemistry, Chemical Biology Research Group, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| | - A Alexa
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Institute of Enzymology, Protein Research Group, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - P Kele
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Institute of Organic Chemistry, Chemical Biology Research Group, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| | - K Németh
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Institute of Organic Chemistry, Chemical Biology Research Group, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| |
Collapse
|
8
|
Pliquett J, Amor S, Ponce-Vargas M, Laly M, Racoeur C, Rousselin Y, Denat F, Bettaïeb A, Fleurat-Lessard P, Paul C, Goze C, Bodio E. Design of a multifunctionalizable BODIPY platform for the facile elaboration of a large series of gold(i)-based optical theranostics. Dalton Trans 2018; 47:11203-11218. [DOI: 10.1039/c8dt02364f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A highly fluorescent BODIPY-based platform has been designed and allows the stepwise and regioselective introduction of 3 biologically relevant nucleophiles.
Collapse
|