1
|
Ettayri K, Zhang H, Long L, Yang H, Hussain M, Wong MS, Wang K, Qian J. Enhancing resolution in DNA staining dye-based label-free visual fluorescence aptasensor: Strategy for eliminating non-specific binding-induced signal interference. Talanta 2025; 282:127034. [PMID: 39406098 DOI: 10.1016/j.talanta.2024.127034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 10/10/2024] [Indexed: 11/20/2024]
Abstract
By optimizing the quenching capabilities of diverse two-dimensional (2D) nanomaterials such as graphene oxide (GO), Ti3C2 MXene, and MoS2, we have pioneered a label-free fluorescence aptasensor with near-zero background signal, enabling highly sensitive detection of aflatoxin B1 (AFB1). This aptasensor was equipped with a newly synthesized dicationic fluorophore, VLM, which exhibited binding-induced turn-on fluorescence properties. Among the evaluated 2D nanosheets, MoS2 nanosheets were found to exhibit exceptional quenching efficiency for the background emission of the cDNA/VLM complex (cDNA was the complementary DNA of the aptamer), further enhancing the overall performance of our aptasensor. Upon exposure to AFB1, the aptamers underwent conformational switching and target binding, leading to the formation of aptamer/AFB1 complex. Additionally, the aptamers bound complementarily to cDNA, creating aptamer-cDNA duplexes that interacted with VLM, resulting in a robust fluorescence signal. Despite the presence of a weakly fluorescent cDNA/VLM background, this fluorescence could be effectively quenched by the addition of MoS2 nanosheets. Consequently, the label-free fluorescence aptasensor exhibited excellent linearity with AFB1 concentration within 2-3000 ng mL-1, achieving a limit of detection (LOD) of 0.006 ng mL-1. Remarkably, the visual fluorescence captured by a smartphone camera can be processed using extracted grayscale values, consistently revealing a linear relationship with the AFB1 concentration within 2-3000 ng mL-1, with a LOD of 0.197 ng mL-1. This aptasensor demonstrated exceptional sensitivity and a remarkably rapid sample-to-answer detection time of 74 min, showcasing its immense potential as a straightforward, sensitive, and visually intuitive method for rapid AFB1 detection with enhanced resolution.
Collapse
Affiliation(s)
- Kawtar Ettayri
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Hailong Zhang
- Department of Chemistry and Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Huiyuan Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Mustafa Hussain
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Man Shing Wong
- Department of Chemistry and Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
2
|
Yakout AA, Alshutairi AM, Albishri HM, Alshitari WH, Basha MT. Cu-nanoparticles@ graphene nanocomposite: A robust and efficient nanocomposite for micro-solid phase extraction of trace aflatoxins in different foodstuffs. Food Chem 2024; 440:138239. [PMID: 38154278 DOI: 10.1016/j.foodchem.2023.138239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Cu-nanoparticles-immobilized graphene (Cu@G) nanocomposite was fabricated in this study by reducing Cu(II) ions in the presence of graphene oxide using a simple chemical reduction step. Cu@G nanocomposite was applied as a sorbent for the SPE of four aflatoxins (AFs). A reusable syringe was filled with the fabricated nanocomposite and used as a sorbent for the micro-solid phase extraction of four AFs (AFB1, AFB2, AFG1, AFG2). The impact of different analytical factors was fully investigated and optimized. Excellent recoveries, ranging from 92.0 to 108.5 %, were detected when evaluating target AFs in samples of rice, maize, and pistachio. The LOD, LOQ, and linear ranges were attained under optimal circumstances in the ranges of 0.0062 µg kg-1, 0.0192 µg kg-1, and 0.0-20 µg kg-1, respectively. The discovered approach provided the dual benefits of a high enrichment capability of Cu-nanoparticles via AFs complexation and a huge porosity of graphene sheets.
Collapse
Affiliation(s)
- Amr A Yakout
- Chemistry Department, College of Science, University of Jeddah, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Adel M Alshutairi
- Saudi Food and Drug Authority, Saudi Arabia; Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hassan M Albishri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wael H Alshitari
- Chemistry Department, College of Science, University of Jeddah, Saudi Arabia
| | - Maram T Basha
- Chemistry Department, College of Science, University of Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Li Y, Sun Q, Chen X, Peng S, Kong D, Liu C, Zhang Q, Shi Q, Chen Y. Simultaneous detection of AFB1 and aflD gene by "Y" shaped aptamer fluorescent biosensor based on double quantum dots. Anal Bioanal Chem 2024; 416:883-893. [PMID: 38052994 DOI: 10.1007/s00216-023-05074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
The developed method for simultaneous detection of aflatoxin B1 (AFB1) and aflD genes can effectively monitor from the source and reduce the safety problems and economic losses caused by the production of aflatoxin, which can be of great significance for food safety regulations. In this paper, we constructed a sensitive and convenient fluorescent biosensor to detect AFB1 and aflD genes simultaneously based on fluorescence resonance energy transfer (FRET) between quantum dots (QDs) and a black hole quenching agent. A stable "Y" shaped aptasensor was employed as the detection platform and a double quantum dot labeled DNA fragment was utilized to be the sensing element in this work. When the targets of AFB1 and aflD genes were presented in the solution, the aptamer in the "Y" shaped probe is specifically recognized by the target. At this time, both Si-carbon quantum dots (Si-CDs) and CdTe QDs are far away from the BHQ1 and BHQ3 to recover the fluorescence. The linear range of the prepared fluorescence simultaneous detection method was as wide as 0.5-500 ng·mL-1 with detection lines of 0.64 ng·mL-1 for AFB1 and 0.5-500 nM with detection lines of 0.75 nM for aflD genes (3σ/k). This fabricated fluorescent biosensor was further validated in real rice flour and corn flour samples, which also achieved good results. The recoveries were calculated by comparing the known and found amounts of AFB1 which ranged from 88.4 to approximately 115.32% in the rice flour samples and 90.7 ~ 102.58% in the corn flour samples. The recoveries of aflD genes ranged from 84.32 to approximately 109.3% in the rice flour samples and 89.48 ~ 100.99% in the corn flour samples. Therefore, the proposed biosensor can significantly improve food safety and quality control through a simple, fast, and sensitive agricultural product monitoring and detection system.
Collapse
Affiliation(s)
- Yaqi Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China.
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, People's Republic of China.
- Advanced Technology Institute of Suzhou, Suzhou, 215123, Jiangsu Province, People's Republic of China.
| | - Qingyue Sun
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Xin Chen
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Shuangfeng Peng
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Qi Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Qiaoqiao Shi
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, People's Republic of China.
| |
Collapse
|
4
|
Serebrennikova KV, Samokhvalov AV, Zherdev AV, Dzantiev BB. A Fluorescence Resonance Energy Transfer Aptasensor for Aflatoxin B1 Based on Ligand-Induced ssDNA Displacement. Molecules 2023; 28:7889. [PMID: 38067619 PMCID: PMC10707992 DOI: 10.3390/molecules28237889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
In this study, a fluorescence resonance energy transfer (FRET)-based aptasensor for the detection of aflatoxin B1 (AFB1) was designed using a carboxyfluorescein (FAM)-labeled aptamer and short complementary DNA (cDNA) labeled with low molecular quencher RTQ1. The sensing principle was based on the detection of restored FAM-aptamer fluorescence due to the ligand-induced displacement of cDNA in the presence of AFB1, leading to the destruction of the aptamer/cDNA duplex and preventing the convergence of FAM and RTQ1 at the effective FRET distance. Under optimal sensing conditions, a linear correlation was obtained between the fluorescence intensity of the FAM-aptamer and the AFB1 concentration in the range of 2.5-208.3 ng/mL with the detection limit of the assay equal to 0.2 ng/mL. The assay time was 30 min. The proposed FRET aptasensor has been successfully validated by analyzing white wine and corn flour samples, with recovery ranging from 76.7% to 91.9% and 84.0% to 86.5%, respectively. This work demonstrates the possibilities of labeled cDNA as an effective and easily accessible tool for sensitive AFB1 detection. The homogeneous FRET aptasensor is an appropriate choice for contaminant screening in complex matrices.
Collapse
Affiliation(s)
| | | | | | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia; (K.V.S.); (A.V.S.); (A.V.Z.)
| |
Collapse
|
5
|
Wei H, Mao J, Sun D, Zhang Q, Cheng L, Yang X, Li P. Strategies to control mycotoxins and toxigenic fungi contamination by nano-semiconductor in food and agro-food: a review. Crit Rev Food Sci Nutr 2023; 63:12488-12512. [PMID: 35880423 DOI: 10.1080/10408398.2022.2102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycotoxins are toxic secondary metabolites generated from toxigenic fungi in the contaminated food and agro-food, which have been regarded as a serious threat to the food safety and human health. Therefore, the control of mycotoxins and toxigenic fungi contamination is of great significance and has attracted the increasing attention of researchers. As we know, nano-semiconductors have many unique properties such as large surface area, structural stability, good biocompatibility, excellent photoelectrical properties, and low cost, which have been developed and applied in many research fields. Recently, nano-semiconductors have also been promisingly applied in mitigating or controlling mycotoxins and toxigenic fungi contaminations in food and agro-food. In this review, the type, occurrence, and toxicity of main mycotoxins in food and agro-food were introduced. Then, a variety of strategies to mitigate the mycotoxin contamination based on nano-semiconductors involving mycotoxins detection, inhibition of toxigenic fungi, and mycotoxins degradation were summarized. Finally, the outlook, opportunities, and challenges have prospected in the future for the mitigation of mycotoxins and toxigenic fungi based on nano-semiconductors.
Collapse
Affiliation(s)
- Hailian Wei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Di Sun
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Ling Cheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Xianglong Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
6
|
Luo F, Zhan L, Deng Y, Qiao K, Pan N, Weng Z, Lin C, Qiu B, Lin Z. Oxygen-induced dual-signal point-of-care testing aptasensor for aflatoxin B1 detection using platinum nanoparticle catalysis in visual fluorometry and gravimetry. Anal Chim Acta 2023; 1273:341544. [PMID: 37423670 DOI: 10.1016/j.aca.2023.341544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/11/2023]
Abstract
Point-of-care testing (POCT) has experienced rapid development owing to its advantages of rapid testing, low cost and strong operability, making it indispensable for analyte detection in outdoor or rural areas. In this study, we propose a novel method for the detection of aflatoxin B1 (AFB1) using a dual-signal readout approach within a unified system. This method employs dual channel modes, namely visual fluorescence and weight measurements, as the signal readouts. Specifically, a pressure-sensitive material is utilized as a visual fluorescent agent, its signal can be quenched in the presence of high oxygen pressure. Additionally, an electronic balance, commonly used for weight measurement, is adopted as another signal device, where the signal is generated through the catalytic decomposition of H2O2 by platinum nanoparticles. The experimental results demonstrate that the proposed device enables accurate AFB1 detection within the concentration range of 1.5-32 μg mL-1, with a detection limit of 0.47 μg mL-1. Moreover, this method has been successfully applied for practical AFB1 detection with satisfactory results. Notably, this study pioneers the use of a pressure-sensitive material as a visual signal in POCT. By addressing the limitations of single-signal readout approaches, our method fulfills requirements of intuitiveness, sensitivity, quantitative analysis and reusability.
Collapse
Affiliation(s)
- Fang Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China; MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Linxiu Zhan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China; MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Ye Deng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China; MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Kun Qiao
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, 361013, China
| | - Nan Pan
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, 361013, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Cuiying Lin
- MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Bin Qiu
- MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhenyu Lin
- MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
7
|
Xiang X, Song M, Xu X, Lu J, Chen Y, Chen S, He Y, Shang Y. Microfluidic Biosensor Integrated with Signal Transduction and Enhancement Mechanism for Ultrasensitive Noncompetitive Assay of Multiple Mycotoxins. Anal Chem 2023; 95:7993-8001. [PMID: 37156096 DOI: 10.1021/acs.analchem.3c00813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
To achieve high-throughput ultrasensitive detection of mycotoxins in food, a functional DNA-guided transition-state CRISPR/Cas12a microfluidic biosensor (named FTMB) was successfully constructed. The signal transduction CRISPR/Cas12a strategy in FTMB has utilized DNA sequences with a specific recognition function and activators to form trigger switches. Meanwhile, the transition-state CRISPR/Cas12a system was constructed by adjusting the composition ratio of crRNA and activator to achieve a high response for low concentrations of target mycotoxins. On the other hand, the signal enhancement of FTMB has efficiently integrated the signal output of quantum dots (QDs) with the fluorescence enhancement effect of photonic crystals (PCs). The construction of universal QDs for the CRISPR/Cas12a system and PC films matching the photonic bandgap produced a significant signal enhancement by a factor of 45.6. Overall, FTMB exhibited a wide analytic range (10-5-101 ng·mL-1), low detection of limit (fg·mL-1), short detection period (∼40 min), high specificity, good precision (coefficients of variation <5%), and satisfactory practical sample analysis capacity (the consistency with HPLC at 88.76%-109.99%). It would provide a new and reliable solution for the rapid detection of multiple small molecules in the fields of clinical diagnosis and food safety.
Collapse
Affiliation(s)
- Xinran Xiang
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Minghui Song
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Xiaowei Xu
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Jiaran Lu
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Yuanyuan Chen
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Shuhan Chen
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Yinglong He
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Yuting Shang
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| |
Collapse
|
8
|
Wu R, Guo J, Wang M, Liu H, Ding L, Yang R, Liu LE, Liu Z. Fluorescent Sensor Based on Magnetic Separation and Strand Displacement Amplification for the Sensitive Detection of Ochratoxin A. ACS OMEGA 2023; 8:15741-15750. [PMID: 37151502 PMCID: PMC10157876 DOI: 10.1021/acsomega.3c01408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Ochratoxin A (OTA) is a common mycotoxin, and it is a significant threat to human health throughout the food chain. In this study, a sensitive and specific fluorescent sensor based on magnetic separation technology combined with chain displacement amplification was developed for fast and easy detection of OTA in food. The designed strand displacement amplification can improve the sensitivity for the detection, and the magnetic nanomaterials can provide a large surface area, thus enhancing the capture efficiency of the target from the sample. Based on those designs, the experimental results showed that the proposed method displayed excellent performance. The linearity range was 0.5-128.0 ng/mL. The detection limit was 0.125 ng/mL; the relative standard deviations were 3.92-7.71%. Additionally, the developed method was satisfactorily applied to determine OTA in wheat, corn, and red wine samples at three spiked levels (1.0, 8.0, and 64.0 ng/mL). The recoveries ranged from 85.45 to 107.8% for wheat flour, 101.34 to 108.35% for corn flour, and 91.15 to 93.80% for red wine, respectively. Compared with high-performance liquid chromatography, the proposed method showed a lower limit of detection and equal recovery. Hence, the designed method is a potential and good detecting tool for OTA residue analysis in complex matrix samples.
Collapse
Affiliation(s)
- Ruoyu Wu
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Jiaping Guo
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Minkai Wang
- Department
of Neurosurgery, First Affiliated Hospital
of Zhengzhou University, Zhengzhou, Henan 450052, People’s Republic of China
| | - Huimin Liu
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Lihua Ding
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Ruiying Yang
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Li-e Liu
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Zhiyong Liu
- Key
Laboratory of Food Safety Quick Testing and Smart Supervision Technology
for State Market Regulation, Beijing 100094, People’s
Republic of China
| |
Collapse
|
9
|
Li J, Liu B, Liu L, Zhang N, Liao Y, Zhao C, Cao M, Zhong Y, Chai D, Chen X, Zhang D, Wang H, He Y, Li Z. Fluorescence-based aptasensors for small molecular food contaminants: From energy transfer to optical polarization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121872. [PMID: 36152504 DOI: 10.1016/j.saa.2022.121872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Small molecular food contaminants, such as mycotoxins, pesticide residues and antibiotics, are highly probable to be passively introduced in food at all stages of its processing, including planting, harvest, production, transportation and storage. Owing to the high risks caused by the unknowing intake and accumulation in human, there is an urgent need to develop rapid, sensitive and efficient methods to monitor them. Fluorescence-based aptasensors provide a promising platform for this area owing to its simple operation, high sensitivity, wide application range and economical practicability. In this paper, the common sorts of small molecular contaminants in foods, namely mycotoxins, pesticides, antibiotics, etc, are briefly introduced. Then, we make a comprehensive review, from fluorescence resonance energy transfer (in turn-on, turn-off, and ratiometric mode, as well as energy upconversion) to fluorescence polarization, of the fluorescence-based aptasensors for the determination of these food contaminants reported in the last five years. The principle of signal generation, the advances of each sort of fluorescent aptasensors, as well as their applications are introduced in detail. Additionally, we also discussed the challenges and perspectives of the fluorescent aptasensors for small molecular food contaminants. This work will offer systematic overview and inspiration for amateurs, researchers and developers of fluorescence-based aptasensors for the detection of small molecules.
Collapse
Affiliation(s)
- Jingrong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Boshi Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Li Liu
- Library of Tianjin Medical University, Tianjin 300070, China
| | - Nan Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yumeng Liao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunyu Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Manzhu Cao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuxuan Zhong
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Danni Chai
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyu Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yongzhi He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
10
|
A fluorescence immunosensor for ochratoxin A based on resonance energy transfer between fluorescein derivative and gold nanoparticles. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Kumar P, Gupta A, Mahato DK, Pandhi S, Pandey AK, Kargwal R, Mishra S, Suhag R, Sharma N, Saurabh V, Paul V, Kumar M, Selvakumar R, Gamlath S, Kamle M, Enshasy HAE, Mokhtar JA, Harakeh S. Aflatoxins in Cereals and Cereal-Based Products: Occurrence, Toxicity, Impact on Human Health, and Their Detoxification and Management Strategies. Toxins (Basel) 2022; 14:toxins14100687. [PMID: 36287956 PMCID: PMC9609140 DOI: 10.3390/toxins14100687] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
Cereals and cereal-based products are primary sources of nutrition across the world. However, contamination of these foods with aflatoxins (AFs), secondary metabolites produced by several fungal species, has raised serious concerns. AF generation in innate substrates is influenced by several parameters, including the substrate type, fungus species, moisture content, minerals, humidity, temperature, and physical injury to the kernels. Consumption of AF-contaminated cereals and cereal-based products can lead to both acute and chronic health issues related to physical and mental maturity, reproduction, and the nervous system. Therefore, the precise detection methods, detoxification, and management strategies of AFs in cereal and cereal-based products are crucial for food safety as well as consumer health. Hence, this review provides a brief overview of the occurrence, chemical characteristics, biosynthetic processes, health hazards, and detection techniques of AFs, along with a focus on detoxification and management strategies that could be implemented for food safety and security.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Botany, University of Lucknow, Lucknow 226007, India
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India
- Correspondence: (P.K.); (D.K.M.)
| | - Akansha Gupta
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
- Correspondence: (P.K.); (D.K.M.)
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Arun Kumar Pandey
- MMICT&BM(HM), Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Raveena Kargwal
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India
| | - Sadhna Mishra
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
- Faculty of Agricultural Sciences, GLA University, Mathura 281406, India
| | - Rajat Suhag
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Nitya Sharma
- Food and Bioprocess Engineering Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Vivek Saurabh
- Division of Food Science and Postharvest Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India
| | - Veena Paul
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Raman Selvakumar
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Shirani Gamlath
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Madhu Kamle
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia
- City of Scientific Research and Technology Applications, New Burg Al Arab, Alexandria 21934, Egypt
| | - Jawahir A. Mokhtar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine (FM), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
12
|
Li Y, Liu X, Hou Y, Wu Q, Hou J. A Higher Affinity Melamine Binding Aptamer Mutant for More Sensitive Detection. ChemistrySelect 2022. [DOI: 10.1002/slct.202201427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yani Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization Hubei Normal University Huangshi Hubei province 435002 China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology Hubei Normal University Huangshi, Hubei province 435002 China
- National Experimental Teaching Demonstration Center for Biology Hubei Normal University Huangshi Hubei province 435002 China
| | - Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization Hubei Normal University Huangshi Hubei province 435002 China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology Hubei Normal University Huangshi, Hubei province 435002 China
- National Experimental Teaching Demonstration Center for Biology Hubei Normal University Huangshi Hubei province 435002 China
| | - Yaoyao Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization Hubei Normal University Huangshi Hubei province 435002 China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology Hubei Normal University Huangshi, Hubei province 435002 China
- National Experimental Teaching Demonstration Center for Biology Hubei Normal University Huangshi Hubei province 435002 China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization Hubei Normal University Huangshi Hubei province 435002 China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology Hubei Normal University Huangshi, Hubei province 435002 China
- National Experimental Teaching Demonstration Center for Biology Hubei Normal University Huangshi Hubei province 435002 China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization Hubei Normal University Huangshi Hubei province 435002 China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology Hubei Normal University Huangshi, Hubei province 435002 China
- National Experimental Teaching Demonstration Center for Biology Hubei Normal University Huangshi Hubei province 435002 China
| |
Collapse
|
13
|
Sameiyan E, Lavaee P, Ramezani M, Alibolandi M, Khoshbin Z, Abnous K, Taghdisi SM. A novel electrochemical method for the sensitive determination of aflatoxin B1 using a bivalent binding aptamer‐cDNA structure. ELECTROANAL 2022. [DOI: 10.1002/elan.202200243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Elham Sameiyan
- Mashhad University of Medical Sciences IRAN (THE ISLAMIC REPUBLIC OF)
| | | | | | - Mona Alibolandi
- Mashhad University of Medical Sciences IRAN (THE ISLAMIC REPUBLIC OF)
| | - Zahra Khoshbin
- Mashhad University of Medical Sciences IRAN (THE ISLAMIC REPUBLIC OF)
| | - Khalil Abnous
- mashhad university of medical science IRAN (THE ISLAMIC REPUBLIC OF)
| | | |
Collapse
|
14
|
Dual selective sensor for exosomes in serum using magnetic imprinted polymer isolation sandwiched with aptamer/graphene oxide based FRET fluorescent ignition. Biosens Bioelectron 2022; 207:114112. [DOI: 10.1016/j.bios.2022.114112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022]
|
15
|
|
16
|
Yan X, Chen H, Du G, Guo Q, Yuan Y, Yue T. Recent trends in fluorescent aptasensors for mycotoxin detection in food: Principles, constituted elements, types, and applications. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Xiaohai Yan
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Hong Chen
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Gengan Du
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Qi Guo
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Yahong Yuan
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Tianli Yue
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
- College of Food Science and Technology Northwest University Xi’ an 710000 China
| |
Collapse
|
17
|
Singh AK, Sri S, Garimella LBVS, Dhiman TK, Sen S, Solanki PR. Graphene Quantum Dot-Based Optical Sensing Platform for Aflatoxin B1 Detection via the Resonance Energy Transfer Phenomenon. ACS APPLIED BIO MATERIALS 2022; 5:1179-1186. [PMID: 35179346 DOI: 10.1021/acsabm.1c01224] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An optical sensing platform for the detection of an important mycotoxin, aflatoxin B1 (AFB1), in the absence of a bioactive environment is explored. In this work, a fluorescence-based sensing technique was designed by combining graphene quantum dots (GQDs) and AFB1 via fluorescence quenching, where AFB1 acts as the quencher of GQD fluorescence. GQDs were synthesized through a single-step hydrothermal reaction from the leaves of "curry tree" (Murraya Koenigii) at 200 °C. The fluorescent GQDs were quenched by AFB1 (quencher), which itself is detecting the analyte. Hence, this study reports the direct sensing of the mycotoxin AFB1 without the involvement of inhibitors or biological entities. The possible mode of quenching is the nonradiative resonance energy transfer between the GQDs and the AFB1 molecules. This innovative sensor could detect AFB1 in the range from 5 to 800 ng mL-1 with a detection limit of 0.158 ng mL-1. The interferent study was also carried out in the presence of different mycotoxins and carbohydrates (d-fructose, cellulose, and starch), which demonstrated the high selectivity and robustness of the sensor in the complex sample matrix. The recovery percentage of the spiked samples was also calculated to be up to 106.8%. Thus, this study reports the first GQD based optical sensor for AFB1.
Collapse
Affiliation(s)
- Avinash Kumar Singh
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi 110067, India.,School of Physical Sciences, JNU, New Delhi 110067, India
| | - Smriti Sri
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi 110067, India
| | | | - Tarun Kumar Dhiman
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi 110067, India
| | - Sobhan Sen
- School of Physical Sciences, JNU, New Delhi 110067, India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi 110067, India
| |
Collapse
|
18
|
Chen Y. Recent progress in fluorescent aptasensors for the detection of aflatoxin B1 in food. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:86-96. [PMID: 34897320 DOI: 10.1039/d1ay01714d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aflatoxin B1 pollution is one of the most critical issues of food safety and has been categorized as a group I carcinogen by the International Agency for Research on Cancer. Aflatoxin B1 exists in various foods and feedstuff products and can be produced and contaminate food products in all processes, including growth, harvest, storage, or processing. Therefore, it is of great value for detecting and on-site monitoring aflatoxin B1. Aptamers are short single-stranded DNA or RNA obtained from the nucleic acid molecular library through SELEX. With advantages of high specificity, large affinity, and easy modification, aptasensors have become popular in a wide range of promising applications. This review focuses on recent advances on fluorescent aptamer sensors for the detection of aflatoxin B1, including their design strategies, working mechanisms, and applications to on-site detection. Finally, the current challenges and prospects are discussed.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Ding Y, Hu Z, Zhao Y, Shi C, Zhang S, Zhang Z. Self-assembled nanoplatforms with ZIF-8 as a framework for FRET-based glutathione sensing in biological samples. Analyst 2022; 147:5775-5784. [DOI: 10.1039/d2an01544g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A nanoprobe was constructed by embedding QDs and a rhodamine B derivative (RBD) into ZIF-8. Then, the ultraviolet absorption of RBD that reacted with glutathione can overlap with the emission spectrum of the QDs, causing FRET-based glutathione sensing.
Collapse
Affiliation(s)
- Yujie Ding
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China
| | - Zhongfei Hu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China
| | - Yiming Zhao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China
| | - Cai Shi
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China
| | - Shijie Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China
| | - Zongrui Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China
| |
Collapse
|
20
|
Development of a colorimetric aptasensor for aflatoxin B1 detection based on silver nanoparticle aggregation induced by positively charged perylene diimide. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Singh AK, Lakshmi GBVS, Dhiman TK, Kaushik A, Solanki PR. Bio-Active Free Direct Optical Sensing of Aflatoxin B1 and Ochratoxin A Using a Manganese Oxide Nano-System. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2020.621681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aflatoxins-B1 (AFB1) and Ochratoxin-A (OchA) are the two types of major mycotoxin produced by Aspergillus flavus, Aspergillus parasiticus fungi, Aspergillus carbonarius, Aspergillus niger, and Penicillium verrocusumv. These toxins are mainly found in metabolite cereals, corn, coffee beans, and other oil-containing food items. Excessive consumption of these toxins can be carcinogenic and lead to cancer. Thus, their rapid testing became essential for food quality control. Herein, manganese oxide nanoparticles (MnO2 nps) have been proposed to explore the interaction with AFB1 and OchA using UV-visible spectroscopy. MnO2 nps were synthesized using the co-precipitation method. They were pure and crystalline with an average crystallite size of 5–6 nm. In the UV-vis study, the maximum absorbance for MnO2 nps was observed around 260 nm. The maximum absorbance for AFB1 and OchA was observed at 365 and 380 nm, respectively, and its intensity enhanced with the addition of MnO2 nps. Sequential changes were observed with varying the concentration of AFB1 and OchA with a fixed concentration of MnO2 nps, resulting in proper interaction. The binding constant (kb) and Gibbs free energy for MnO2 nps-AFB1 and OchA were observed as 1.62 × 104 L g−1 and 2.67 × 104 L g−1, and −24.002 and −25.256 kJ/mol, respectively. The limit of detection for AFB1 and OchA was measured as 4.08 and 10.84 ng/ml, respectively. This bio‐active free direct sensing approach of AFB1 and OchA sensing can be promoted as a potential analytical tool to estimate food quality rapidly and affordable manner at the point of use.
Collapse
|
22
|
Tian Y, Liu Y, Wang Y, Xu J, Yu X. A Flexible PI/Si/SiO 2 Piezoresistive Microcantilever for Trace-Level Detection of Aflatoxin B1. SENSORS (BASEL, SWITZERLAND) 2021; 21:1118. [PMID: 33562752 PMCID: PMC7915870 DOI: 10.3390/s21041118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 01/11/2023]
Abstract
In this paper, a polyimide (PI)/Si/SiO2-based piezoresistive microcantilever biosensor was developed to achieve a trace level detection for aflatoxin B1. To take advantage of both the high piezoresistance coefficient of single-crystal silicon and the small spring constant of PI, the flexible piezoresistive microcantilever was designed using the buried oxide (BOX) layer of a silicon-on-insulator (SOI) wafer as a bottom passivation layer, the topmost single-crystal silicon layer as a piezoresistor layer, and a thin PI film as a top passivation layer. To obtain higher sensitivity and output voltage stability, four identical piezoresistors, two of which were located in the substrate and two integrated in the microcantilevers, were composed of a quarter-bridge configuration wheatstone bridge. The fabricated PI/Si/SiO2 microcantilever showed good mechanical properties with a spring constant of 21.31 nN/μm and a deflection sensitivity of 3.54 × 10-7 nm-1. The microcantilever biosensor also showed a stable voltage output in the Phosphate Buffered Saline (PBS) buffer with a fluctuation less than 1 μV @ 3 V. By functionalizing anti-aflatoxin B1 on the sensing piezoresistive microcantilever with a biotin avidin system (BAS), a linear aflatoxin B1 detection concentration resulting from 1 ng/mL to 100 ng/mL was obtained, and the toxic molecule detection also showed good specificity. The experimental results indicate that the PI/Si/SiO2 flexible piezoresistive microcantilever biosensor has excellent abilities in trace-level and specific detections of aflatoxin B1 and other biomolecules.
Collapse
Affiliation(s)
| | | | | | | | - Xiaomei Yu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, China; (Y.T.); (Y.L.); (Y.W.); (J.X.)
| |
Collapse
|
23
|
Koteswara Rao V. Point of Care Diagnostic Devices for Rapid Detection of Novel Coronavirus (SARS-nCoV19) Pandemic: A Review. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2020.593619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Coronaviruses are recognized as causative agents of human diseases worldwide. In Wuhan, China, an outbreak of Severe acute respiratory syndrome novel Coronavirus (SARS-nCoV-2) was reported at the end of December 2019, causing 63 million COVID cases and 1.3 million deaths globally by 2 December, 2020. The transmission risk forecasts and the SARS-nCoV-2 epidemic pattern are progressive. Unfortunately, there is no specific FDA approved drugs or vaccines available currently to treat SARS-nCoV-2. In response to nCoV-2 spread, the rapid detection is crucial for estimating the severity of the disease and treatment of patients. Currently, there are several RT-PCR based diagnostic kits available for SARS-nCoV-2 detection, which are time-consuming, expensive, need advanced equipment facilities and trained personnel. The cost of diagnosis and the unavailability of sufficient test kits may prevent to check community transmission. Furthermore, expanding the testing facilities in asymptomatic cases in hotspots require more Point of Care (PoC) devices. Therefore, fast, inexpensive, and reliable methods of detection of SARS-nCoV-2 virus infection in humans is urgently required. The rapid and easy-to-use devices will facilitate onsite testing. In this review, nucleic acid assays, serological assays, multiplex assays, and PoC devices are discussed to understand various diagnostic approaches to reduce the spread and mortality rate in the future. Aptamer based detection is most specific, inexpensive and rapid detection of SARS-nCoV-2 without laboratory tools. To the best of our knowledge more than 900 SARS-nCoV-2 test kits are in pipeline, among 395 test kits are molecular bested test kits and only few test kits are developed using Aptamer technology https://www.finddx.org/covid-19/pipeline/.
Collapse
|
24
|
Wang C, Zhang W, Qian J, Wang L, Ren Y, Wang Y, Xu M, Huang X. A FRET aptasensor for sensitive detection of aflatoxin B1 based on a novel donor-acceptor pair between ZnS quantum dots and Ag nanocubes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:462-468. [PMID: 33438701 DOI: 10.1039/d0ay02017f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aflatoxin B1 (AFB1) is one of the most carcinogenic chemicals. A novel fluorescence resonance energy transfer (FRET) sensor based on aptamer recognition technology is proposed for the sensitive detection of AFB1 in moldy peanuts using Ag nanocubes as energy acceptors and ZnS quantum dots (QDs) as energy donors. Compared to the traditional FRET system based on an Au quencher, Ag nanocubes can not only quench the fluorescence of aptamer modified ZnS QDs, but are also inexpensive. In addition, compared with heavy metal QDs, ZnS QDs are environmentally friendly, have excellent photochemical properties, and are ideal energy donors. Without Ag nanocubes, the aptamer modified ZnS QDs emits blue fluorescence under an ultraviolet lamp. Because the emission spectrum of ZnS and the absorption spectrum of Ag nanocubes meet the requirements of FRET, the fluorescence quenching of ZnS QDs is realized. Nevertheless, with AFB1, the specific binding of aptamer and complementary chain makes the ZnS QDs break away from the Ag nanocubes, which leads to the fluorescence recovery of the ZnS QDs. Under the optimized detection conditions, the linear range of AFB1 was 5 pg mL-1 to 300 ng mL-1, and there was no obvious reaction with other similar mycotoxins. According to S/N = 3, the detection limit of AFB1 was 2.67 pg mL-1. The detection of AFB1 in peanut samples shows that the new FRET system can successfully be applied in the future to agricultural products.
Collapse
Affiliation(s)
- Chengquan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ciriaco F, De Leo V, Catucci L, Pascale M, Logrieco AF, DeRosa MC, De Girolamo A. An In-Silico Pipeline for Rapid Screening of DNA Aptamers against Mycotoxins: The Case-Study of Fumonisin B1, Aflatoxin B1 and Ochratoxin A. Polymers (Basel) 2020; 12:E2983. [PMID: 33327526 PMCID: PMC7764985 DOI: 10.3390/polym12122983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
Aptamers are single-stranded oligonucleotides selected by SELEX (Systematic Evolution of Ligands by EXponential Enrichment) able to discriminate target molecules with high affinity and specificity, even in the case of very closely related structures. Aptamers have been produced for several targets including small molecules like mycotoxins; however, the high affinity for their respective target molecules is a critical requirement. In the last decade, the screening through computational methods of aptamers for their affinity against specific targets has greatly increased and is becoming a commonly used procedure due to its convenience and low costs. This paper describes an in-silico approach for rapid screening of ten ssDNA aptamer sequences against fumonisin B1 (FB1, n = 3), aflatoxin B1 (AFB1, n = 2) and ochratoxin A (OTA, n = 5). Theoretical results were compared with those obtained by testing the same aptamers by fluorescent microscale thermophoresis and by magnetic beads assay for their binding affinity (KD) revealing a good agreement.
Collapse
Affiliation(s)
- Fulvio Ciriaco
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy; (V.D.L.); (L.C.)
| | - Vincenzo De Leo
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy; (V.D.L.); (L.C.)
| | - Lucia Catucci
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy; (V.D.L.); (L.C.)
| | - Michelangelo Pascale
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy; (M.P.); (A.F.L.)
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy; (M.P.); (A.F.L.)
| | - Maria C. DeRosa
- Department of Chemistry, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada;
| | - Annalisa De Girolamo
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy; (M.P.); (A.F.L.)
| |
Collapse
|
26
|
Tang L, Huang Y, Lin C, Qiu B, Guo L, Luo F, Lin Z. Highly sensitive and selective aflatoxin B 1 biosensor based on Exonuclease I-catalyzed target recycling amplification and targeted response aptamer-crosslinked hydrogel using electronic balances as a readout. Talanta 2020; 214:120862. [PMID: 32278415 DOI: 10.1016/j.talanta.2020.120862] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 12/11/2022]
Abstract
The biosensors based on aptamer based stimuli-responsive hydrogels have the characters of high specificity, good stability, portability. Electronic balance is one of the most accurate equipment and can be reached nearly in all labs. Aflatoxin B1 (AFB1) is highly toxic and carcinogenic to humans and animals, it is necessary to develop simple and convenient detection method to apply in resource limited area. In this study, a novel strategy for quantitative detection of AFB1 has been developed by combining the high selectivity and convenient of target-responsive hydrogel and the simple of using electronic balance as readout devices. The AFB1 target responsive double crosslinked hydrogel has been constructed using linear hyaluronic acid grafted single-stranded DNA complex as the backbone, AFB1 aptamer and polyethyleneimine as crosslinkers. And platinum nanoparticles (PtNPs) had been embedded in the hydrogel firstly. The present of AFB1 can bind with the aptamer with high affinity and cause the releasing of aptamer from hydrogel. The addition of Exo I can specifically recognize and cleave the aptamer in AFB1-aptamer complex, resulting in the releasing of AFB1, which can react with the hydrogel again, thereby achieving the target cycle. By this means, the hydrogel will collapse and many pre-embedded PtNPs can be released. The transferring of the released PtNPs to a drainage device which contains H2O2 can results in the increasing of the internal pressure since the production of oxygen through the catalytic decomposition of H2O2 by PtNPs has low solubility. Which will cause the discharging of water from the system and this can be collected and weighed by an electronic balance easily. The weight of water has a linear relationship with AFB1 concentration. Under 30 min catalytic time, the linear range is 31.2 μg/kg - 6.2 mg/kg with the detection limit of 9.4 μg/kg (S/N = 3). The proposed method was successfully applied to the detection of AFB1 in peanut samples.
Collapse
Affiliation(s)
- Linyue Tang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yaying Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Cuiying Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Longhua Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Fang Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
27
|
Wang Q, Yang Q, Wu W. Progress on Structured Biosensors for Monitoring Aflatoxin B1 From Biofilms: A Review. Front Microbiol 2020; 11:408. [PMID: 32292390 PMCID: PMC7119432 DOI: 10.3389/fmicb.2020.00408] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Aspergillus exists commonly in many crops and any process of crop growth, harvest, storage, and processing can be polluted by this fungus. Once it forms a biofilm, Aspergillus can produce many toxins, such as aflatoxin B1 (AFB1), ochratoxin, zearalenone, fumonisin, and patulin. Among these toxins, AFB1 possesses the highest toxicity and is labeled as a group I carcinogen in humans and animals. Consequently, the proper control of AFB1 produced from biofilms in food and feed has long been recognized. Moreover, many biosensors have been applied to monitor AFB1 in biofilms in food. Additionally, in recent years, novel molecular recognition elements and transducer elements have been introduced for the detection of AFB1. This review presents an outline of recent progress made in the development of biosensors capable of determining AFB1 in biofilms, such as aptasensors, immunosensors, and molecularly imprinted polymer (MIP) biosensors. In addition, the current feasibility, shortcomings, and future challenges of AFB1 determination and analysis are addressed.
Collapse
Affiliation(s)
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
28
|
Tezerji NS, Foroughi MM, Bezenjani RR, Jandaghi N, Rezaeipour E, Rezvani F. A facile one-pot green synthesis of β-cyclodextrin decorated porous graphene nanohybrid as a highly efficient adsorbent for extracting aflatoxins from maize and animal feeds. Food Chem 2019; 311:125747. [PMID: 31864190 DOI: 10.1016/j.foodchem.2019.125747] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 09/26/2019] [Accepted: 10/19/2019] [Indexed: 01/05/2023]
Abstract
In this paper, β-cyclodextrin (β-CD) supported on porous graphene nanohybrid (β-CDPG) was obtained by self-assembly of functionalized graphene nanosheets into a three-dimensional network in the presence of ascorbic acid via an in situ graphene oxide reduction and β-CD functionalization process during a hydrothermal reaction. The prepared supramolecular nanohybrid was further packed into a reusable syringe filter holder and applied as an adsorbent for solid phase extraction of four aflatoxins (B1, B2, G1, G2). Under optimal conditions, the detection limits and linear dynamic ranges were achieved in the range of 0.0075-0.030 μg kg-1 and 0.025-100 μg kg-1, respectively and the relative standard deviations were less than 6.1%. Good recoveries were observed for analyzing target AFs in maize and cereal-based chicken feed samples ranged from 90.5 to 105%. The method offered simultaneous advantages of high supramolecular recognition and enrichment capability of β-CD and the high specific surface area of the porous graphene.
Collapse
Affiliation(s)
- Najmeh Sheibani Tezerji
- Department of Chemistry, Faculty of Sciences, Islamic Azad University, Kerman Branch, Kerman, Iran; Iranian National Standards Organization of Hormozgan, Iran
| | - Mohammad Mehdi Foroughi
- Department of Chemistry, Faculty of Sciences, Islamic Azad University, Kerman Branch, Kerman, Iran
| | - Rasoul Rezaei Bezenjani
- Department of Chemistry, Faculty of Sciences, Islamic Azad University, Kerman Branch, Kerman, Iran; National Iranian Copper Industries Company, Iran
| | - Nezhat Jandaghi
- Department of Chemistry, Faculty of Sciences, Islamic Azad University, Kerman Branch, Kerman, Iran
| | - Ebrahim Rezaeipour
- Department of Chemistry, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran; Iranian National Standards Organization of Hormozgan, Iran.
| | - Forogh Rezvani
- Iranian National Standards Organization of Hormozgan, Iran
| |
Collapse
|
29
|
|
30
|
Xue Z, Zhang Y, Yu W, Zhang J, Wang J, Wan F, Kim Y, Liu Y, Kou X. Recent advances in aflatoxin B1 detection based on nanotechnology and nanomaterials-A review. Anal Chim Acta 2019; 1069:1-27. [DOI: 10.1016/j.aca.2019.04.032] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 02/02/2023]
|
31
|
Aptamer and nanomaterial based FRET biosensors: a review on recent advances (2014-2019). Mikrochim Acta 2019; 186:563. [PMID: 31338623 DOI: 10.1007/s00604-019-3659-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022]
Abstract
Fluorescence resonance energy transfer, one of the most powerful phenomena for elucidating molecular interactions, has been extensively utilized as a biosensing tool to provide accurate information at the nanoscale. Numerous aptamer- and nanomaterial-based FRET bioassays has been developed for detection of a large variety of molecules. Affinity probes are widely used in biosensors, in which aptamers have emerged as advantageous biorecognition elements, due to their chemical and structural stability. Similarly, optically active nanomaterials offer significant advantages over conventional organic dyes, such as superior photophysical properties, large surface-to-volume ratios, photostability, and longer shelf life. In this report (with 175 references), the use of aptamer-modified nanomaterials as FRET couples is reviewed: quantum dots, upconverting nanoparticles, graphene, reduced graphene oxide, gold nanoparticles, molybdenum disulfide, graphene quantum dots, carbon dots, and metal-organic frameworks. Tabulated summaries provide the reader with useful information on the current state of research in the field. Graphical abstract Schematic representation of a fluorescence resonance energy transfer-based aptamer nanoprobe in the absence and presence of a given target molecule (analyte). Structures are not drawn to their original scales.
Collapse
|
32
|
Tan H, Ma L, Guo T, Zhou H, Chen L, Zhang Y, Dai H, Yu Y. A novel fluorescence aptasensor based on mesoporous silica nanoparticles for selective and sensitive detection of aflatoxin B 1. Anal Chim Acta 2019; 1068:87-95. [PMID: 31072481 DOI: 10.1016/j.aca.2019.04.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/13/2019] [Accepted: 04/08/2019] [Indexed: 11/27/2022]
Abstract
Based on the mesoporous silica nanoparticles (MSN), a novel, simple and label-free aptamer biosensor was designed for the detection of aflatoxin B1 (AFB1). Here, the aptamers were used as molecular recognition probes and "gated molecules" while Rh6G was loaded into the interior of the particles as the signal probe. In the absence of AFB1, the "gate" was closed to prevent the leakage of the signal probe because of the immobilization of aptamers on the surface of MSN-NH2. With the presence of AFB1, the "gate" could be opened to release the signal probe for the specifical binding of aptamers to AFB1. Our results showed that the fluorescence intensity was positively correlated with the concentration of AFB1 (0.5-50 ng mL-1), with the detection limit as low as 0.13 ng mL-1. What's more, this design provides a new approach for rapid, sensitive and selective detection based on aptamers and it could be applied to numerous other analytes if appropriate aptamers are available.
Collapse
Affiliation(s)
- Hongxia Tan
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing, 400715, China.
| | - Ting Guo
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Lu Chen
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yong Yu
- College of Food Science, Southwest University, Chongqing, 400715, China
| |
Collapse
|
33
|
Development of a chemiluminescent aptasensor for ultrasensitive and selective detection of aflatoxin B1 in peanut and milk. Talanta 2019; 201:52-57. [PMID: 31122460 DOI: 10.1016/j.talanta.2019.03.109] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/14/2022]
Abstract
More and more attention about food safety leads to a research hotspot to develop new detection methods for food contaminant. To address the problems of serious interference and low sensitivity, a chemiluminescent aptasensor for the detection of aflatoxin B1(AFB1) in food was developed in this paper. It is based on horseradish peroxidase (HRP) catalyze the luminol chemiluminescence reaction. The hybridization chain reaction (HCR) signal amplification strategy has been used to improve the detection sensitivity. Magnetic separation could further reduce background signal obviously at the same time. AFB1 as a model of analyte to test the capability of our developed assay system. Under the optimal experimental conditions, CL intensity showed a good linear correlation with the concentrations of AFB1 ranging from 0.5 to 40 ng mL-1. The limit of detection was estimated 0.2 ng mL-1 based on 3 times of the signal-to-noise ratio which is lower than those of the previously reported sensors. It could be used to detect AFB1 content in real samples, such as peanuts and milk which were purchased in local supermarket. The results proved that the sensing system has good anti-interference and selectivity. In all, it has potential for practical application in food safety field.
Collapse
|
34
|
GO-amplified fluorescence polarization assay for high-sensitivity detection of aflatoxin B 1 with low dosage aptamer probe. Anal Bioanal Chem 2019; 411:1107-1115. [PMID: 30612175 DOI: 10.1007/s00216-018-1540-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
Abstract
Aflatoxin B1 (AFB1) is the most toxic mycotoxin of the aflatoxins (AFs) and shows carcinogenic, teratogenic and mutagenic effects in humans and animals. AFB1 is widely seen in cereal products such as rice and wheat. This research proposed a low-cost, high-sensitivity fluorescence polarization (FP) assay for detection of AFB1 using aptamer biosensors based on graphene oxide (GO). The aptamers labelled with fluorescein amidite (FAM) were adsorbed on the surface of GO through π-π stacking and electrostatic interaction, thus forming aptamer/GO macromolecular complexes. Under these conditions, the local rotation of fluorophores was limited and the system had a high FP value. When there was AFB1 in the system, aptamers were dissociated from the GO surface and combined with AFB1 owing to their specificity to form aptamer/AFB1 complexes. As a result, large changes were observed in the molecular weights of aptamers before, and after, the combination, therefore leading to the apparent changes in FP value. The results showed that when only 10 nM of aptamer was used, the changes in FP and the AFB1 concentration had a favourable linear relationship within 0.05 to 5 nM of AFB1, and the lowest detection limit (LOD) was 0.05 nM. In addition, the recoveries of rice sample extract ranged from 89.2% to 112%. The method is simple, highly sensitive, cost-efficient and shows potential application prospects.
Collapse
|
35
|
Wang C, Huang X, Tian X, Zhang X, Yu S, Chang X, Ren Y, Qian J. A multiplexed FRET aptasensor for the simultaneous detection of mycotoxins with magnetically controlled graphene oxide/Fe3O4 as a single energy acceptor. Analyst 2019; 144:6004-6010. [DOI: 10.1039/c9an01593k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A multiplexed FRET aptasensor was developed for the simultaneous detection of AFB1 and FB1 with magnetically controlled GO/Fe3O4 as a single energy acceptor.
Collapse
Affiliation(s)
- Chengquan Wang
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang 212013
- PR China
| | - Xingyi Huang
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang 212013
- PR China
| | - Xiaoyu Tian
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang 212013
- PR China
| | - Xiaorui Zhang
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang 212013
- PR China
| | - Shanshan Yu
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang 212013
- PR China
| | - Xianhui Chang
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang 212013
- PR China
| | - Yi Ren
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang 212013
- PR China
| | - Jing Qian
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- PR China
| |
Collapse
|