1
|
Narbona E, Del Valle JC, Whittall JB, León-Osper M, Buide ML, Pulgar I, Camargo MGG, Morellato LPC, Rodríguez-Castañeda N, Rossi V, Conrad K, Hernandez-Mena J, Ortiz PL, Arista M. Transcontinental patterns in floral pigment abundance among animal-pollinated species. Sci Rep 2025; 15:15927. [PMID: 40335586 PMCID: PMC12059069 DOI: 10.1038/s41598-025-94709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/17/2025] [Indexed: 05/09/2025] Open
Abstract
Flower color arises primarily from pigments that serve dual functions: attracting pollinators and mitigating environmental stresses. Among major pigment types, anthocyanins and UV-absorbing phenylpropanoids (UAPs) fulfill one or both roles and should be widespread. Our review of the UV-vis absorption profiles of major floral pigments demonstrates that UAPs are the primary UV protectants. Next, we analyzed the floral pigment composition of 926 animal-pollinated species from California, Southern Spain, and Southeastern Brazil. UAPs were ubiquitous (the "dark matter" of the flower). Among the remaining pigment types, ~ 56% of species had anthocyanins, ~ 37% had carotenoids, and ~ 17% had chlorophylls (some species had > 1 pigment type). Pigment abundance varied in response to abiotic and biotic factors, particularly with pollinator type in California. Despite regional differences in environmental filtering, pollination guilds, and relatedness, UAPs are omnipresent and there is a transcontinental stable distribution of flower colors and their underlying floral pigments.
Collapse
Affiliation(s)
- Eduardo Narbona
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain.
| | - Jose C Del Valle
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | - Melissa León-Osper
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - M Luisa Buide
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Iñigo Pulgar
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Maria Gabriela Gutierrez Camargo
- Center for Research on Biodiversity Dynamics and Climate Change and Department of Biodiversity, Phenology Lab, UNESP - São Paulo State University, Biosciences Institute, Rio Claro, São Paulo, Brazil
| | - Leonor Patricia Cerdeira Morellato
- Center for Research on Biodiversity Dynamics and Climate Change and Department of Biodiversity, Phenology Lab, UNESP - São Paulo State University, Biosciences Institute, Rio Claro, São Paulo, Brazil
| | - Nancy Rodríguez-Castañeda
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Victor Rossi
- Department of Biology, Santa Clara University, Santa Clara, CA, USA
| | - Katie Conrad
- Department of Biology, Santa Clara University, Santa Clara, CA, USA
| | | | - Pedro L Ortiz
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Montserrat Arista
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
2
|
Jesus A, Ratanji S, Cidade H, Sousa E, Cruz MT, Oliveira R, Almeida IF. Phenolics as Active Ingredients in Skincare Products: A Myth or Reality? Molecules 2025; 30:1423. [PMID: 40286007 PMCID: PMC11990743 DOI: 10.3390/molecules30071423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Phenolic compounds, with their diverse biological activities, are widely explored as cosmetic ingredients with photoprotective, antioxidant, anti-inflammatory, and anti-hyperpigmentation properties, offering a multitargeted approach to combat photo-induced skin aging. The study analyzed 1299 cosmetic products from 2021 to 2024 to understand the market impact of phenolic compounds and their mechanism of action against photo-induced skin damage. A total of 28 active phenolic compounds were identified and the prevalence of phenolics was 13.2% in anti-aging products, 5.2% in sunscreens and 4.8% in aftersun products. Bakuchiol and polyphenols, such as resveratrol, chrysin, and hesperidin methyl chalcone, were found in anti-aging products. Sunscreens and aftersun products were counted with ferulic and caffeic acids, and salicylic acid, respectively. Antioxidant activity was found to be the primary mechanism of action of phenolic compounds by scavenging reactive species, thus mitigating oxidative stress. Ferulic and caffeic acids, chrysin, and glucosylrutin can also absorb UV radiation, acting preventively against solar-induced skin damage. This study provides insights into the limited use of phenolic compounds in commercial cosmetics, despite their diverse biological activities, and suggests potential barriers to wider use in skin and sun care products.
Collapse
Affiliation(s)
- Ana Jesus
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (S.R.); (R.O.); (I.F.A.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Smeera Ratanji
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (S.R.); (R.O.); (I.F.A.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Matosinhos, Portugal
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (CESPU), 4585-116 Gandra, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Matosinhos, Portugal
| | - Maria T. Cruz
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal;
- CNC—Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| | - Rita Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (S.R.); (R.O.); (I.F.A.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP-BHS—Biomedical and Health Sciences Research Unit, FFP-I3ID Faculty of Health Sciences, University of Fernando Pessoa, 4200-150 Porto, Portugal
- RISE—Health, Faculty of Health Sciences, Fernando Pessoa University, Fernando Pessoa Teaching and Culture Foundation, Rua Carlos da Maia 296, 4200-150 Porto, Portugal
| | - Isabel F. Almeida
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (S.R.); (R.O.); (I.F.A.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Suthaus A, Hess S. The vampyrellid amoeba Strigomyxa ruptor gen. et sp. nov. and its remarkable strategy to acquire algal cell contents. Ecol Evol 2024; 14:e70191. [PMID: 39211003 PMCID: PMC11358034 DOI: 10.1002/ece3.70191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
The vampire amoebae (Vampyrellida, Rhizaria) inhabit freshwater, marine, and terrestrial ecosystems and consume a wide range of eukaryotic prey. This includes diverse microalgae, fungi, and microscopic animals. One of the most captivating aspects of the vampyrellids is their ability to extract the cell contents of other eukaryotes after local dissolution of the prey cell wall, a feeding strategy that occurs in several vampyrellid families, but is best studied in Vampyrella species that attack zygnematophyte green algae. Here, we report two new vampyrellid strains from temperate moorlands in Germany with a yet-undescribed feeding strategy: internal protoplast extraction and cell wall regurgitation. This feeding strategy involves the phagocytosis of whole desmid cells (genus Closterium, Zygnematophyceae), internal cleavage of the algal cell wall, extraction of the cell contents, and subsequent exocytosis of bundled empty cell walls. The large primary food vacuole formed during the process has exceptional functions, as it forms internal feeding pseudopodia, packages algal cell contents into smaller secondary vacuoles, and transforms into a "waste vacuole" with cell wall remnants. The new feeding strategy, which - in the widest sense - is reminiscent of the pellet casting of owls, reveals a stunningly sophisticated behavior of single protist cells. Based on morphological, phylogenetic, and autecological data, both vampyrellid strains are nearly identical and here assigned to a new and quite unique vampyrellid taxon, Strigomyxa ruptor gen. et sp. nov. (Leptophryidae, Vampyrellida).
Collapse
Affiliation(s)
- Andreas Suthaus
- Institute for ZoologyUniversity of CologneCologneGermany
- Division for Biology of Algae and Protozoa, Department of BiologyTechnical University of DarmstadtDarmstadtGermany
| | - Sebastian Hess
- Institute for ZoologyUniversity of CologneCologneGermany
- Division for Biology of Algae and Protozoa, Department of BiologyTechnical University of DarmstadtDarmstadtGermany
| |
Collapse
|
4
|
Khoramizadeh F, Garibay-Hernández A, Mock HP, Bilger W. Improvement of the Quality of Wild Rocket ( Diplotaxis tenuifolia) with Respect to Health-Related Compounds by Enhanced Growth Irradiance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9735-9745. [PMID: 38648561 PMCID: PMC11066873 DOI: 10.1021/acs.jafc.3c07698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
For healthier human nutrition, it is desirable to provide food with a high content of nutraceuticals such as polyphenolics, vitamins, and carotenoids. We investigated to what extent high growth irradiance influences the content of phenolics, α-tocopherol and carotenoids, in wild rocket (Diplotaxis tenuifolia), which is increasingly used as a salad green. Potted plants were grown in a climate chamber with a 16 h day length at photosynthetic photon flux densities varying from 20 to 1250 μmol m-2 s-1. Measurements of the maximal quantum yield of photosystem II, FV/FM, and of the epoxidation state of the violaxanthin cycle (V-cycle) showed that the plants did not suffer from excessive light for photosynthesis. Contents of carotenoids belonging to the V-cycle, α-tocopherol and several quercetin derivatives, increased nearly linearly with irradiance. Nonintrusive measurements of chlorophyll fluorescence induced by UV-A and blue light relative to that induced by red light, indicating flavonoid and carotenoid content, allowed not only a semiquantitative measurement of both compounds but also allowed to follow their dynamic changes during reciprocal transfers between low and high growth irradiance. The results show that growth irradiance has a strong influence on the content of three different types of compounds with antioxidative properties and that it is possible to determine the contents of flavonoids and specific carotenoids in intact leaves using chlorophyll fluorescence. The results may be used for breeding to enhance healthy compounds in wild rocket leaves and to monitor their content for selection of appropriate genotypes.
Collapse
Affiliation(s)
- Fahimeh Khoramizadeh
- Botanical
Institute, Christian-Albrechts University
Kiel, Olshausenstr. 40, Kiel D-24098, Germany
| | - Adriana Garibay-Hernández
- Molecular
Biotechnology and Systems Biology, Rheinland-Pfälzische
TU Kaiserslautern, Paul-Ehrlich
Straße 23, Kaiserslautern D-67663, Germany
- Leibniz
Institute for Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Seeland, OT Gatersleben D-06466, Germany
| | - Hans-Peter Mock
- Leibniz
Institute for Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Seeland, OT Gatersleben D-06466, Germany
| | - Wolfgang Bilger
- Botanical
Institute, Christian-Albrechts University
Kiel, Olshausenstr. 40, Kiel D-24098, Germany
| |
Collapse
|
5
|
Moroldo M, Blanchet N, Duruflé H, Bernillon S, Berton T, Fernandez O, Gibon Y, Moing A, Langlade NB. Genetic control of abiotic stress-related specialized metabolites in sunflower. BMC Genomics 2024; 25:199. [PMID: 38378469 PMCID: PMC10877922 DOI: 10.1186/s12864-024-10104-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Abiotic stresses in plants include all the environmental conditions that significantly reduce yields, like drought and heat. One of the most significant effects they exert at the cellular level is the accumulation of reactive oxygen species, which cause extensive damage. Plants possess two mechanisms to counter these molecules, i.e. detoxifying enzymes and non-enzymatic antioxidants, which include many classes of specialized metabolites. Sunflower, the fourth global oilseed, is considered moderately drought resistant. Abiotic stress tolerance in this crop has been studied using many approaches, but the control of specialized metabolites in this context remains poorly understood. Here, we performed the first genome-wide association study using abiotic stress-related specialized metabolites as molecular phenotypes in sunflower. After analyzing leaf specialized metabolites of 450 hybrids using liquid chromatography-mass spectrometry, we selected a subset of these compounds based on their association with previously known abiotic stress-related quantitative trait loci. Eventually, we characterized these molecules and their associated genes. RESULTS We putatively annotated 30 compounds which co-localized with abiotic stress-related quantitative trait loci and which were associated to seven most likely candidate genes. A large proportion of these compounds were potential antioxidants, which was in agreement with the role of specialized metabolites in abiotic stresses. The seven associated most likely candidate genes, instead, mainly belonged to cytochromes P450 and glycosyltransferases, two large superfamilies which catalyze greatly diverse reactions and create a wide variety of chemical modifications. This was consistent with the high plasticity of specialized metabolism in plants. CONCLUSIONS This is the first characterization of the genetic control of abiotic stress-related specialized metabolites in sunflower. By providing hints concerning the importance of antioxidant molecules in this biological context, and by highlighting some of the potential molecular mechanisms underlying their biosynthesis, it could pave the way for novel applications in breeding. Although further analyses will be required to better understand this topic, studying how antioxidants contribute to the tolerance to abiotic stresses in sunflower appears as a promising area of research.
Collapse
Affiliation(s)
- Marco Moroldo
- UMR LIPME, INRAE, CNRS, Université de Toulouse, 31326, Castanet Tolosan, France.
| | - Nicolas Blanchet
- UMR LIPME, INRAE, CNRS, Université de Toulouse, 31326, Castanet Tolosan, France
| | - Harold Duruflé
- UMR LIPME, INRAE, CNRS, Université de Toulouse, 31326, Castanet Tolosan, France
- UMR BioForA, INRAE, ONF, Orléans, 45075, France
| | - Stéphane Bernillon
- UMR BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
- UMR MYCSA, INRAE, 33140, Villenave d'Ornon, France
| | - Thierry Berton
- UMR BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France
| | - Olivier Fernandez
- UMR BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France
- USC RIBP, INRAE, Université de Reims, 51100, Reims, France
| | - Yves Gibon
- UMR BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Annick Moing
- UMR BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Nicolas B Langlade
- UMR LIPME, INRAE, CNRS, Université de Toulouse, 31326, Castanet Tolosan, France
| |
Collapse
|
6
|
Han Q, Erasmus SW, Bader A, Fryganas C, Elliott CT, van Ruth SM. Fluorescence lifetime imaging microscopy as a tool to characterize spice powder variations for quality and authenticity purposes: A ginger case study. Food Res Int 2024; 176:113792. [PMID: 38163706 DOI: 10.1016/j.foodres.2023.113792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Spices are usually ground for applications and the resulting particle size of the powders is an important product attribute in view of the release of flavour. However, inhomogeneity of the original material may lead to variations in the physicochemical characteristics of the particles. This variation and its linkage to particle size may be examined by particular imaging techniques. This study aimed to explore the potential of Fluorescence Lifetime Imaging Microscopy (FLIM) to characterize spice powders according to particle size variations and correlation with their pigment contents to reveal the chemical information contained within the FLIM data. Ginger powder was used as a representative powder model. The FLIM profiles of the individual samples and populations revealed that FLIM coupled with the phasor approach has the capacity to characterize spice powder according to particle size. Meanwhile, Principal Component Analysis of pre-processed FLIM data revealed clustering of particle size groups. Further correlation analysis between the pigment compound contents and FLIM data of the ginger powders indicated that FLIM reflected chemical information of ginger powder and was able to visualize endogenous fluorophores. The current study revealed the potential of FLIM to characterize ginger powder particles. This approach may be extrapolated to other spice powder products. The new knowledge is a step further in paving the way for the application of innovative techniques, already prevalent in other domains, to food quality and authentication.
Collapse
Affiliation(s)
- Qing Han
- Food Quality and Design Group, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands; Institute for Global Food Security, Biological Sciences, 19 Chlorine Gardens, Queen's University Belfast, BT9 5DL, Belfast, Northern Ireland, United Kingdom
| | - Sara W Erasmus
- Food Quality and Design Group, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Arjen Bader
- Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Christos Fryganas
- Food Quality and Design Group, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Christopher T Elliott
- Institute for Global Food Security, Biological Sciences, 19 Chlorine Gardens, Queen's University Belfast, BT9 5DL, Belfast, Northern Ireland, United Kingdom; School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand
| | - Saskia M van Ruth
- Food Quality and Design Group, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands; Institute for Global Food Security, Biological Sciences, 19 Chlorine Gardens, Queen's University Belfast, BT9 5DL, Belfast, Northern Ireland, United Kingdom; School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
7
|
Casal-Porras I, Muñoz K, Ortega MJ, Brun FG, Zubía E. Rosmarinic Acid and Flavonoids of the Seagrass Zostera noltei: New Aspects on Their Quantification and Their Correlation with Sunlight Exposure. PLANTS (BASEL, SWITZERLAND) 2023; 12:4078. [PMID: 38140405 PMCID: PMC10748107 DOI: 10.3390/plants12244078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Seagrasses are plants adapted to the marine environment that inhabit shallow coastal waters, where they may be exposed to direct sunlight during low tides. These plants have photoprotection mechanisms, which could include the use of phenolic secondary metabolites. In this study, rosmarinic acid (RA) and the flavonoids of Zostera noltei from the Bay of Cadiz (Spain) have been analyzed, first to define suitable conditions of leaves (i.e., fresh, dried, or frozen) for quantitative analysis, and then to explore the potential correlation between the phenolic profile of the leaves and sunlight exposure using an in situ experimental approach. Compared with fresh leaves, the contents of RA and flavonoids were significantly lower in air-dried and freeze-dried leaves. Freezing caused highly variable effects on RA and did not affect to flavonoid levels. On the other hand, the content of RA was significantly higher in plants that emerged during low tides than in plants permanently submerged, while plants underneath an artificial UV filter experienced a progressive reduction in RA content. However, the major flavonoids did not show a clear response to sunlight exposure and were unresponsive to diminished UV incidence. The results showed a positive correlation of RA with direct sunlight and UV exposure of leaves, suggesting that this compound contributes to the photoprotection of Z. noltei.
Collapse
Affiliation(s)
- Isabel Casal-Porras
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (I.C.-P.); (K.M.); (F.G.B.)
| | - Kimberly Muñoz
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (I.C.-P.); (K.M.); (F.G.B.)
| | - María J. Ortega
- Departamento de Química Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
| | - Fernando G. Brun
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (I.C.-P.); (K.M.); (F.G.B.)
| | - Eva Zubía
- Departamento de Química Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
| |
Collapse
|
8
|
Li L, Chong L, Huang T, Ma Y, Li Y, Ding H. Natural products and extracts from plants as natural UV filters for sunscreens: A review. Animal Model Exp Med 2022. [DOI: 10.1002/ame2.12295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Liyan Li
- School of Medical, Huanghe Science and Technology University Zhengzhou PR China
- Zhengzhou Key Laboratory of Drug Screening and Activity Evaluation Zhengzhou China
| | - Lan Chong
- School of Medical, Huanghe Science and Technology University Zhengzhou PR China
- Zhengzhou Key Laboratory of Drug Screening and Activity Evaluation Zhengzhou China
| | - Tao Huang
- School of Medical, Huanghe Science and Technology University Zhengzhou PR China
| | - Yunge Ma
- Pharmacy College Henan University Kaifeng PR China
| | - Yingyan Li
- Pharmacy College Henan University Kaifeng PR China
| | - Hui Ding
- School of Medical, Huanghe Science and Technology University Zhengzhou PR China
| |
Collapse
|
9
|
Response of sweet pepper autofluorescence against solar radiation. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2022; 21:2053-2060. [PMID: 35900646 DOI: 10.1007/s43630-022-00276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
Abstract
Shades are adjusted in sweet pepper cultivation, based on solar exposure levels. Pyranometers and photosensitive films have recently been introduced to smart agriculture. However, there are no means of observing biological responses to solar exposure. In this study, we hypothesized that solar exposure levels affect the visible autofluorescence of sweet pepper under 365 nm illumination. To test this hypothesis, we cultivated sweet pepper plants under two exposure conditions, low (half of the normal) and high (the normal). Fluorescence photography (365 nm illumination) revealed that dark-fluorescent peppers only arise when cultivated under high-exposure conditions (0.7-fold decline at emission of 390 nm for high-exposure conditions). Microscopic and spectroscopic observations showed that blue autofluorescence was accompanied by an accumulation of UVB pigments (1.2-factor increase in the absorbance at 300 nm) and epidermal development (1.3-fold thicker cell wall). This study suggests that the autofluorescence of sweet pepper can possibly be used to understand the response of crop to solar radiation at a fruit level in horticulture.
Collapse
|
10
|
Möller SR, Lancefield CS, Oates NC, Simister R, Dowle A, Gomez LD, McQueen-Mason SJ. CRISPR/Cas9 suppression of OsAT10, a rice BAHD acyltransferase, reduces p-coumaric acid incorporation into arabinoxylan without increasing saccharification. FRONTIERS IN PLANT SCIENCE 2022; 13:926300. [PMID: 35937377 PMCID: PMC9355400 DOI: 10.3389/fpls.2022.926300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/05/2022] [Indexed: 06/01/2023]
Abstract
Ester-linked hydroxycinnamic acids ferulic acid (FA) and para-coumaric acid (p-CA) play important roles in crosslinking within cell wall arabinoxylans (AX) and between AX and lignin in grass cell walls. The addition of hydroxycinnamates to AX, is mediated by the Mitchell clade of BAHD acyl-coenzyme A-utilizing transferases. Overexpression of OsAT10 (a Mitchell clade BAHD acyl transferase) in rice, has previously been shown to increase p-CA content in AX in leaves and stems, leading to increased cell wall digestibility, potentially associated with a concomitant decrease in FA content. To investigate the physiological role of OsAT10 we established CRISPR/Cas9 rice knock-out mutants devoid of OsAT10. Our analysis of hydroxycinnamic acid content in wild type plants revealed that AX associated p-CA is found almost exclusively in rice husks, with very little found in other tissues. Mutant plants were essentially devoid of ester-linked p-CA associated with AX, indicating that OsAT10 represents the major enzyme responsible for the addition of p-CA to arabinoxylan in rice plants. We found no change in the digestibility of rice husk lacking AX-associated p-CA, suggesting that the changes in digestibility seen in OsAT10 overexpressing plants were solely due to compensatory decreases in AX-associated FA.
Collapse
Affiliation(s)
| | - Christopher S. Lancefield
- School of Chemistry and Biomedical Science Research Complex, University of St. Andrews, St.Andrews, United Kingdom
| | - Nicola C. Oates
- CNAP, Biology Department, University of York, York, United Kingdom
| | - Rachael Simister
- CNAP, Biology Department, University of York, York, United Kingdom
| | - Adam Dowle
- Biology Department, Bioscience Technology Facility, University of York, York, United Kingdom
| | | | | |
Collapse
|
11
|
Phenolic profiling and antioxidant evaluation of extracts from Southern African indigenous fruits byproducts. Food Res Int 2022; 157:111388. [DOI: 10.1016/j.foodres.2022.111388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/30/2022] [Accepted: 05/18/2022] [Indexed: 11/19/2022]
|
12
|
Nichelmann L, Pescheck F. Solar UV-B effects on composition and UV screening efficiency of foliar phenolics in Arabidopsis thaliana are augmented by temperature. PHYSIOLOGIA PLANTARUM 2021; 173:762-774. [PMID: 34510467 DOI: 10.1111/ppl.13554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 05/24/2023]
Abstract
The accumulation of foliar phenolics constitutes one strategy of plants against the potentially harmful effects of ultraviolet-B and A (UV-B, UV-A) radiation. These compounds protect photosensitive tissues by shielding and antioxidative function. It is unknown, however, whether seasonal acclimation to natural conditions may modify the UV-B effect on phenylpropanoid composition and localisation, and thus their screening efficiency. To address this debate, a field experiment with the wildtype of Arabidopsis thaliana accession Landsberg erecta (Ler) was implemented over a whole year with plants exposed to different UV-filter treatments. While seasonal increases of UV-B radiation had a slight negative effect on the amount of hydroxycinnamic acids (HCAs), low temperatures increased foliar HCAs. HCAs, however, did not contribute substantially to seasonal changes of in vivo UV absorbance. Kaempferol and quercetin derivatives increased significantly under ambient UV-B radiation, and low temperature interacted with this effect. A shift of epidermal UV-A shielding from kaempferol to quercetin derivatives was elucidated in UV-B presence. Despite this, a substantial 20-fold increase of quercetin derivatives, during periods with high irradiance and low temperature, did not affect UV absorbance leading to the conclusion that quercetin accumulation was not exclusively in epidermal vacuoles. Using confocal microscopy, the potential occurrence of quercetin in mesophyll cells was demonstrated in plants grown with experimental UV-B radiation at low temperature for the first time in A. thaliana. The presented study discusses the idea that cross-talk of UV-B radiation and temperature might adjust the physiological function of quercetin from an (epidermal) screening to an antioxidant substance.
Collapse
Affiliation(s)
- Lars Nichelmann
- Botanical Institute and Botanical Garden, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Frauke Pescheck
- Botanical Institute and Botanical Garden, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
13
|
Garibay-Hernández A, Kessler N, Józefowicz AM, Türksoy GM, Lohwasser U, Mock HP. Untargeted metabotyping to study phenylpropanoid diversity in crop plants. PHYSIOLOGIA PLANTARUM 2021; 173:680-697. [PMID: 33963574 DOI: 10.1111/ppl.13458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Plant genebanks constitute a key resource for breeding to ensure crop yield under changing environmental conditions. Because of their roles in a range of stress responses, phenylpropanoids are promising targets. Phenylpropanoids comprise a wide array of metabolites; however, studies regarding their diversity and the underlying genes are still limited for cereals. The assessment of barley diversity via genotyping-by-sequencing is in rapid progress. Exploring these resources by integrating genetic association studies to in-depth metabolomic profiling provides a valuable opportunity to study barley phenylpropanoid metabolism; but poses a challenge by demanding large-scale approaches. Here, we report an LC-PDA-MS workflow for barley high-throughput metabotyping. Without prior construction of a species-specific library, this method produced phenylpropanoid-enriched metabotypes with which the abundance of putative metabolic features was assessed across hundreds of samples in a single-processed data matrix. The robustness of the analytical performance was tested using a standard mix and extracts from two selected cultivars: Scarlett and Barke. The large-scale analysis of barley extracts showed (1) that barley flag leaf profiles were dominated by glycosylation derivatives of isovitexin, isoorientin, and isoscoparin; (2) proved the workflow's capability to discriminate within genotypes; (3) highlighted the role of glycosylation in barley phenylpropanoid diversity. Using the barley S42IL mapping population, the workflow proved useful for metabolic quantitative trait loci purposes. The protocol can be readily applied not only to explore the barley phenylpropanoid diversity represented in genebanks but also to study species whose profiles differ from those of cereals: the crop Helianthus annuus (sunflower) and the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
| | | | | | - Gözde Merve Türksoy
- Leibniz Institute for Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Ulrike Lohwasser
- Leibniz Institute for Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Hans-Peter Mock
- Leibniz Institute for Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
14
|
Neugart S, Tobler MA, Barnes PW. The Function of Flavonoids in the Diurnal Rhythm under Rapidly Changing UV Conditions—A Model Study on Okra. PLANTS 2021; 10:plants10112268. [PMID: 34834632 PMCID: PMC8624821 DOI: 10.3390/plants10112268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
Flavonoids are favored compounds in plant responses to UV exposure and act in UV absorption and antioxidant activity. Here, it was investigated, with okra as a model species, how fast plants can react to changing UV conditions and to what extent these reactions take place. Okra (Abelmoschus esculentus) plants were exposed to either full or nearly no UV radiation. The diurnal rhythm of the plants was driven by the UV radiation and showed up to a 50% increase of the flavonoid content (measured optically in the +UV plants). This was reflected only in the trends in UV-absorption and antioxidant activity of the extracts but not in the soluble flavonoid glycosides and hydroxycinnamic acid derivatives. In a second experiment, a transfer from a −UV to a +UV condition at 9:00 CDT showed the immediate start of the diurnal rhythm, while this did not occur if the transfer occurred later in the day; these plants only started a diurnal rhythm the following day. After an adaptation period of seven days, clear differences between the +UV and -UV plants could be found in all parameters, whereas plants transferred to the opposite UV condition settle between the +UV and -UV plants in all parameters. Broadly, it can be seen that the flavonoid contents and associated functions in the plant are subject to considerable changes within one day and within several days due to the UV conditions and that this can have a considerable impact on the quality of plant foods.
Collapse
Affiliation(s)
- Susanne Neugart
- Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, 37075 Goettingen, Germany
- Department of Biological Sciences, Loyola University New Orleans, 6363 St. Charles Avenue, New Orleans, LA 70118, USA; (M.A.T.); (P.W.B.)
- Correspondence: ; Tel.: +49-551-3927958
| | - Mark A. Tobler
- Department of Biological Sciences, Loyola University New Orleans, 6363 St. Charles Avenue, New Orleans, LA 70118, USA; (M.A.T.); (P.W.B.)
| | - Paul W. Barnes
- Department of Biological Sciences, Loyola University New Orleans, 6363 St. Charles Avenue, New Orleans, LA 70118, USA; (M.A.T.); (P.W.B.)
| |
Collapse
|
15
|
Dong Y, Feldberg L, Rogachev I, Aharoni A. Characterization of the PRODUCTION of ANTHOCYANIN PIGMENT 1 Arabidopsis dominant mutant using DLEMMA dual isotope labeling approach. PHYTOCHEMISTRY 2021; 186:112740. [PMID: 33770716 DOI: 10.1016/j.phytochem.2021.112740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Stable isotope labeling has emerged as a valuable tool for metabolite identification and quantification. In this study, we employed DLEMMA, a dual stable isotope labeling approach to identify and track phenylpropanoid pathway in Arabidopsis thaliana. Three forms of phenylalanine (Phe), including unlabeled, Phe13C6 and Phe13C62H5, were used as feeding precursors. The unique isotopic pattern obtained from MS spectra significantly simplified data processing and facilitated global mining of Phe-derived metabolites. Following this approach, we have identified 35 phenylalanine-derived metabolites with high confidence. We next compared phenylpropanoids contents between leaves of wild type (WT) and the dominant PRODUCTION OF ANTHOCYANIN PIGMENT 1 (pap1-D) Arabidopsis thaliana mutant using a combined sample matrices and label-swap approach. This approach was designed to correct any unequal matrix effects between the two divergent samples, and any possible uneven label incorporation efficiency between the two differently labeled Phe precursors. Thirty of the 35 identified metabolites were found differential between WT and pap1-D leaves. Our results shown that the ectopic PAP1 expression led to significant accumulation of cyanidin-type anthocyanins, quercetin-type flavonols and hydroxycinnamic acids and their glycosylated derivatives. While levels of kaempferol glycosides and a hydroxycinnamic acid amide were reduced in the pap1-D leaves.
Collapse
Affiliation(s)
- Yonghui Dong
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Liron Feldberg
- Department of Analytical Chemistry, Israel Institute for Biological Research, Ness Ziona, 7410001, Israel
| | - Ilana Rogachev
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
16
|
Joram Mendoza D, Mouterde LMM, Browne C, Singh Raghuwanshi V, Simon GP, Garnier G, Allais F. Grafting Nature-Inspired and Bio-Based Phenolic Esters onto Cellulose Nanocrystals Gives Biomaterials with Photostable Anti-UV Properties. CHEMSUSCHEM 2020; 13:6552-6561. [PMID: 32956544 DOI: 10.1002/cssc.202002017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/18/2020] [Indexed: 06/11/2023]
Abstract
New nature-inspired and plant-derived p-hydroxycinnamate esters and p-hydroxycinnamate diesters provide excellent protection against UV radiation when incorporated into a matrix. Herein, an efficient and sustainable pathway is reported to graft these phenolic compounds onto cellulose nanocrystals (CNCs) via click-type copper-catalyzed azide/alkyne cycloaddition (CuAAC) reaction. The successful grafting of the phenolic esters on CNC surface was evidenced by a range of chemical analyses, and the degrees of substitution (DS) of the CNC were found to depend on the structure of the phenolic ester grafted. Moreover, aqueous suspensions of the phenolic ester-grafted CNCs not only strongly absorb in both the UVA and UVB regions, but they also exhibit average to very high photostability. Their wide spectrum UV-absorbing properties and their stability upon exposure to UV are highly influenced by the structure of the phenolic ester, particularly by the extra ester group in p-hydroxycinnamate diesters. These findings demonstrate that cellulose nanocrystals decorated with such plant-derived and nature-inspired phenolic esters are promising sustainable nanomaterials for anti-UV applications.
Collapse
Affiliation(s)
- David Joram Mendoza
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Louis M M Mouterde
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | - Christine Browne
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Vikram Singh Raghuwanshi
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - George P Simon
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Gil Garnier
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | - Florent Allais
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| |
Collapse
|
17
|
Corso M, Perreau F, Mouille G, Lepiniec L. Specialized phenolic compounds in seeds: structures, functions, and regulations. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110471. [PMID: 32540001 DOI: 10.1016/j.plantsci.2020.110471] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 05/24/2023]
Abstract
Plants produce a huge diversity of specialized metabolites (SM) throughout their life cycle that play important physiological and ecological functions. SM can protect plants and seeds against diseases, predators, and abiotic stresses, or support their interactions with beneficial or symbiotic organisms. They also have strong impacts on human nutrition and health. Despite this importance, the biosynthesis and biological functions of most of the SM remain elusive and their diversity and/or quantity have been reduced in most crops during domestication. Seeds present a large number of SM that are important for their physiological, agronomic, nutritional or industrial qualities and hence, provide interesting models for both studying biosynthesis and producing large amounts of specialized metabolites. For instance, phenolics are abundant and widely distributed in seeds. More specifically, flavonoid pathway has been instrumental for understanding environmental or developmental regulations of specialized metabolic pathways, at the molecular and cellular levels. Here, we summarize current knowledge on seed phenolics as model, and discuss how recent progresses in omics approaches could help to further characterize their diversity, regulations, and the underlying molecular mechanisms involved.
Collapse
Affiliation(s)
- Massimiliano Corso
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - François Perreau
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| |
Collapse
|
18
|
dos S. Nascimento LB, Brunetti C, Agati G, Lo Iacono C, Detti C, Giordani E, Ferrini F, Gori A. Short-Term Pre-Harvest UV-B Supplement Enhances the Polyphenol Content and Antioxidant Capacity of Ocimum basilicum Leaves during Storage. PLANTS (BASEL, SWITZERLAND) 2020; 9:E797. [PMID: 32630593 PMCID: PMC7361986 DOI: 10.3390/plants9060797] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/29/2022]
Abstract
Ocimum basilicum (basil) leaves are rich in polyphenols, conferring them a high antioxidant activity. The application of UV-B can be used to maintain the post-harvest nutraceutical quality of basil leaves. We aimed to investigate the effects of pre-harvest UV-B application on polyphenolic and pigment contents, antioxidant capacity, and the visual quality of basil stored leaves. We also evaluated the applicability of the non-invasive Dualex® for monitoring the accumulation of leaf epidermal phenolics (Flav Index). After exposing plants to white light (control) and to supplemental UV-B radiation for 4 d, the leaves were harvested and stored for 7d (TS7). The UV-B leaves showed both a higher phenolic content and antioxidant capacity than the controls at TS7. In addition, the correlations between the Flav Index and phenolic content demonstrated that Dualex® can reliably assess the content of epidermal phenolics, thus confirming its promising utilization as a non-destructive method for monitoring the phytochemical quality of O. basilicum leaves. In conclusion, a pre-harvesting UV-B application may be a tool for enhancing the content of polyphenols and the antioxidant potential of basil stored leaves without detrimental effects on their visual quality. These results are important considering the nutraceutical value of this plant and its wide commercial distribution.
Collapse
Affiliation(s)
- Luana Beatriz dos S. Nascimento
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Section Woody Plants, CAP. 50019 Sesto Fiorentino (Florence), Italy; (L.B.d.S.N.); (C.L.I.); (C.D.); (E.G.); (F.F.); (A.G.)
| | - Cecilia Brunetti
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Section Woody Plants, CAP. 50019 Sesto Fiorentino (Florence), Italy; (L.B.d.S.N.); (C.L.I.); (C.D.); (E.G.); (F.F.); (A.G.)
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), CAP. 50019 Sesto Fiorentino (Florence), Italy
| | - Giovanni Agati
- National Research Council of Italy, Institute of Applied Physics (IFAC), CAP. 50019 Sesto Fiorentino (Florence), Italy;
| | - Clara Lo Iacono
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Section Woody Plants, CAP. 50019 Sesto Fiorentino (Florence), Italy; (L.B.d.S.N.); (C.L.I.); (C.D.); (E.G.); (F.F.); (A.G.)
| | - Cassandra Detti
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Section Woody Plants, CAP. 50019 Sesto Fiorentino (Florence), Italy; (L.B.d.S.N.); (C.L.I.); (C.D.); (E.G.); (F.F.); (A.G.)
| | - Edgardo Giordani
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Section Woody Plants, CAP. 50019 Sesto Fiorentino (Florence), Italy; (L.B.d.S.N.); (C.L.I.); (C.D.); (E.G.); (F.F.); (A.G.)
| | - Francesco Ferrini
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Section Woody Plants, CAP. 50019 Sesto Fiorentino (Florence), Italy; (L.B.d.S.N.); (C.L.I.); (C.D.); (E.G.); (F.F.); (A.G.)
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), CAP. 50019 Sesto Fiorentino (Florence), Italy
| | - Antonella Gori
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Section Woody Plants, CAP. 50019 Sesto Fiorentino (Florence), Italy; (L.B.d.S.N.); (C.L.I.); (C.D.); (E.G.); (F.F.); (A.G.)
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), CAP. 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
19
|
Valanciene E, Jonuskiene I, Syrpas M, Augustiniene E, Matulis P, Simonavicius A, Malys N. Advances and Prospects of Phenolic Acids Production, Biorefinery and Analysis. Biomolecules 2020; 10:E874. [PMID: 32517243 PMCID: PMC7356249 DOI: 10.3390/biom10060874] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Biotechnological production of phenolic acids is attracting increased interest due to their superior antioxidant activity, as well as other antimicrobial, dietary, and health benefits. As secondary metabolites, primarily found in plants and fungi, they are effective free radical scavengers due to the phenolic group available in their structure. Therefore, phenolic acids are widely utilised by pharmaceutical, food, cosmetic, and chemical industries. A demand for phenolic acids is mostly satisfied by utilising chemically synthesised compounds, with only a low quantity obtained from natural sources. As an alternative to chemical synthesis, environmentally friendly bio-based technologies are necessary for development in large-scale production. One of the most promising sustainable technologies is the utilisation of microbial cell factories for biosynthesis of phenolic acids. In this paper, we perform a systematic comparison of the best known natural sources of phenolic acids. The advances and prospects in the development of microbial cell factories for biosynthesis of these bioactive compounds are discussed in more detail. A special consideration is given to the modern production methods and analytics of phenolic acids.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Naglis Malys
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania; (E.V.); (I.J.); (M.S.); (E.A.); (P.M.); (A.S.)
| |
Collapse
|
20
|
Konagaya K, Omwange KA, Al Riza DF, Khaliduzzaman A, Martínez Oliver A, Rovira-Más F, Nagasato H, Ninomiya K, Kondo N. Association of fruit, pericarp, and epidermis traits with surface autofluorescence in green peppers. Photochem Photobiol Sci 2020; 19:1630-1635. [DOI: 10.1039/d0pp00236d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The association of green pepper blue autofluorescence (excitation at 365 nm) with the traits of the fruit, pericarp, and epidermis was investigated.
Collapse
Affiliation(s)
- Keiji Konagaya
- Graduate School of Agriculture
- Kyoto University
- Kyoto 606-8502
- Japan
| | | | - Dimas Firmanda Al Riza
- Graduate School of Agriculture
- Kyoto University
- Kyoto 606-8502
- Japan
- Department of Agricultural Engineering
| | - Alin Khaliduzzaman
- Graduate School of Agriculture
- Kyoto University
- Kyoto 606-8502
- Japan
- Faculty of Agricultural Engineering and Technology
| | - Andrea Martínez Oliver
- Graduate School of Agriculture
- Kyoto University
- Kyoto 606-8502
- Japan
- School of Agricultural Engineering and Environment
| | - Francisco Rovira-Más
- School of Agricultural Engineering and Environment
- Universitat Politècnica de València
- València 46022
- Spain
| | | | | | - Naoshi Kondo
- Graduate School of Agriculture
- Kyoto University
- Kyoto 606-8502
- Japan
| |
Collapse
|
21
|
Neugart S, Majer P, Schreiner M, Hideg É. Blue Light Treatment but Not Green Light Treatment After Pre-exposure to UV-B Stabilizes Flavonoid Glycoside Changes and Corresponding Biological Effects in Three Different Brassicaceae Sprouts. FRONTIERS IN PLANT SCIENCE 2020; 11:611247. [PMID: 33584754 PMCID: PMC7875886 DOI: 10.3389/fpls.2020.611247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/10/2020] [Indexed: 05/20/2023]
Abstract
Ultraviolet-B (UV-B; 280-315 nm) radiation induces the biosynthesis of secondary plant metabolites such as flavonoids. Flavonoids could also be enhanced by blue (420-490 nm) or green (490-585 nm) light. Flavonoids act as antioxidants and shielding components in the plant's response to UV-B exposure. They are shown to quench singlet oxygen and to be reactive to hydroxyl radical. The aim was to determine whether treatment with blue or green light can alter flavonoid profiles after pre-exposure to UV-B and whether they cause corresponding biological effects in Brassicaceae sprouts. Based on their different flavonoid profiles, three vegetables from the Brassicaceae were selected. Sprouts were treated with five subsequent doses (equals 5 days) of moderate UV-B (0.23 kJ m-2 day-1 UV-BBE), which was followed with two subsequent (equals 2 days) doses of either blue (99 μmol m-2 s-1) or green (119 μmol m-2 s-1) light. In sprouts of kale, kohlrabi, and rocket salad, flavonoid glycosides were identified by HPLC-DAD-ESI-MSn. Both Brassica oleracea species, kale and kohlrabi, showed mainly acylated quercetin and kaempferol glycosides. In contrast, in rocket salad, the main flavonol glycosides were quercetin glycosides. Blue light treatment after the UV-B treatment showed that quercetin and kaempferol glycosides were increased in the B. oleracea species kale and kohlrabi while-contrary to this-in rocket salad, there were only quercetin glycosides increased. Blue light treatment in general stabilized the enhanced concentrations of flavonoid glycosides while green treatment did not have this effect. Blue light treatment following the UV-B exposure resulted in a trend of increased singlet oxygen scavenging for kale and rocket. The hydroxyl radical scavenging capacity was independent from the light quality except for kale where an exposure with UV-B followed by a blue light treatment led to a higher hydroxyl radical scavenging capacity. These results underline the importance of different light qualities for the biosynthesis of reactive oxygen species that intercept secondary plant metabolites, but also show a pronounced species-dependent reaction, which is of special interest for growers.
Collapse
Affiliation(s)
- Susanne Neugart
- Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, Göttingen, Germany
- *Correspondence: Susanne Neugart,
| | - Petra Majer
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops e.V., Grossbeeren, Germany
| | - Éva Hideg
- Department of Plant Biology, University of Pécs, Pécs, Hungary
| |
Collapse
|
22
|
Samson G, Cerovic ZG, El Rouby WMA, Millet P. Oxidation of polyphenols and inhibition of photosystem II under acute photooxidative stress. PLANTA 2019; 251:16. [PMID: 31776771 DOI: 10.1007/s00425-019-03316-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
We observed a close correlation between the inhibition of photosystem II and the oxidation of polyphenols during an acute oxidative stress in sunflower leaf discs. To assess the physiological significance of polyphenols as antioxidants in planta, we compared the kinetics of polyphenols oxidation with the inhibition of the photosynthetic apparatus in sunflower leaf discs exposed to an acute photooxidative stress. Illumination of leaf discs in the presence of methyl viologen induced a rapid and large non-photochemical quenching of chlorophyll-a fluorescence, which was reversed after 4 h of treatment as indicated by the ≈ 30% increases of the steady-state (Fs) and maximal (Fm') levels of chlorophyll-a fluorescence relative to the first hour of treatment. This event coincided with the accelerated decreases of the maximum (Fv/Fm) and effective (∆F/Fm') quantum yields of photosystem II, and also with the beginning of polyphenols oxidation, estimated by the UV absorbance of methanolic leaf extracts, and supported by the Folin-Ciocalteu method and cyclic voltammetry. The decreases of Fv/Fm and the concentrations of reducing polyphenols were highly correlated (R2 = 0.877) during the experiment. Coherent with the decrease of UV absorbance of methanolic extracts, polyphenol oxidation resulted in a marked decrease of UV absorbance of leaf epidermis. Also, polymerization of oxidized polyphenols caused the accumulation of brown pigments in the MV-treated leaf discs, decreasing leaf reflectance, especially at 550 and 740 nm. Fluorescence intensities were also decreased during the MV treatment. Interestingly, the emission fluorescence ratio F740/F684 (excitation at 550 nm) decreased similarly to Fv/Fm (R2 = 0.981) due to the brown pigments. Moreover, the excitation fluorescence ratio F484/F680 (emission at 740 nm) was linearly correlated (R2 = 0.957) to ∆F/Fm', indicating a decrease of efficiency of energy transfer between the antenna pigments to the photosystem II reaction center during the oxidative stress. These results support the view that polyphenols can be effective antioxidants protecting the plants against reactive oxygen species.
Collapse
Affiliation(s)
- Guy Samson
- Groupe de Recherche en Biologie Végétale, Département des sciences de l'environnement, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada.
| | - Zoran G Cerovic
- Écologie, Systématique et Évolution, UMR 8079, CNRS, Univ. Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Waleed M A El Rouby
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182, Université Paris-Sud, Bâtiment 410, Rue du Doyen Georges Poitou, 91400, Orsay cedex, France
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Pierre Millet
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182, Université Paris-Sud, Bâtiment 410, Rue du Doyen Georges Poitou, 91400, Orsay cedex, France
| |
Collapse
|