1
|
Rezanejade Bardajee G, Mahmoodian H, Shafiei N, Amiri B. Development of a Multi-Stimuli-Responsive Magnetic Nanogel-Hydrogel Nanocomposite for Prolonged and Controlled Doxorubicin Release. Bioconjug Chem 2025. [PMID: 40367204 DOI: 10.1021/acs.bioconjchem.5c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
The development of advanced drug delivery systems that offer precise, controlled, and sustained release of therapeutic agents remains a significant challenge, particularly for applications in oncology where effective targeting and prolonged drug exposure are essential. We synthesized and characterized a multistimuli-responsive magnetic nanogel-hydrogel nanocomposite (MNHNC) designed for controlled and extended drug release, with an emphasis on anticancer drug delivery. The MNHNC was developed by incorporating poly(N-isopropylacrylamide-co-acrylamide) (p(NIPAM-co-AAm)) nanogels (NGs) within a net-shaped salep-grafted poly(acrylic acid) (PAA) hydrogel matrix, coupled with in situ formation of Fe3O4 nanoparticles to introduce magnetic responsiveness and serve as a cross-linking agent. The nanocomposite exhibited notable swelling capabilities, achieving equilibrium values of 706 g/g at pH 9 (25 °C) and 603 g/g at physiological temperature (37 °C, pH 7.4). Additionally, MNHNC demonstrated responsiveness to pH, temperature, and magnetic fields, facilitating controlled drug release. Using doxorubicin (DOX) as a model drug, MNHNC exhibited dual pH sensitivity (NG at pH 5.4 and MNHNC at pH 7.4) and achieved a prolonged release profile of 400 h, significantly surpassing conventional systems, including our previous nanocomposite. Release kinetics followed a super case-II transport mechanism, where swelling primarily governed drug diffusion. Furthermore, the application of a magnetic field enabled fine-tuning of the release rate, offering an additional layer of control. The kinetic study indicated that the drug release from MNHNC followed zero-order kinetics under certain conditions, ensuring a consistent release rate over time, which is highly desirable for maintaining therapeutic efficacy. The Korsmeyer-Peppas model further confirmed the super case-II transport mechanism, highlighting the significant influence of polymer relaxation and swelling on the release process. The Hixson-Crowell model also demonstrated the role of matrix erosion in the drug release mechanism. The results showed a marked improvement in pH and temperature sensitivity compared to previous formulations, enhanced mechanical stability due to the integration of Fe3O4 nanoparticles, and the ability to modulate drug release through external magnetic fields. In vitro cytotoxicity assessment using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay demonstrated the biocompatibility of the MNHNC, with over 95% cell viability in the absence of DOX, confirming its nontoxic nature. Upon DOX loading, MNHNC exhibited a proper anticancer effect against cancer cell lines, showing a dose-dependent reduction in cell viability. The robust mechanical stability, biocompatibility, and multistimuli responsiveness of MNHNC position it as a promising candidate for advanced, targeted drug delivery systems.
Collapse
Affiliation(s)
- Ghasem Rezanejade Bardajee
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran 19839-63113, Iran
| | - Hossein Mahmoodian
- Department of Chemistry, Payame Noor University, PO Box, Tehran 19395-3697, Iran
- Department of Chemistry and Biochemistry, Chemistry Tech Company, Tehran 19369-34487, Iran
| | - Negin Shafiei
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078-1010, United States
| | - Bita Amiri
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-9800, United States
| |
Collapse
|
2
|
Abtahi M, Khorasani SN, Khalili S, Hafezi M, Sattari-Najafabadi M, Chahi M, Neisiany RE. IPN nanocomposite scaffolds based on GelMA-alginate with modified super-paramagnetic iron oxide for cartilage tissue engineering. Int J Biol Macromol 2025; 311:143845. [PMID: 40319954 DOI: 10.1016/j.ijbiomac.2025.143845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 04/18/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Repairing articular cartilage defects remains a significant challenge due to the avascular nature of the tissue, which impedes cartilage regeneration. Gelatin-based hydrogels, including gelatin methacryloyl (GelMA) and alginate, are widely used in tissue engineering for their favorable biological properties. However, their mechanical strength frequently falls short. This study examines the influence of superparamagnetic iron oxide nanoparticles (SPIONs) at concentrations of 0.5 %, 0.75 %, and 1 % on the properties of an interpenetrating polymeric network (IPN) comprising GelMA and sodium alginate (SA). The hydrogels were analyzed for their physicomechanical properties, rheological behavior, and biological responses, including fibroblast cell adhesion (L929) and MTT assay results. The presence of SPIONs significantly decreased swelling and degradation by 66 % and 28 %, respectively. Furthermore, the compressive strength, modulus, and shear-thinning behavior improved by 63 %, 61 %, and 57 %, respectively. No cytotoxicity was observed, and cell proliferation was favorable under a magnetic field. The MRI results validated the efficacy of SPIONs as a T2 contrast agent. Notably, the GelMA/SA hydrogel containing 0.75 % SPIONs exhibited optimal mechanical properties, highlighting its potential as a biomaterial for cartilage tissue engineering.
Collapse
Affiliation(s)
- Mahdieh Abtahi
- Department of Chemical Engineering, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, 84156-83111 Isfahan, Iran.
| | - Shahla Khalili
- Department of Chemical Engineering, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Mahshid Hafezi
- Department of Chemical Engineering, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | | | - Mina Chahi
- Department of Chemical Engineering, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Rasoul Esmaeely Neisiany
- Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| |
Collapse
|
3
|
Protsak IS, Morozov YM. Fundamentals and Advances in Stimuli-Responsive Hydrogels and Their Applications: A Review. Gels 2025; 11:30. [PMID: 39852001 PMCID: PMC11765116 DOI: 10.3390/gels11010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
This review summarizes the fundamental concepts, recent advancements, and emerging trends in the field of stimuli-responsive hydrogels. While numerous reviews exist on this topic, the field continues to evolve dynamically, and certain research directions are often overlooked. To address this, we classify stimuli-responsive hydrogels based on their response mechanisms and provide an in-depth discussion of key properties and mechanisms, including swelling kinetics, mechanical properties, and biocompatibility/biodegradability. We then explore hydrogel design, synthesis, and structural engineering, followed by an overview of applications that are relatively well established from a scientific perspective, including biomedical uses (biosensing, drug delivery, wound healing, and tissue engineering), environmental applications (heavy metal and phosphate removal from the environment and polluted water), and soft robotics and actuation. Additionally, we highlight emerging and unconventional applications such as local micro-thermometers and cell mechanotransduction. This review concludes with a discussion of current challenges and future prospects in the field, aiming to inspire further innovations and advancements in stimuli-responsive hydrogel research and applications to bring them closer to the societal needs.
Collapse
Affiliation(s)
- Iryna S. Protsak
- Department of Functional Materials and Catalysis, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria;
| | | |
Collapse
|
4
|
Mondal J, Chakraborty K, Bunggulawa EJ, An JM, Revuri V, Nurunnabi M, Lee YK. Recent advancements of hydrogels in immunotherapy: Breast cancer treatment. J Control Release 2024; 372:1-30. [PMID: 38849092 DOI: 10.1016/j.jconrel.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
Breast cancer is the most prevalent cancer among women and the leading cause of cancer-related deaths in this population. Recent advances in Immunotherapy, or combined immunotherapy, offering a more targeted and less toxic approach, expand the survival rate of patients more than conventional treatment. Notably, hydrogels, a versatile platform provided promising avenues to combat breast cancer in preclinical studies and extended to clinical practices. With advantages such as the alternation of tumor microenvironment, immunomodulation, targeted delivery of therapeutic agents, and their sustained release at specific sites of interest, hydrogels can potentially be used for the treatment of breast cancer. This review highlights the advantages, mechanisms of action, stimuli-responsiveness properties, and recent advancements of hydrogels for treating breast cancer immunotherapy. Moreover, post-treatment and its clinical translations are discussed in this review. The integration of hydrogels in immunotherapy strategies may pave the way for more effective, personalized, and patient-friendly approaches to combat breast cancer, ultimately contributing to a brighter future for breast cancer patients.
Collapse
Affiliation(s)
- Jagannath Mondal
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea; Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea; Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Edwin J Bunggulawa
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Vishnu Revuri
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, United States; Biomedical Engineering Program, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, United States.
| | - Yong-Kyu Lee
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea; Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea; Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27470, Republic of Korea.
| |
Collapse
|
5
|
Silva FALS, Chang HP, Incorvia JAC, Oliveira MJ, Sarmento B, Santos SG, Magalhães FD, Pinto AM. 2D Nanomaterials and Their Drug Conjugates for Phototherapy and Magnetic Hyperthermia Therapy of Cancer and Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306137. [PMID: 37963826 DOI: 10.1002/smll.202306137] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/26/2023] [Indexed: 11/16/2023]
Abstract
Photothermal therapy (PTT) and magnetic hyperthermia therapy (MHT) using 2D nanomaterials (2DnMat) have recently emerged as promising alternative treatments for cancer and bacterial infections, both important global health challenges. The present review intends to provide not only a comprehensive overview, but also an integrative approach of the state-of-the-art knowledge on 2DnMat for PTT and MHT of cancer and infections. High surface area, high extinction coefficient in near-infra-red (NIR) region, responsiveness to external stimuli like magnetic fields, and the endless possibilities of surface functionalization, make 2DnMat ideal platforms for PTT and MHT. Most of these materials are biocompatible with mammalian cells, presenting some cytotoxicity against bacteria. However, each material must be comprehensively characterized physiochemically and biologically, since small variations can have significant biological impact. Highly efficient and selective in vitro and in vivo PTTs for the treatment of cancer and infections are reported, using a wide range of 2DnMat concentrations and incubation times. MHT is described to be more effective against bacterial infections than against cancer therapy. Despite the promising results attained, some challenges remain, such as improving 2DnMat conjugation with drugs, understanding their in vivo biodegradation, and refining the evaluation criteria to measure PTT or MHT effects.
Collapse
Affiliation(s)
- Filipa A L S Silva
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Hui-Ping Chang
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jean Anne C Incorvia
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Maria J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- IUCS - CESPU, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Fernão D Magalhães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
| | - Artur M Pinto
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| |
Collapse
|
6
|
Eskandani M, Derakhshankhah H, Zare S, Jahanban-Esfahlan R, Jaymand M. Enzymatically crosslinked magnetic starch-grafted poly(tannic acid) hydrogel for "smart" cancer treatment: An in vitro chemo/hyperthermia therapy study. Int J Biol Macromol 2023; 253:127214. [PMID: 37797855 DOI: 10.1016/j.ijbiomac.2023.127214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/24/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
A novel strategy was designed and developed based of horseradish peroxidase (HRP)-mediated crosslinking of tyramine-functionalized starch (Tyr-St), tannic acid (TA) and phenolated-magnetic nanoparticles (Fe3O4-PhOH NPs), and simultaneous loading of doxorubicin hydrochloride (Dox) to afford a pH-responsive magnetic hydrogel-based drug delivery system (DDS) for synergistic in vitro chemo/hyperthermia therapy of human breast cancer (MCF-7) cells. The developed St-g-PTA/Fe3O4 magnetic hydrogel showed porous micro-structure with saturation magnetization (δs) value of 19.2 emu g-1 for Fe3O4 NPs content of ∼7.4 wt%. The pore sizes of the St-g-PTA/Fe3O4 hydrogel was calculated to be 2400 ± 200 nm-2. In vitro drug release experiments exhibited the developed DDS has pH-dependent drug release behavior, while at physiological pH (7.4) released only 30 % of the loaded drug after 100 h. Human serum albumin (HSA) adsorption capacities of the synthesized St/Fe3O4 and St-g-PTA/Fe3O4 magnetic hydrogels were obtained as 86 ± 2.2 and 77 ± 1.9 μgmg-1, respectively. The well-known MTT-assay approved the cytocompatibility of the developed St-g-PTA/Fe3O4 hydrogel, while the Dox-loaded system exhibited higher anti-cancer activity than those of the free Dox as verified by MTT-assay, and optical as well as florescent microscopies imaging. The synergistic chemo/hyperthermia therapy effect was also verified for the developed St-g-PTA/Fe3O4-Dox via hot water approach.
Collapse
Affiliation(s)
- Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soheila Zare
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Chen P, Cheng H, Tian J, Pan H, Chen S, Ye X, Chen J. Photo-crosslinking modified sodium alginate hydrogel for targeting delivery potential by NO response. Int J Biol Macromol 2023; 253:126454. [PMID: 37619688 DOI: 10.1016/j.ijbiomac.2023.126454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
In recent years, the incidence of inflammatory bowel disease has gradually increased. Traditional drugs can reduce inflammation, but cannot be targeting released and often require the coordination with delivery systems. However, a good targeting performance delivery system is still scarce currently. Inflammation can trigger oxidative stress, producing large amounts of oxides such as nitric oxide (NO). Based on this, the present experiment innovatively designed a hydrogel delivery system with NO response that could be inflammation targeting. The hydrogel is composed of sodium alginate modified with glycerol methacrylate, crosslinked with NO response agent by photo-crosslinking method, which have low swelling (37 %) and good mechanical properties with a stable structure even at 55 °C. The results of in vitro digestion also indicated that the hydrogel had a certain tolerance to gastrointestinal digestion. And in the NO environment, it was interestingly found that the structure and mechanical properties of the hydrogels changed significantly. Moreover, hydrogels have good biocompatibility, which ensures their safe use in vivo. In conclusion, this NO-responsive-based delivery system is feasible and provides a new approach for drugs and active factors targeting delivery in the future.
Collapse
Affiliation(s)
- Pin Chen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China.
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China.
| |
Collapse
|
8
|
Wang C, Zeng Y, Chen KF, Lin J, Yuan Q, Jiang X, Wu G, Wang F, Jia YG, Li W. A self-monitoring microneedle patch for light-controlled synergistic treatment of melanoma. Bioact Mater 2023; 27:58-71. [PMID: 37035421 PMCID: PMC10074410 DOI: 10.1016/j.bioactmat.2023.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/19/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Melanoma is the most aggressive and malignant form of skin cancer. Current melanoma treatment methods generally suffer from frequent drug administration as well as difficulty in direct monitoring of drug release. Here, a self-monitoring microneedle (MN)-based drug delivery system, which integrates a dissolving MN patch with aggregation-induced emission (AIE)-active PATC microparticles, is designed to achieve light-controlled pulsatile chemo-photothermal synergistic therapy of melanoma. The PATC polymeric particles, termed D/I@PATC, encapsulate both of chemotherapeutic drug doxorubicin (DOX) and the photothermal agent indocyanine green (ICG). Upon light illumination, PATC gradually dissociates into smaller particles, causing the release of encapsulated DOX and subsequent fluorescence intensity change of PATC particles, thereby not only enabling direct observation of the drug release process under light stimuli, but also facilitating verification of drug release by fluorescence recovery after light trigger. Moreover, encapsulation of ICG in PATC particles displays significant improvement of its photothermal stability both in vitro and in vivo. In a tumor-bearing mouse, the application of one D/I@PATC MN patch combining with two cycles of light irradiation showed excellent controllable chemo-photothermal efficacy and exhibited ∼97% melanoma inhibition rate without inducing any evident systemic toxicity, suggesting a great potential for skin cancer treatment in clinics.
Collapse
Affiliation(s)
- Chenyuan Wang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yongnian Zeng
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Kai-Feng Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Jiawei Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Qianqian Yuan
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xue Jiang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fubing Wang
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Wei Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
9
|
Fadeev M, Davidson-Rozenfeld G, Li Z, Willner I. Stimuli-Responsive DNA-Based Hydrogels on Surfaces for Switchable Bioelectrocatalysis and Controlled Release of Loads. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37011-37025. [PMID: 37477942 PMCID: PMC10401574 DOI: 10.1021/acsami.3c06230] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
The assembly of enzyme [glucose oxidase (GOx)]-loaded stimuli-responsive DNA-based hydrogels on electrode surfaces, and the triggered control over the stiffness of the hydrogels, provides a means to switch the bioelectrocatalytic functions of the hydrogels. One system includes the assembly of GOx-loaded, pH-responsive, hydrogel matrices cross-linked by two cooperative nucleic acid motives comprising permanent duplex nucleic acids and "caged" i-motif pH-responsive duplexes. Bioelectrocatalyzed oxidation of glucose leads to the formation of gluconic acid that acidifies the hydrogel resulting in the separation of the i-motif constituents and lowering the hydrogel stiffness. Loading of the hydrogel matrices with insulin results in the potential-triggered, glucose concentration-controlled, switchable release of insulin from the hydrogel-modified electrodes. The switchable bioelectrocatalyzed release of insulin is demonstrated in the presence of ferrocenemethanol as a diffusional electron mediator or by applying an electrically wired integrated matrix that includes ferrocenyl-modified GOx embedded in the hydrogel. The second GOx-loaded, stimuli-responsive, DNA-based hydrogel matrix associated with the electrode includes a polyacrylamide hydrogel cooperatively cross-linked by duplex nucleic acids and "caged" G-quadruplex-responsive duplexes. The hydrogel matrix undergoes K+-ions/crown ether-triggered stiffness changes by the cyclic K+-ion-stimulated formation of G-quadruplexes (lower stiffness) and the crown ether-induced separation of the G-quadruplexes (higher stiffness). The hydrogel matrices demonstrate switchable bioelectrocatalytic functions guided by the stiffness properties of the hydrogels.
Collapse
Affiliation(s)
- Michael Fadeev
- The Institute of Chemistry, The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gilad Davidson-Rozenfeld
- The Institute of Chemistry, The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhenzhen Li
- The Institute of Chemistry, The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
10
|
Tian Y, Han W, Yeung KL. Magnetic Microsphere Scaffold-Based Soft Microbots for Targeted Mesenchymal Stem Cell Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300430. [PMID: 37058085 DOI: 10.1002/smll.202300430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/18/2023] [Indexed: 06/19/2023]
Abstract
A soft microbot assembled from individual magnetic microsphere scaffold (MMS) beads carrying mesenchymal stem cells (MSC) is navigated under magnetic actuation, where an oscillating field induces mechanical flexion to propel the microbot toward the target site. A seven-bead microbot attained a top translational speed of 205.6 µm s-1 (0.068 body length s-1 ) under 10 mT and 2 Hz field oscillation. The shallow flexion angle (10-24.5°) allows precision movements required to navigate narrow spaces. Upon arrival at the target site, the MMS beads unload their MSC cargo following exposure to a phosphate-buffered saline (PBS) solution, mimicking the extracellular fluid's sodium concentration. The released stem cells have excellent viability and vitality, promoting rapid healing (i.e., 83.2% vs 49%) in a scratch-wound assay. When paired with minimally invasive surgical methods, such as laparoscopy and endoscopic surgery, the microbot can provide precise stem cell delivery to hard-to-reach injury sites in the body to promote healing. Moreover, the microbot is designed to be highly versatile, with individual MMS beads customizable for cargoes of live cells, biomolecules, bionanomaterials, and pharmaceutical compounds for various therapeutic requirements.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wei Han
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, Guangdong, 518040, China
| | - King Lun Yeung
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, Guangdong, 518040, China
| |
Collapse
|
11
|
O’Hagan M, Duan Z, Huang F, Laps S, Dong J, Xia F, Willner I. Photocleavable Ortho-Nitrobenzyl-Protected DNA Architectures and Their Applications. Chem Rev 2023; 123:6839-6887. [PMID: 37078690 PMCID: PMC10214457 DOI: 10.1021/acs.chemrev.3c00016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 04/21/2023]
Abstract
This review article introduces mechanistic aspects and applications of photochemically deprotected ortho-nitrobenzyl (ONB)-functionalized nucleic acids and their impact on diverse research fields including DNA nanotechnology and materials chemistry, biological chemistry, and systems chemistry. Specific topics addressed include the synthesis of the ONB-modified nucleic acids, the mechanisms involved in the photochemical deprotection of the ONB units, and the photophysical and chemical means to tune the irradiation wavelength required for the photodeprotection process. Principles to activate ONB-caged nanostructures, ONB-protected DNAzymes and aptamer frameworks are introduced. Specifically, the use of ONB-protected nucleic acids for the phototriggered spatiotemporal amplified sensing and imaging of intracellular mRNAs at the single-cell level are addressed, and control over transcription machineries, protein translation and spatiotemporal silencing of gene expression by ONB-deprotected nucleic acids are demonstrated. In addition, photodeprotection of ONB-modified nucleic acids finds important applications in controlling material properties and functions. These are introduced by the phototriggered fusion of ONB nucleic acid functionalized liposomes as models for cell-cell fusion, the light-stimulated fusion of ONB nucleic acid functionalized drug-loaded liposomes with cells for therapeutic applications, and the photolithographic patterning of ONB nucleic acid-modified interfaces. Particularly, the photolithographic control of the stiffness of membrane-like interfaces for the guided patterned growth of cells is realized. Moreover, ONB-functionalized microcapsules act as light-responsive carriers for the controlled release of drugs, and ONB-modified DNA origami frameworks act as mechanical devices or stimuli-responsive containments for the operation of DNA machineries such as the CRISPR-Cas9 system. The future challenges and potential applications of photoprotected DNA structures are discussed.
Collapse
Affiliation(s)
- Michael
P. O’Hagan
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhijuan Duan
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Shay Laps
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jiantong Dong
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
12
|
Mohammadi A, Eivazzadeh-Keihan R, Aliabadi HAM, Kashtiaray A, Cohan RA, Bani MS, Komijani S, Etminan A, salehpour N, Maleki A, Mahdavi M. Magnetic carboxymethyl cellulose-silk fibroin hydrogel: a ternary nanobiocomposite exhibiting excellent biological activity and in vitro hyperthermia of cancer therapy. J Biotechnol 2023; 367:71-80. [PMID: 37028560 DOI: 10.1016/j.jbiotec.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
In this work, a magnetic nanobiocomposite scaffold based on carboxymethylcellulose (CMC) hydrogel, silk fibroin (SF), and magnetite nanoparticles was fabricated. The structural properties of this new magnetic nanobiocomposite were characterized by various analyses such as FT-IR, XRD, EDX, FE-SEM, TGA and VSM. According to the particle size histogram, most of the particles were between 55-77nm and the value of saturation magnetization of this nanobiocomposite was reported 41.65emu.g- 1. Hemolysis and MTT tests showed that the designed magnetic nanobiocomposite was compatible with the blood. In addition, the viability percentage of HEK293T normal cells did not change significantly, and the proliferation rate of BT549 cancer cells decreased in its vicinity. EC50 values for HEK293T normal cells after 48h and 72h were 3958 and 2566, respectively. Also, these values for BT549 cancer cells after 48h and 72h were 0.4545 and 0.9967, respectively. The efficiency of fabricated magnetic nanobiocomposite was appraised in a magnetic fluid hyperthermia manner. The specific absorption rate (SAR) of 69W/g (for the 1mg/mL sample at 200kHz) was measured under the alternating magnetic field (AMF).
Collapse
|
13
|
Pradhan R, Dey A, Taliyan R, Puri A, Kharavtekar S, Dubey SK. Recent Advances in Targeted Nanocarriers for the Management of Triple Negative Breast Cancer. Pharmaceutics 2023; 15:pharmaceutics15010246. [PMID: 36678877 PMCID: PMC9866847 DOI: 10.3390/pharmaceutics15010246] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a life-threatening form of breast cancer which has been found to account for 15% of all the subtypes of breast cancer. Currently available treatments are significantly less effective in TNBC management because of several factors such as poor bioavailability, low specificity, multidrug resistance, poor cellular uptake, and unwanted side effects being the major ones. As a rapidly growing field, nano-therapeutics offers promising alternatives for breast cancer treatment. This platform provides a suitable pathway for crossing biological barriers and allowing sustained systemic circulation time and an improved pharmacokinetic profile of the drug. Apart from this, it also provides an optimized target-specific drug delivery system and improves drug accumulation in tumor cells. This review provides insights into the molecular mechanisms associated with the pathogenesis of TNBC, along with summarizing the conventional therapy and recent advances of different nano-carriers for the management of TNBC.
Collapse
Affiliation(s)
- Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Anuradha Dey
- Medical Research, R&D Healthcare Division, Emami Ltd., Kolkata 700056, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
- Correspondence: (R.T.); (S.K.D.); Tel.: +91-6378-364-745 (R.T.); +91-8239-703-734 (S.K.D.)
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, National Cancer Institute—Frederick, Frederick, MD 21702, USA
| | - Sanskruti Kharavtekar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
- Medical Research, R&D Healthcare Division, Emami Ltd., Kolkata 700056, India
- Correspondence: (R.T.); (S.K.D.); Tel.: +91-6378-364-745 (R.T.); +91-8239-703-734 (S.K.D.)
| |
Collapse
|
14
|
Swetha KL, Maravajjala KS, Li SD, Singh MS, Roy A. Breaking the niche: multidimensional nanotherapeutics for tumor microenvironment modulation. Drug Deliv Transl Res 2023; 13:105-134. [PMID: 35697894 DOI: 10.1007/s13346-022-01194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 12/13/2022]
Abstract
Most of the current antitumor therapeutics were developed targeting the cancer cells only. Unfortunately, in the majority of tumors, this single-dimensional therapy is found to be ineffective. Advanced research has shown that cancer is a multicellular disorder. The tumor microenvironment (TME), which is made by a complex network of the bulk tumor cells and other supporting cells, plays a crucial role in tumor progression. Understanding the importance of the TME in tumor growth, different treatment modalities have been developed targeting these supporting cells. Recent clinical results suggest that simultaneously targeting multiple components of the tumor ecosystem with drug combinations can be highly effective. This type of "multidimensional" therapy has a high potential for cancer treatment. However, tumor-specific delivery of such multi-drug combinations remains a challenge. Nanomedicine could be utilized for the tumor-targeted delivery of such multidimensional therapeutics. In this review, we first give a brief overview of the major components of TME. We then highlight the latest developments in nanoparticle-based combination therapies, where one drug targets cancer cells and other drug targets tumor-supporting components in the TME for a synergistic effect. We include the latest preclinical and clinical studies and discuss innovative nanoparticle-mediated targeting strategies.
Collapse
Affiliation(s)
- K Laxmi Swetha
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Kavya Sree Maravajjala
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Westbrook Mall, Vancouver, BC, Canada
| | - Manu Smriti Singh
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, 201310, India. .,Center of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, 201310, India.
| | - Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
15
|
Wang B, Liu D, Liao Y, Huang Y, Ni M, Wang M, Ma Z, Wu Z, Lu Y. Spatiotemporally Actuated Hydrogel by Magnetic Swarm Nanorobotics. ACS NANO 2022; 16:20985-21001. [PMID: 36469837 DOI: 10.1021/acsnano.2c08626] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Magnetic nanorobotic swarms can mimic collective functions of organisms in nature and be programmed for flexible spatiotemporal control. In this work, different assemblies of magnetic nanoparticle (MNP) swarms were constructed. Temperature-sensitive hydrogels were used as carriers to fix the distribution and ensure the stability of the swarm structure and the biocompatibility of the microrobot. Under three different outfield assembly strategies (gravitational field, gradient magnetic field, and uniform magnetic field), six different assembly modes of MNP are encapsulated (three unilateral unfolding assemblies with different microsphere profiles, unilateral chain assembly, and two symmetric chain assemblies with different magnetic chain positions). Their differences in the execution of motion, magnetothermal effects, and release of loaded DOX drugs were explored. The results showed that the symmetrical chain assembly with the magnetic chain distributed on the outside showed the best performance due to the advantage of the magnetic moment. It has a speed of up to 600 μm/s and a temperature rise rate of up to 1.5 °C/min. The present work provides an excellent solution to the poor MNP cluster distribution stability problem and enriches the assembly control scheme of microrobots in medical, catalytic, and three-dimensional-printing fields.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Dong Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Yuting Liao
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
- College of Light Industry and Food Engineering, Guangxi University, Nanning530004, China
| | - Yanjie Huang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin300457, China
| | - Miao Ni
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Mengchen Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Zhanpeng Ma
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Zijian Wu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| |
Collapse
|
16
|
Sustained release properties of liquid crystal functionalized poly (amino acid)s nanoparticles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Herrero de la Parte B, Rodrigo I, Gutiérrez-Basoa J, Iturrizaga Correcher S, Mar Medina C, Echevarría-Uraga JJ, Garcia JA, Plazaola F, García-Alonso I. Proposal of New Safety Limits for In Vivo Experiments of Magnetic Hyperthermia Antitumor Therapy. Cancers (Basel) 2022; 14:cancers14133084. [PMID: 35804855 PMCID: PMC9265033 DOI: 10.3390/cancers14133084] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Magnetic hyperthermia is a promising therapy for the treatment of certain types of tumors. However, it is not clear what the maximum limit of the magnetic field to which the organism can be subjected without severe and/or irreversible pathophysiological consequences is. This study aims to study the alterations at the physiological level that may occur after exposure to different combinations of frequency and intensity of the applied alternating magnetic field. Understanding the response to alternating magnetic field exposure will allow us to apply this type of antitumor treatment in a safer way for the patient, while achieving an optimal therapeutic result. Abstract Background: Lately, major advances in crucial aspects of magnetic hyperthermia (MH) therapy have been made (nanoparticle synthesis, biosafety, etc.). However, there is one key point still lacking improvement: the magnetic field-frequency product (H × f = 4.85 × 108 Am−1s−1) proposed by Atkinson–Brezovich as a limit for MH therapies. Herein, we analyze both local and systemic physiological effects of overpassing this limit. Methods: Different combinations of field frequency and intensity exceeding the Atkinson–Brezovich limit (591–920 kHz, and 10.3–18 kA/m) have been applied for 21 min to WAG/RijHsd male rats, randomly distributed to groups of 12 animals; half of them were sacrificed after 12 h, and the others 10 days later. Biochemical serum analyses were performed to assess the general, hepatic, renal and/or pancreatic function. Results: MH raised liver temperature to 42.8 ± 0.4 °C. Although in five of the groups the exposure was relatively well tolerated, in the two of highest frequency (928 kHz) and intensity (18 kA/m), more than 50% of the animals died. A striking elevation in liver and systemic markers was observed after 12 h in the surviving animals, independently of the frequency and intensity used. Ten days later, liver markers were almost recovered in all of the animals. However, in those groups exposed to 591 kHz and 16 kA/m, and 700 kHz and 13.7 kA/m systemic markers remained altered. Conclusions: Exceeding the Atkinson–Brezovich limit up to 9.59 × 109 Am−1s−1 seems to be safe, though further research is needed to understand the impact of intensity and/or frequency on physiological conditions following MH.
Collapse
Affiliation(s)
- Borja Herrero de la Parte
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, ES48940 Leioa, Spain;
- Interventional Radiology Research Group, Biocruces Bizkaia Health Research Institute, ES48903 Barakaldo, Spain; (J.J.E.-U.); (J.A.G.); (F.P.)
- Correspondence: (B.H.d.l.P.); (I.R.)
| | - Irati Rodrigo
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California, Berkeley, CA 94720, USA
- Department of Electricity and Electronics, Faculty of Science and Technology, University of the Basque Country UPV/EHU, ES48940 Leioa, Spain
- Correspondence: (B.H.d.l.P.); (I.R.)
| | - Jon Gutiérrez-Basoa
- Department of Gastroenterology and Hepatology, General University Hospital Consortium of Valencia, ES46014 Valencia, Spain;
| | - Sira Iturrizaga Correcher
- Department of Clinical Analyses, Galdakao-Usansolo Hospital, ES48960 Galdakao, Spain; (S.I.C.); (C.M.M.)
| | - Carmen Mar Medina
- Department of Clinical Analyses, Galdakao-Usansolo Hospital, ES48960 Galdakao, Spain; (S.I.C.); (C.M.M.)
| | - Jose Javier Echevarría-Uraga
- Interventional Radiology Research Group, Biocruces Bizkaia Health Research Institute, ES48903 Barakaldo, Spain; (J.J.E.-U.); (J.A.G.); (F.P.)
- Department of Radiology, Galdakao-Usansolo Hospital, ES48960 Galdakao, Spain
| | - Jose Angel Garcia
- Interventional Radiology Research Group, Biocruces Bizkaia Health Research Institute, ES48903 Barakaldo, Spain; (J.J.E.-U.); (J.A.G.); (F.P.)
- Department of Physics, Faculty of Science and Technology, University of The Basque Country UPV/EHU, ES48940 Leioa, Spain
| | - Fernando Plazaola
- Interventional Radiology Research Group, Biocruces Bizkaia Health Research Institute, ES48903 Barakaldo, Spain; (J.J.E.-U.); (J.A.G.); (F.P.)
- Department of Electricity and Electronics, Faculty of Science and Technology, University of the Basque Country UPV/EHU, ES48940 Leioa, Spain
| | - Ignacio García-Alonso
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, ES48940 Leioa, Spain;
- Interventional Radiology Research Group, Biocruces Bizkaia Health Research Institute, ES48903 Barakaldo, Spain; (J.J.E.-U.); (J.A.G.); (F.P.)
| |
Collapse
|
18
|
Preparation and application of pH-responsive drug delivery systems. J Control Release 2022; 348:206-238. [PMID: 35660634 DOI: 10.1016/j.jconrel.2022.05.056] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/08/2023]
Abstract
Microenvironment-responsive drug delivery systems (DDSs) can achieve targeted drug delivery, reduce drug side effects and improve drug efficacies. Among them, pH-responsive DDSs have gained popularity since the pH in the diseased tissues such as cancer, bacterial infection and inflammation differs from a physiological pH of 7.4 and this difference could be harnessed for DDSs to release encapsulated drugs specifically to these diseased tissues. A variety of synthetic approaches have been developed to prepare pH-sensitive DDSs, including introduction of a variety of pH-sensitive chemical bonds or protonated/deprotonated chemical groups. A myriad of nano DDSs have been explored to be pH-responsive, including liposomes, micelles, hydrogels, dendritic macromolecules and organic-inorganic hybrid nanoparticles, and micron level microspheres. The prodrugs from drug-loaded pH-sensitive nano DDSs have been applied in research on anticancer therapy and diagnosis of cancer, inflammation, antibacterial infection, and neurological diseases. We have systematically summarized synthesis strategies of pH-stimulating DDSs, illustrated commonly used and recently developed nanocarriers for these DDSs and covered their potential in different biomedical applications, which may spark new ideas for the development and application of pH-sensitive nano DDSs.
Collapse
|
19
|
Myrovali E. Hybrid Stents Based on Magnetic Hydrogels for Biomedical Applications. ACS APPLIED BIO MATERIALS 2022; 5:2598-2607. [PMID: 35580307 DOI: 10.1021/acsabm.2c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tremendous attention has been given to hydrogels due to their mechanical and physical properties. Hydrogels are promising biomaterials due to their high biocompatibility. Magnetic hydrogels, which are based on hydrogel incorporated magnetic nanoparticles, have been proposed in biomedical applications. The advantages of magnetic hydrogels are that they can easily respond to externally applied magnetic fields and prevent the leakage of magnetic nanoparticles in the surrounding area. Herein, a prototype hybrid stent of magnetic hydrogel was fabricated, characterized, and evaluated for magnetic hyperthermia treatment. First, magnetic hydrogel was produced by a solution of alginate with magnetic nanoparticles in a bath of calcium chloride (5-15 mg mL-1) in order to achieve the external gelation and optimize the heating rate. The increased concentration (1-8 mg mL-1) of magnetic nanoparticles inside the hydrogel resulted in almost zero leakage of iron oxide nanoparticles after 15 days, guaranteeing that they can be used safely in biomedical applications. Thus, magnetic hybrid stents, which are based on the magnetic hydrogels, were developed in a simple way and were evaluated both in an agarose phantom model and in an ex vivo tissue sample at 30 mT and 765 kHz magnetic hyperthermia conditions to examine the heating efficiency. In both cases, hyperthermia results indicate excellent heat generation from the hybrid stent and facile temperature control via tuning magnetic nanoparticle concentration (2-8 mg mL-1). This study can be a promising method that promotes spatially thermal distribution in cancer treatment or restenosis treatment of hollow organs.
Collapse
Affiliation(s)
- Eirini Myrovali
- School of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.,Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH, 57001 Thessaloniki, Greece
| |
Collapse
|
20
|
Wang C, O'Hagan MP, Li Z, Zhang J, Ma X, Tian H, Willner I. Photoresponsive DNA materials and their applications. Chem Soc Rev 2022; 51:720-760. [PMID: 34985085 DOI: 10.1039/d1cs00688f] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photoresponsive nucleic acids attract growing interest as functional constituents in materials science. Integration of photoisomerizable units into DNA strands provides an ideal handle for the reversible reconfiguration of nucleic acid architectures by light irradiation, triggering changes in the chemical and structural properties of the nanostructures that can be exploited in the development of photoresponsive functional devices such as machines, origami structures and ion channels, as well as environmentally adaptable 'smart' materials including nanoparticle aggregates and hydrogels. Moreover, photoresponsive DNA components allow control over the composition of dynamic supramolecular ensembles that mimic native networks. Beyond this, the modification of nucleic acids with photosensitizer functionality enables these biopolymers to act as scaffolds for spatial organization of electron transfer reactions mimicking natural photosynthesis. This review provides a comprehensive overview of these exciting developments in the design of photoresponsive DNA materials, and showcases a range of applications in catalysis, sensing and drug delivery/release. The key challenges facing the development of the field in the coming years are addressed, and exciting emergent research directions are identified.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Michael P O'Hagan
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Ziyuan Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Junji Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
21
|
Gavilán H, Avugadda SK, Fernández-Cabada T, Soni N, Cassani M, Mai BT, Chantrell R, Pellegrino T. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem Soc Rev 2021; 50:11614-11667. [PMID: 34661212 DOI: 10.1039/d1cs00427a] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnetic hyperthermia (MHT) is a therapeutic modality for the treatment of solid tumors that has now accumulated more than 30 years of experience. In the ongoing MHT clinical trials for the treatment of brain and prostate tumors, iron oxide nanoparticles are employed as intra-tumoral MHT agents under a patient-safe 100 kHz alternating magnetic field (AMF) applicator. Although iron oxide nanoparticles are currently approved by FDA for imaging purposes and for the treatment of anemia, magnetic nanoparticles (MNPs) designed for the efficient treatment of MHT must respond to specific physical-chemical properties in terms of magneto-energy conversion, heat dose production, surface chemistry and aggregation state. Accordingly, in the past few decades, these requirements have boosted the development of a new generation of MNPs specifically aimed for MHT. In this review, we present an overview on MNPs and their assemblies produced via different synthetic routes, focusing on which MNP features have allowed unprecedented heating efficiency levels to be achieved in MHT and highlighting nanoplatforms that prevent magnetic heat loss in the intracellular environment. Moreover, we review the advances on MNP-based nanoplatforms that embrace the concept of multimodal therapy, which aims to combine MHT with chemotherapy, radiotherapy, immunotherapy, photodynamic or phototherapy. Next, for a better control of the therapeutic temperature at the tumor, we focus on the studies that have optimized MNPs to maintain gold-standard MHT performance and are also tackling MNP imaging with the aim to quantitatively assess the amount of nanoparticles accumulated at the tumor site and regulate the MHT field conditions. To conclude, future perspectives with guidance on how to advance MHT therapy will be provided.
Collapse
Affiliation(s)
- Helena Gavilán
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | | | | | - Nisarg Soni
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Marco Cassani
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Binh T Mai
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Roy Chantrell
- Department of Physics, University of York, York YO10 5DD, UK
| | | |
Collapse
|
22
|
Li Z, Li Y, Chen C, Cheng Y. Magnetic-responsive hydrogels: From strategic design to biomedical applications. J Control Release 2021; 335:541-556. [PMID: 34097923 DOI: 10.1016/j.jconrel.2021.06.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
Smart hydrogels which can respond to external stimuli have been widely focused with increasing interest. Thereinto, magnetic-responsive hydrogels that are prepared by embedding magnetic nanomaterials into hydrogel networks are more advantageous in biomedical applications due to their rapid magnetic response, precisely temporal and spatial control and non-invasively remote actuation. Upon the application of an external magnetic field, magnetic hydrogels can be actuated to perform multiple response modes such as locomotion, deformation and thermogenesis for therapeutic purposes without the limit of tissue penetration depth. This review summarizes the latest advances of magnetic-responsive hydrogels with focus on biomedical applications. The synthetic methods of magnetic hydrogels are firstly introduced. Then, the roles of different response modes of magnetic hydrogels played in different biomedical applications are emphatically discussed in detail. In the end, the current limitations and future perspectives for magnetic hydrogels are given.
Collapse
Affiliation(s)
- Zhenguang Li
- The Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Yingze Li
- The Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| | - Yu Cheng
- The Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
23
|
Gang F, Jiang L, Xiao Y, Zhang J, Sun X. Multi‐functional magnetic hydrogel: Design strategies and applications. NANO SELECT 2021. [DOI: 10.1002/nano.202100139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Fangli Gang
- Department of Biology Xinzhou Teachers University Xinzhou Shanxi 034000 China
| | - Le Jiang
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
- Key Laboratory of Advanced Materials of Ministry of Education of China School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| | - Yi Xiao
- Department of Biology Xinzhou Teachers University Xinzhou Shanxi 034000 China
| | - Jiwen Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Chemistry & Pharmacy Northwest A&F University Yangling Shaanxi 712100 China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
- Key Laboratory of Advanced Materials of Ministry of Education of China School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
24
|
Tang RZ, Liu ZZ, Gu SS, Liu XQ. Multiple local therapeutics based on nano-hydrogel composites in breast cancer treatment. J Mater Chem B 2021; 9:1521-1535. [PMID: 33474559 DOI: 10.1039/d0tb02737e] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The locoregional recurrence of breast cancer after tumor resection represents several clinical challenges, and conventional post-surgical adjuvant therapeutics always bring about significant systemic side effects. Thus, the local therapy strategy has received considerable interest in breast cancer treatment, and hydrogels can function as ideal platforms due to their remarkable properties such as good biocompatibility, biodegradability, flexibility, and multifunctionality. The nano-hydrogel composites can further incorporate the advantages of nanomaterials into the hydrogel system, to fabricate hierarchical structures for stimulating controlled multi-stage release of different therapeutic agents and improving the synergistic effects of combination therapy. In this review, the problems of clinical treatments of breast cancer and properties of hydrogels in current biomedical applications are briefly overviewed. The focus is on recent advances in local therapy based on nano-hydrogel composites for both monotherapy (chemotherapy, photothermal and photodynamic therapy) and combination therapy (dual chemotherapy, photothermal chemotherapy, photothermal immunotherapy, radio-chemotherapy). Moreover, the challenges and perspectives in the development of advanced nano-hydrogel systems are also discussed.
Collapse
Affiliation(s)
- Rui-Zhi Tang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Zhen-Zhen Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China.
| | - Sai-Sai Gu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China.
| | - Xi-Qiu Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China.
| |
Collapse
|
25
|
Chen Y, Dai S, Zhu H, Hu H, Yuan N, Ding J. Self-healing hydrogel sensors with multiple shape memory properties for human motion monitoring. NEW J CHEM 2021. [DOI: 10.1039/d0nj04923a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Shape memory hydrogels offer new opportunities for the development of smart wearables due to their intelligent responsiveness.
Collapse
Affiliation(s)
- Yuewen Chen
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering
- Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology
- Changzhou University
- Changzhou University
- Changzhou 213164
| | - Shengping Dai
- Institute of Intelligent Flexible Mechatronics
- Jiangsu University
- Zhenjiang
- China
| | - Hao Zhu
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering
- Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology
- Changzhou University
- Changzhou University
- Changzhou 213164
| | - Hongwei Hu
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering
- Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology
- Changzhou University
- Changzhou University
- Changzhou 213164
| | - Ningyi Yuan
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering
- Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology
- Changzhou University
- Changzhou University
- Changzhou 213164
| | - Jianning Ding
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering
- Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology
- Changzhou University
- Changzhou University
- Changzhou 213164
| |
Collapse
|
26
|
Montha W, Maneeprakorn W, Tang IM, Pon-On W. Hyperthermia evaluation and drug/protein-controlled release using alternating magnetic field stimuli-responsive Mn-Zn ferrite composite particles. RSC Adv 2020; 10:40206-40214. [PMID: 35520877 PMCID: PMC9057567 DOI: 10.1039/d0ra08602a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 01/04/2023] Open
Abstract
Drug delivery particles in which the release of biomolecules is triggered by a magnetic simulant have attracted much attention and may have great potential in the fields of cancer therapy and tissue regenerative medicine. In this study, we have prepared magnetic Mn–Zn ferrite ((Mn,Zn)Fe2O4) (MZF) nanoparticles coated with chitosan-g-N-isopropylacrylamide (Chi-g-NIPAAm) polymer (MZF@Chi-g-NIPAAm) to deliver the anticancer drug (Doxorubicin, DOX) and bioactive proteins (Bone morphogenic protein (BMP-2)-immobilized bovine serum albumin (BSA)) (P//MZF@Chi-g-NIPAAm) and be used as chemo-hyperthermia and vector delivering biomolecules. For these purposes, we first show that the as-prepared MZF@Chi-g-NIPAAm particles exhibit super paramagnetic behavior and under certain conditions, they can act as a heat source with a specific absorption rate (SAR) of 34.88 W g−1. Under acidic conditions and in the presence of AMF, the fast release of DOX was seen at around 58.9% within 20 min. In vitro evaluations indicated that concurrent thermo-chemotherapy treatment by DOX-MZF@Chi-g-NIPAAm using AMF had a better antitumor effect, compared with those using either DOX or DOX-MZF@Chi-g-NIPAAm without AMF (89.02% of cells were killed as compared to 71.82% without AMF exposure). Up to 28.18% of the BSA (used as the model protein to determine the controlled release) is released from the P//MZF@Chi-g-NIPAAm particles under AMF exposure for 1 h (only 17.31% was released without AMF). These results indicated that MZF@Chi-g-NIPAAm particles could be used to achieve hyperthermia at a precise location, effectively enhancing the chemotherapy treatments, and have a promising future as drug or bioactive delivering molecules for cancer treatment and cartilage or bone regenerative applications. Drug delivery particles in which the release of biomolecules is triggered by a magnetic simulant have attracted much attention and may have great potential in the fields of cancer therapy and tissue regenerative medicine.![]()
Collapse
Affiliation(s)
- Wararat Montha
- Department of Physics, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| | - Weerakanya Maneeprakorn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) Pathum Thani 12120 Thailand
| | - I-Ming Tang
- Computational & Applied Science doe Smart Innovation Clusters, Faculty of Science, King Mongkut's University of Technology, Thonburi Bangkok 10140 Thailand
| | - Weeraphat Pon-On
- Department of Physics, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| |
Collapse
|
27
|
Mun SJ, Ko D, Kim HU, Han Y, Roh YH, Kim BG, Na HB, Bong KW. Photopolymerization-Based Synthesis of Uniform Magnetic Hydrogels and Colorimetric Glucose Detection. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4401. [PMID: 33023165 PMCID: PMC7579115 DOI: 10.3390/ma13194401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 01/03/2023]
Abstract
Magnetic hydrogels have been commonly used in biomedical applications. As magnetite nanoparticles (MNPs) exhibit peroxidase enzyme-like activity, magnetic hydrogels have been actively used as signal transducers for biomedical assays. Droplet microfluidics, which uses photoinitiated polymerization, is a preferred method for the synthesis of magnetic hydrogels. However, light absorption by MNPs makes it difficult to obtain fully polymerized and homogeneous magnetic hydrogels through photoinitiated polymerization. Several methods have been reported to address this issue, but few studies have focused on investigating the light absorption properties of photoinitiators. In this study, we developed a simple method for the synthesis of poly(ethylene glycol) (PEG)-based uniform magnetic hydrogels that exploits the high ultraviolet absorption of a photoinitiator. Additionally, we investigated this effect on shape deformation and structural uniformity of the synthesized magnetic hydrogels. Two different photoinitiators, Darocur 1173 and lithium phenyl (2,4,6-trimethylbenzoyl) phosphinate (LAP), with significantly different UV absorption properties were evaluated based on the synthesis of magnetic hydrogels. The magnetic characteristics of the PEG-stabilized MNPs in hydrogels were investigated with a vibrating sample magnetometer. Finally, the colorimetric detection of hydrogen peroxide and glucose was conducted based on the enzyme-like property of MNPs and repeated several times to observe the catalytic activity of the magnetic hydrogels.
Collapse
Affiliation(s)
- Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.J.M.); (H.U.K.); (Y.H.R.)
| | - Donghyun Ko
- Department of Chemical Engineering, Myongji University, Yongin, Gyeonggi-do 17058, Korea; (D.K.); (Y.H.); (B.-G.K.)
| | - Hyeon Ung Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.J.M.); (H.U.K.); (Y.H.R.)
| | - Yujin Han
- Department of Chemical Engineering, Myongji University, Yongin, Gyeonggi-do 17058, Korea; (D.K.); (Y.H.); (B.-G.K.)
| | - Yoon Ho Roh
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.J.M.); (H.U.K.); (Y.H.R.)
| | - Bong-Geun Kim
- Department of Chemical Engineering, Myongji University, Yongin, Gyeonggi-do 17058, Korea; (D.K.); (Y.H.); (B.-G.K.)
| | - Hyon Bin Na
- Department of Chemical Engineering, Myongji University, Yongin, Gyeonggi-do 17058, Korea; (D.K.); (Y.H.); (B.-G.K.)
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.J.M.); (H.U.K.); (Y.H.R.)
| |
Collapse
|
28
|
Vázquez-González M, Willner I. Stimuli-Responsive Biomolecule-Based Hydrogels and Their Applications. Angew Chem Int Ed Engl 2020; 59:15342-15377. [PMID: 31730715 DOI: 10.1002/anie.201907670] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/10/2019] [Indexed: 12/16/2022]
Abstract
This Review presents polysaccharides, oligosaccharides, nucleic acids, peptides, and proteins as functional stimuli-responsive polymer scaffolds that yield hydrogels with controlled stiffness. Different physical or chemical triggers can be used to structurally reconfigure the crosslinking units and control the stiffness of the hydrogels. The integration of stimuli-responsive supramolecular complexes and stimuli-responsive biomolecular units as crosslinkers leads to hybrid hydrogels undergoing reversible triggered transitions across different stiffness states. Different applications of stimuli-responsive biomolecule-based hydrogels are discussed. The assembly of stimuli-responsive biomolecule-based hydrogel films on surfaces and their applications are discussed. The coating of drug-loaded nanoparticles with stimuli-responsive hydrogels for controlled drug release is also presented.
Collapse
Affiliation(s)
| | - Itamar Willner
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
29
|
Pham SH, Choi Y, Choi J. Stimuli-Responsive Nanomaterials for Application in Antitumor Therapy and Drug Delivery. Pharmaceutics 2020; 12:E630. [PMID: 32635539 PMCID: PMC7408499 DOI: 10.3390/pharmaceutics12070630] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 01/14/2023] Open
Abstract
The new era of nanotechnology has produced advanced nanomaterials applicable to various fields of medicine, including diagnostic bio-imaging, chemotherapy, targeted drug delivery, and biosensors. Various materials are formed into nanoparticles, such as gold nanomaterials, carbon quantum dots, and liposomes. The nanomaterials have been functionalized and widely used because they are biocompatible and easy to design and prepare. This review mainly focuses on nanomaterials responsive to the external stimuli used in drug-delivery systems. To overcome the drawbacks of conventional therapeutics to a tumor, the dual- and multi-responsive behaviors of nanoparticles have been harnessed to improve efficiency from a drug delivery point of view. Issues and future research related to these nanomaterial-based stimuli sensitivities and the scope of stimuli-responsive systems for nanomedicine applications are discussed.
Collapse
Affiliation(s)
| | | | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (S.H.P.); (Y.C.)
| |
Collapse
|
30
|
Raza A, Rasheed T, Nabeel F, Hayat U, Bilal M, Iqbal HMN. Endogenous and Exogenous Stimuli-Responsive Drug Delivery Systems for Programmed Site-Specific Release. Molecules 2019; 24:1117. [PMID: 30901827 PMCID: PMC6470858 DOI: 10.3390/molecules24061117] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 02/05/2023] Open
Abstract
In this study, we reviewed state-of-the-art endogenous-based and exogenous-based stimuli-responsive drug delivery systems (DDS) for programmed site-specific release to overcome the drawbacks of conventional therapeutic modalities. This particular work focuses on the smart chemistry and mechanism of action aspects of several types of stimuli-responsive polymeric carriers that play a crucial role in extracellular and intracellular sections of diseased tissues or cells. With ever increasing scientific knowledge and awareness, research is underway around the globe to design new types of stimuli (external/internal) responsive polymeric carriers for biotechnological applications at large and biomedical and/or pharmaceutical applications, in particular. Both external/internal and even dual/multi-responsive behavior of polymeric carriers is considered an essential element of engineering so-called 'smart' DDS, which controls the effective and efficient dose loading, sustained release, individual variability, and targeted permeability in a sophisticated manner. So far, an array of DDS has been proposed, developed, and implemented. For instance, redox, pH, temperature, photo/light, magnetic, ultrasound, and electrical responsive DDS and/or all in all dual/dual/multi-responsive DDS (combination or two or more from any of the above). Despite the massive advancement in DDS arena, there are still many challenging concerns that remain to be addressed to cover the research gap. In this context, herein, an effort has been made to highlight those concerning issues to cover up the literature gap. Thus, the emphasis was given to the drug release mechanism and applications of endogenous and exogenous based stimuli-responsive DDS in the clinical settings.
Collapse
Affiliation(s)
- Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Tahir Rasheed
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Faran Nabeel
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Uzma Hayat
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, Mexico.
| |
Collapse
|
31
|
Mu M, Li X, Tong A, Guo G. Multi-functional chitosan-based smart hydrogels mediated biomedical application. Expert Opin Drug Deliv 2019; 16:239-250. [PMID: 30753086 DOI: 10.1080/17425247.2019.1580691] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Min Mu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, R. P. China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, R. P. China
- Collaborative Innovation Center for Biotherapy, Chengdu, R. P. China
| | - Xiaoling Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, R. P. China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, R. P. China
- Collaborative Innovation Center for Biotherapy, Chengdu, R. P. China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, R. P. China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, R. P. China
- Collaborative Innovation Center for Biotherapy, Chengdu, R. P. China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, R. P. China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, R. P. China
- Collaborative Innovation Center for Biotherapy, Chengdu, R. P. China
| |
Collapse
|
32
|
Yu S, He C, Chen X. Injectable Hydrogels as Unique Platforms for Local Chemotherapeutics-Based Combination Antitumor Therapy. Macromol Biosci 2018; 18:e1800240. [PMID: 30303620 DOI: 10.1002/mabi.201800240] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/15/2018] [Indexed: 01/06/2025]
Abstract
Different strategies of chemotherapeutics-based combination cancer therapy have presented enhanced antitumor efficiency and are widely used in clinical cancer treatments. However, several drawbacks of the systems for systemic administration, including low drug accumulation at tumor sites and significant systemic side effects limit their efficacy and application in the clinic. Local drug co-delivery systems based on injectable hydrogels may have considerable advantages, such as a facile drug-delivery procedure, targeted delivery of antitumor agents to tumor sites in a sustained manner, and markedly reduced systemic toxicities. Thus, in recent years, these systems have received increasing attention and consequently various injectable hydrogels have been tested as platforms for local chemotherapeutics-based combination antitumor therapy. In this review, the focus is on recent advances in injectable hydrogel-based drug co-delivery systems for local combination antitumor therapy, including multiple chemotherapeutics combination therapy, chemo-immunotherapy, chemo-radiotherapy, and hyperthermia-chemotherapy. Moreover, the rationale and preparation of local co-delivery systems are summarized and discussed.
Collapse
Affiliation(s)
- Shuangjiang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Chaoliang He
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|