1
|
Guo L, Fu Z, Li H, Wei R, Guo J, Wang H, Qi J. Smart hydrogel: A new platform for cancer therapy. Adv Colloid Interface Sci 2025; 340:103470. [PMID: 40086017 DOI: 10.1016/j.cis.2025.103470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/17/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Cancer is a significant contributor to mortality worldwide, posing a significant threat to human life and health. The unique bioactivity, ability to precisely control drug release, and minimally invasive properties of hydrogels are indispensable attributes that facilitate optimal performance in cancer therapy. However, conventional hydrogels lack the ability to dynamically respond to changes in the surrounding environment, withstand drastic changes in the microenvironment, and trigger drug release on demand. Therefore, this review focuses on smart-responsive hydrogels that are capable of adapting and responding to external stimuli. We comprehensively summarize the raw materials, preparation, and cross-linking mechanisms of smart hydrogels derived from natural and synthetic materials, elucidate the response principles of various smart-responsive hydrogels according to different stimulation sources. Further, we systematically illustrate the important role played by hydrogels in modern cancer therapies within the context of therapeutic principles. Meanwhile, the smart hydrogel that uses machine learning to design precise drug delivery has shown great prospects in cancer therapy. Finally, we present the outlook on future developments and make suggestions for future related work. It is anticipated that this review will promote the practical application of smart hydrogels in cancer therapy and contribute to the advancement of medical treatment.
Collapse
Affiliation(s)
- Li Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ziming Fu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Haoran Li
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ruibo Wei
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Jing Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| | - Haiwang Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Liu X, Wu Z, Alomar TS, AlMasoud N, Liu X, Han X, Guo N, Weng L, Gao J, Algadi H, Koibasova L, Ydyrys A, Ren J, Guo Z. Poly (vinyl alcohol)/carboxylated cellulose nanofibers composite hydrogel flexible strain sensors. Int J Biol Macromol 2025; 309:142902. [PMID: 40203923 DOI: 10.1016/j.ijbiomac.2025.142902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/21/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
This study introduces a method for constructing a dual cross-linked hydrogel network via combined chemical and physical processes. Carboxylated cellulose nanofibers (CNF-C) and tannic acid (TA) were integrated into a borax-polyvinyl alcohol (PVA) matrix, followed by the incorporation of metal cations (Al3+) to fabricate PVA/CNF-C composite hydrogels. The PVA-TA@CNF-C-Borax-Al3+ hydrogel forms a multi-crosslinked 3D network through dynamic borate ester bonds between PVA and borax, coordination bonds between TA and Al3+, and hydrogen bonds from CNF, endowing the hydrogel with excellent mechanical properties. The PTCB(PVA-TA@CNF-Borax) hydrogel, with a TA to CNF-C mass ratio of 1:4, exhibits superior mechanical strength(1.6 MPa), robust conductivity(1.7 × 10-2 S/cm), and stable thermal properties(95 % at 60 °C). Furthermore, the influence of different valence ions on the hydrogel's properties was systematically investigated through the introduction of Na+, Zn2+, and Al3+ cations. It was found that Al3+ can effectively enhance the tension and elasticity of the crosslinked network, improving the mechanical adaptability and sensitivity of the hydrogel. Additionally, this hydrogel system exhibits excellent strain-sensing capabilities. When employed as a self-powered triboelectric nanogenerator sensor, it can generate a stable open-circuit voltage of 2 V.
Collapse
Affiliation(s)
- Xiaorui Liu
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China; State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zijian Wu
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China; Key Laboratory of Engineering Dielectric and Its Application Technology of Ministry of Education, Harbin University of Science and Technology, Harbin 150040, China; Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Taghrid S Alomar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Xiongjun Liu
- Jiangsu Shangshang Cable Group Co.,Ltd, Liyang 213300, China
| | - Xiao Han
- Jiangsu Shangshang Cable Group Co.,Ltd, Liyang 213300, China
| | - Ning Guo
- Key Laboratory of Engineering Dielectric and Its Application Technology of Ministry of Education, Harbin University of Science and Technology, Harbin 150040, China
| | - Ling Weng
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China; Key Laboratory of Engineering Dielectric and Its Application Technology of Ministry of Education, Harbin University of Science and Technology, Harbin 150040, China.
| | - Junguo Gao
- Key Laboratory of Engineering Dielectric and Its Application Technology of Ministry of Education, Harbin University of Science and Technology, Harbin 150040, China; State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Hassan Algadi
- Department of Electrical Engineering, College of Engineering, Najran university, Najran 11001, Saudi Arabia
| | - Laura Koibasova
- Laboratory of Physiology of the Lymphatic System, Institute of Genetics and Physiology, Al-Farabi Avenue 93, 050040 Almaty, Kazakhstan
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National Unviversity, Al-Farabi Avenue 71a, 050040 Almaty, Kazakhstan
| | - Juanna Ren
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Zhanhu Guo
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
3
|
Guan M, Li H, Tu M, Chen L, Fu C, Yang X, Huang C, Wang F. A novel fluorescent probe with high sensitivity and selectivity for "On-Off-On" sensors for Cu 2+ cations and CN - anions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:125024. [PMID: 39208541 DOI: 10.1016/j.saa.2024.125024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/25/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
A novel fluorescent probe NIPF was synthesized by the Suzuki reaction to recognize Cu2+ and CN-. With the addition of Cu2+, NIPF exhibited strong fluorescence quenching (90 % for NIPF) with a Ksv value of 3.4 × 106 M-1 and a detection limit of 9.04 × 10-10 M. Subsequently, CN- was added to the NIPF-Cu2+ solution, and [Cu(CN)x]n- was formed due to the strong interaction between Cu2+ and CN- leading to fluorescence recovery (89 % for NIPF-Cu2+). In addition, a detection limit of 3.6 × 10-8 M was obtained by fluorescence titration. Meanwhile, it was demonstrated that the sensor achieved 93 %-105 % recovery of Cu2+ in the tested environmental samples, and the practicability of Cu2+ and CN- detection were verified using hydrogels test, with significant color changes observed under 365 nm light. Accordingly, the fluorescent probe NIPF was used to recognize Cu2+ and CN- by the "on-off-on" sensors.
Collapse
Affiliation(s)
- Mingyi Guan
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; National Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Xiamen 361101, China
| | - Hui Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Man Tu
- Jing Brand Research Institute, Jing Brand Co.Ltd, Huangshi 435100, China
| | - Lili Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Chenchen Fu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiyu Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Congshu Huang
- National Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Xiamen 361101, China
| | - Feng Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
4
|
Wang S, Lei L, Tian Y, Ning H, Hu N, Wu P, Jiang H, Zhang L, Luo X, Liu F, Zou R, Wen J, Wu X, Xiang C, Liu J. Strong, tough and anisotropic bioinspired hydrogels. MATERIALS HORIZONS 2024; 11:2131-2142. [PMID: 38376175 DOI: 10.1039/d3mh02032k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Soft materials are widely used in tissue engineering, soft robots, wearable electronics, etc. However, it remains a challenge to fabricate soft materials, such as hydrogels, with both high strength and toughness that are comparable to biological tissues. Inspired by the anisotropic structure of biological tissues, a novel solvent-exchange-assisted wet-stretching strategy is proposed to prepare anisotropic polyvinyl alcohol (PVA) hydrogels by tuning the macromolecular chain movement and optimizing the polymer network. The reinforcing and toughening mechanisms are found to be "macromolecule crystallization and nanofibril formation". These hydrogels exhibit excellent mechanical properties, such as extremely high fracture stress (12.8 ± 0.7 MPa) and fracture strain (1719 ± 77%), excellent modulus (4.51 ± 0.76 MPa), high work of fracture (134.47 ± 9.29 MJ m-3), and fracture toughness (305.04 kJ m-2) compared with other strong hydrogels and even natural tendons. In addition, excellent conductivity, strain sensing capability, water retention, freezing resistance, swelling resistance, and biocompatibility can also be achieved. This work provides a new and effective method to fabricate multifunctional anisotropic hydrogels with high tunable strength and toughness with potential applications in the fields of regenerative medicine, flexible sensors, and soft robotics.
Collapse
Affiliation(s)
- Shu Wang
- College of Aerospace Engineering, Chongqing University, 174 Shazheng St, Shapingba District, Chongqing, 400044, P. R. China.
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Ling Lei
- College of Aerospace Engineering, Chongqing University, 174 Shazheng St, Shapingba District, Chongqing, 400044, P. R. China.
| | - Yuanhao Tian
- Southwest Technology and Engineering Research Institute, Chongqing, 400039, P. R. China
| | - Huiming Ning
- College of Aerospace Engineering, Chongqing University, 174 Shazheng St, Shapingba District, Chongqing, 400044, P. R. China.
| | - Ning Hu
- College of Aerospace Engineering, Chongqing University, 174 Shazheng St, Shapingba District, Chongqing, 400044, P. R. China.
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Hanqing Jiang
- School of Engineering, Westlake University, Hangzhou, 310024, P. R. China
| | - Lidan Zhang
- School of Basic Medicine, Chongqing Medical University, 400042, P. R. China
| | - Xiaolin Luo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Feng Liu
- College of Aerospace Engineering, Chongqing University, 174 Shazheng St, Shapingba District, Chongqing, 400044, P. R. China.
| | - Rui Zou
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Jie Wen
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xiaopeng Wu
- College of Aerospace Engineering, Chongqing University, 174 Shazheng St, Shapingba District, Chongqing, 400044, P. R. China.
| | - Chenxing Xiang
- College of Aerospace Engineering, Chongqing University, 174 Shazheng St, Shapingba District, Chongqing, 400044, P. R. China.
| | - Jie Liu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Changsha, Hunan, 410082, P. R. China.
| |
Collapse
|
5
|
A H, Sofini SPS, Balasubramanian D, Girigoswami A, Girigoswami K. Biomedical applications of natural and synthetic polymer based nanocomposites. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:269-294. [PMID: 37962432 DOI: 10.1080/09205063.2023.2283910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/05/2023] [Indexed: 11/15/2023]
Abstract
Various nanomaterials have been studied for their biomedical application in recent years. Among them, nanocomposites have a prominent medical application in the prevention, diagnosis, and treatment of various diseases. Nanocomposites are made up of polymeric matrix layers composed of synthetic or natural polymers like chitosan, polyethylene glycol, etc. Polymer nanocomposites are inorganic nanoparticles dispersed in a polymer matrix. There are two types of polymeric nanocomposites which include natural and synthetic polymer nanocomposites. These nanocomposites have various biomedical applications, such as medical implants, wound healing, wound dressing, bone repair and replacement, and dental filling. Polymeric nanocomposites have a wide range of biomedical applications due to their high stability, non-immunogenic nature, sustained drug delivery, non-toxic, and can escape reticuloendothelial system uptake along with drug bioavailability improvement. In this review, we have discussed various types of natural and synthetic polymer nanocomposites and their biomedical applications.
Collapse
Affiliation(s)
- Harini A
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Sharon P S Sofini
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Deepika Balasubramanian
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Agnishwar Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Koyeli Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
6
|
Ni F, Chen Y, Wang Z, Zhang X, Gao F, Shao Z, Wang H. Graphene derivative based hydrogels in biomedical applications. J Tissue Eng 2024; 15:20417314241282131. [PMID: 39430737 PMCID: PMC11490963 DOI: 10.1177/20417314241282131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/24/2024] [Indexed: 10/22/2024] Open
Abstract
Graphene and its derivatives are widely used in tissue-engineering scaffolds, especially in the form of hydrogels. This is due to their biocompatibility, electrical conductivity, high surface area, and physicochemical versatility. They are also used in tissue engineering. Tissue engineering is suitable for 3D printing applications, and 3D printing makes it possible to construct 3D structures from 2D graphene, which is a revolutionary technology with promising applications in tissue and organ engineering. In this review, the recent literature in which graphene and its derivatives have been used as the major components of hydrogels is summarized. The application of graphene and its derivative-based hydrogels in tissue engineering is described in detail from different perspectives.
Collapse
Affiliation(s)
- Feifei Ni
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Qu R, Song X, Wang Y, Zhao Y, Fu X. Hydroxyapatite cross-linked in situ polyvinyl alcohol hydrogel for bionic calcified cartilage layer. Colloids Surf B Biointerfaces 2023; 230:113510. [PMID: 37574614 DOI: 10.1016/j.colsurfb.2023.113510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
Many tissue engineering constructs have been investigated for repairing the calcified cartilage layer in the recent years, but engineering a consistent and stable interface to facilitate a graft-to-bone fixation remains a concern. In the work, hydroxyapatite (HA) is modified by diisocyanate (HDI) and integrated with polyvinyl alcohol (PVA) to prepare the hydrogel. The IR shows that HDI is grafted onto HA and helps HA to cross-link in situ in the PVA gel network. When the mass ratio of HA/PVA is 3.5 wt%, the swelling rate in the PBS of different pH reduced with time prolong, and the hydrogel takes on good swelling resistance. The tensile strength and toughness are 1890 KPa and 264 KJ/m-3, respectively, while the compression strength reaches 1125 KPa at compressive strain of 60%. The hydrogel not only is well durable via continuous 100 rounds of compression-recovery, but also has excellent bioactivity. The work will provide a platform for developing multifunctional soft tissue scaffold.
Collapse
Affiliation(s)
- Rui Qu
- School of Chemical Engineering, Changchun University of Technology, China
| | - Xiaofeng Song
- School of Chemical Engineering, Changchun University of Technology, China; Jiangxi Center of Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, China.
| | - Yanhe Wang
- Jiangxi Center of Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, China
| | - Yuze Zhao
- School of Chemical Engineering, Changchun University of Technology, China
| | - Xinyu Fu
- School of Chemical Engineering, Changchun University of Technology, China
| |
Collapse
|
8
|
Yi X, He J, Wei X, Li H, Liu X, Cheng F. A polyphenol and ε-polylysine functionalized bacterial cellulose/PVA multifunctional hydrogel for wound healing. Int J Biol Macromol 2023; 247:125663. [PMID: 37399880 DOI: 10.1016/j.ijbiomac.2023.125663] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/05/2023]
Abstract
Hydrogels for wound dressings have recently attracted considerable attention in the field of biomedical materials. Developing hydrogel dressings with multiple functions, including good antibacterial, mechanical and adhesive properties, to enhance wound regeneration is significant for clinical applications. To this end, a novel hydrogel wound dressing (PB-EPL/TA@BC) was developed, which was prepared by incorporating bacterial cellulose (BC) modified with tannic acid and ε-polylysine (EPL) into a PVA and borax matrix through a simple method without introducing any other chemical reagents. The hydrogel exhibited good adhesion (8.8 ± 0.2 kPa) to porcine skin, and the mechanical properties were significantly improved after adding BC. Meanwhile, it showed good inhibition against Escherichia coli, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (84.1 ± 2.6 %, 86.0 ± 2.3 % and 80.7 ± 4.5 %) in vitro and Methicillin-resistant Staphylococcus aureus (MRSA) in vivo without the use of antibiotics, ensuring that the process of wound repair with a sterile environment. The hydrogel also presented good cytocompatibility and biocompatibility and could achieve hemostasis within 120 s. The in vivo experiments indicated that hydrogel could not only instantly complete hemostasis of the injured liver models but also obviously promote wound healing in a full-thickness skin. Furthermore, the hydrogel accelerated wound healing process by reducing inflammation promoting collagen deposition compared with commercial Tegaderm™ films. Therefore, the hydrogel is a promising high-end dressing material for wound hemostasis and repair for to enhance the wound healing.
Collapse
Affiliation(s)
- Xiaotong Yi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jinmei He
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Xinjing Wei
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hongbin Li
- College of Light Industry and Textile, Qiqihar University, Qiqihar, Heilongjiang 161000, China
| | - Xingyuan Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Feng Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
9
|
Fu Z, Zhang Y, Geng X, Chi K, Liu C, Song C, Cai G, Chen X, Hong Q. Optimization strategies of mesenchymal stem cell-based therapy for acute kidney injury. Stem Cell Res Ther 2023; 14:116. [PMID: 37122024 PMCID: PMC10150535 DOI: 10.1186/s13287-023-03351-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
Considering the high prevalence and the lack of targeted pharmacological management of acute kidney injury (AKI), the search for new therapeutic approaches for it is in urgent demand. Mesenchymal stem cells (MSCs) have been increasingly recognized as a promising candidate for the treatment of AKI. However, clinical translation of MSCs-based therapies is hindered due to the poor retention and survival rates as well as the impaired paracrine ability of MSCs post-delivery. To address these issues, a series of strategies including local administration, three-dimensional culture, and preconditioning have been applied. Owing to the emergence and development of these novel biotechnologies, the effectiveness of MSCs in experimental AKI models is greatly improved. Here, we summarize the different approaches suggested to optimize the efficacy of MSCs therapy, aiming at promoting the therapeutic effects of MSCs on AKI patients.
Collapse
Affiliation(s)
- Zhangning Fu
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yifan Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaodong Geng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- Beidaihe Rehabilitation and Recuperation Center, Chinese People's Liberation Army Joint Logistics Support Force, Qinhuangdao, China
| | - Kun Chi
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chao Liu
- Department of Critical Care Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chengcheng Song
- Department of Nephrology, Beijing Electric Power Hospital, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.
| |
Collapse
|
10
|
Kan Y, Bondareva JV, Statnik ES, Koudan EV, Ippolitov EV, Podporin MS, Kovaleva PA, Kapaev RR, Gordeeva AM, Cvjetinovic J, Gorin DA, Evlashin SA, Salimon AI, Senatov FS, Korsunsky AM. Hydrogel-Inducing Graphene-Oxide-Derived Core–Shell Fiber Composite for Antibacterial Wound Dressing. Int J Mol Sci 2023; 24:ijms24076255. [PMID: 37047227 PMCID: PMC10094162 DOI: 10.3390/ijms24076255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The study reveals the polymer–crosslinker interactions and functionality of hydrophilic nanofibers for antibacterial wound coatings. Coaxial electrospinning leverages a drug encapsulation protocol for a core–shell fiber composite with a core derived from polyvinyl alcohol and polyethylene glycol with amorphous silica (PVA-PEG-SiO2), and a shell originating from polyvinyl alcohol and graphene oxide (PVA-GO). Crosslinking with GO and SiO2 initiates the hydrogel transition for the fiber composite upon contact with moisture, which aims to optimize the drug release. The effect of hydrogel-inducing additives on the drug kinetics is evaluated in the case of chlorhexidine digluconate (CHX) encapsulation in the core of core–shell fiber composite PVA-PEG-SiO2-1x-CHX@PVA-GO. The release rate is assessed with the zero, first-order, Higuchi, and Korsmeyer–Peppas kinetic models, where the inclusion of crosslinking silica provides a longer degradation and release rate. CHX medicated core–shell composite provides sustainable antibacterial activity against Staphylococcus aureus.
Collapse
Affiliation(s)
- Yuliya Kan
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- Correspondence:
| | - Julia V. Bondareva
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
| | - Eugene S. Statnik
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
| | - Elizaveta V. Koudan
- Center for Biomedical Engineering, National University of Science and Technology ‘MISIS’, Leninskiy pr. 4, 119049 Moscow, Russia
| | - Evgeniy V. Ippolitov
- Department of Microbiology, Virology, Immunology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya St. 20, 127473 Moscow, Russia
| | - Mikhail S. Podporin
- Department of Microbiology, Virology, Immunology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya St. 20, 127473 Moscow, Russia
| | - Polina A. Kovaleva
- Center for Biomedical Engineering, National University of Science and Technology ‘MISIS’, Leninskiy pr. 4, 119049 Moscow, Russia
| | - Roman R. Kapaev
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- Department of Chemistry and BINA—BIU Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Alexandra M. Gordeeva
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
| | - Julijana Cvjetinovic
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
| | - Dmitry A. Gorin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
| | - Stanislav A. Evlashin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
| | - Alexey I. Salimon
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- Center for Biomedical Engineering, National University of Science and Technology ‘MISIS’, Leninskiy pr. 4, 119049 Moscow, Russia
| | - Fedor S. Senatov
- Center for Biomedical Engineering, National University of Science and Technology ‘MISIS’, Leninskiy pr. 4, 119049 Moscow, Russia
| | - Alexander M. Korsunsky
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- Multi-Beam Laboratory for Engineering Microscopy, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| |
Collapse
|
11
|
Fabrication of Fibrin/Polyvinyl Alcohol Scaffolds for Skin Tissue Engineering via Emulsion Templating. Polymers (Basel) 2023; 15:polym15051151. [PMID: 36904392 PMCID: PMC10006947 DOI: 10.3390/polym15051151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
In the search for a novel and scalable skin scaffold for wound healing and tissue regeneration, we fabricated a class of fibrin/polyvinyl alcohol (PVA) scaffolds using an emulsion templating method. The fibrin/PVA scaffolds were formed by enzymatic coagulation of fibrinogen with thrombin in the presence of PVA as a bulking agent and an emulsion phase as the porogen, with glutaraldehyde as the cross-linking agent. After freeze drying, the scaffolds were characterized and evaluated for biocompatibility and efficacy of dermal reconstruction. SEM analysis showed that the formed scaffolds had interconnected porous structures (average pore size e was around 330 µm) and preserved the nano-scale fibrous architecture of the fibrin. Mechanical testing showed that the scaffolds' ultimate tensile strength was around 0.12 MPa with an elongation of around 50%. The proteolytic degradation of scaffolds could be controlled over a wide range by varying the type or degree of cross-linking and by fibrin/PVA composition. Assessment of cytocompatibility by human mesenchymal stem cell (MSC) proliferation assays shows that MSC can attach, penetrate, and proliferate into the fibrin/PVA scaffolds with an elongated and stretched morphology. The efficacy of scaffolds for tissue reconstruction was evaluated in a murine full-thickness skin excision defect model. The scaffolds were integrated and resorbed without inflammatory infiltration and, compared to control wounds, promoted deeper neodermal formation, greater collagen fiber deposition, facilitated angiogenesis, and significantly accelerated wound healing and epithelial closure. The experimental data showed that the fabricated fibrin/PVA scaffolds are promising for skin repair and skin tissue engineering.
Collapse
|
12
|
Howard E, Li M, Kozma M, Zhao J, Bae J. Self-strengthening stimuli-responsive nanocomposite hydrogels. NANOSCALE 2022; 14:17887-17894. [PMID: 36448666 DOI: 10.1039/d2nr05408f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Stimuli-responsive hydrogels with self-strengthening properties are promising for the use of autonomous growth and adaptation systems to the surrounding environments by mimicking biological materials. However, conventional stimuli-responsive hydrogels require structural destruction to initiate mechanochemical reactions to grow new polymeric networks and strengthen themselves. Here we report continuous self-strengthening of a nanocomposite hydrogel composed of poly(N-isopropylacrylamide) (PNIPAM) and nanoclay (NC) by using external stimuli such as heat and ionic strength. The internal structures of the NC-PNIPAM hydrogel are rearranged through the swelling-deswelling cycles or immersing in a salt solution, thus its mechanical properties are significantly improved. The effects of concentration of NC in hydrogels, number of swelling-deswelling cycles, and presence of salt in the surrounding environment on the mechanical properties of hydrogels are characterized by nanoindentation and tensile tests. The self-strengthening mechanical performance of the hydrogels is demonstrated by the loading ability. This work may offer promise for applications such as artificial muscles and soft robotics.
Collapse
Affiliation(s)
- Elizabeth Howard
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Minghao Li
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael Kozma
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Jiayu Zhao
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Jinhye Bae
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
- Chemical Engineering Program, Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
13
|
Wang W, Ye R, Xie W, Zhang Y, An S, Li Y, Zhou Y. Roles of the calcified cartilage layer and its tissue engineering reconstruction in osteoarthritis treatment. Front Bioeng Biotechnol 2022; 10:911281. [PMID: 36131726 PMCID: PMC9483725 DOI: 10.3389/fbioe.2022.911281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Sandwiched between articular cartilage and subchondral bone, the calcified cartilage layer (CCL) takes on both biomechanical and biochemical functions in joint development and ordinary activities. The formation of CCL is not only unique in articular cartilage but can also be found in the chondro-osseous junction adjacent to the growth plate during adolescence. The formation of CCL is an active process under both cellular regulation and intercellular communication. Abnormal alterations of CCL can be indications of degenerative diseases including osteoarthritis. Owing to the limited self-repair capability of articular cartilage and core status of CCL in microenvironment maintenance, tissue engineering reconstruction of CCL in damaged cartilage can be of great significance. This review focuses on possible tissue engineering reconstruction methods targeting CCL for further OA treatment.
Collapse
Affiliation(s)
- Weiyang Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixi Ye
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yueyao Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Senbo An
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Senbo An, ; Yusheng Li, ; Yang Zhou,
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Senbo An, ; Yusheng Li, ; Yang Zhou,
| | - Yang Zhou
- Department of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Senbo An, ; Yusheng Li, ; Yang Zhou,
| |
Collapse
|
14
|
Goodarzi R, Ghanbari H, Sarpoolaky H. An Eco‐Friendly Polyvinyl Alcohol/Graphene Oxide‐Based Hydrogel as a Methylene Blue Adsorbent. ChemistrySelect 2022. [DOI: 10.1002/slct.202200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Reyhaneh Goodarzi
- School of Metallurgy & Materials Engineering Iran University of Science and Technology (IUST), Narmak Tehran Iran
| | - Hajar Ghanbari
- School of Metallurgy & Materials Engineering Iran University of Science and Technology (IUST), Narmak Tehran Iran
| | - Hossein Sarpoolaky
- School of Metallurgy & Materials Engineering Iran University of Science and Technology (IUST), Narmak Tehran Iran
| |
Collapse
|
15
|
Zhang X, Wang Y, Wu X, Zhu F, Qin YX, Chen W, Zheng Q. A universal post-treatment strategy for biomimetic composite hydrogel with anisotropic topological structure and wide range of adjustable mechanical properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112654. [DOI: 10.1016/j.msec.2022.112654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
|
16
|
New effect of strong oscillation and anisotropy of electrical conductance in graphene films with vertically aligned carbon nanotubes and monolayer pillared graphene films. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Rivera-Hernández G, Antunes-Ricardo M, Martínez-Morales P, Sánchez ML. Polyvinyl alcohol based-drug delivery systems for cancer treatment. Int J Pharm 2021; 600:120478. [PMID: 33722756 DOI: 10.1016/j.ijpharm.2021.120478] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/23/2021] [Accepted: 03/06/2021] [Indexed: 12/22/2022]
Abstract
Polyvinyl alcohol (PVA) is a biodegradable semicrystalline synthetic polymer that has been used for biomedical applications for several years. In the pharmaceutical area, PVA has been widely used to prepare solid dispersions to improve the solubility of drugs. Furthermore, it has been demonstrated that PVA is highly biocompatible and non-toxic in in-vitro and in-vivo studies. Several reports provided in this review suggest a promising strategy for cancer treatment. Thus far, the current therapy includes a combination of surgery, chemotherapy, and radiotherapy, the effectivity can be limited due to the heterogeneous manifestations of the disease, dose-related toxicity, and side effects. A promising strategy is the implementation of a targeted therapy using hydrogels, microparticles, or nanoparticles (NPs), capable of encapsulating, protecting, transporting, and targeted administration of a therapeutic agent. Considering the relevance of the PVA in conjunction with their copolymers, it has become a promising biodegradable material to build novel functional composites used in the fabrication of hydrogels, microparticles, nanoparticles, and nanocomposites for drug delivery systems in cancer treatment.
Collapse
Affiliation(s)
- Gabriela Rivera-Hernández
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnologia-FEMSA, Ave. Eugenio Garza Sada 2501, Monterrey, Mexico; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnologia-FEMSA, Ave. Eugenio Garza Sada 2501, Monterrey, Mexico
| | - Patricia Martínez-Morales
- CONACYT- Centro de Investigación Biomédica de Oriente-IMSS, Km 4.5 Carretera Federal Atlixco-Metepec, 74360 Metepec, Puebla, Mexico
| | - Mirna L Sánchez
- Laboratorio de Materiales Biotecnológicos (LaMaBio), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, IMBICE-CONICET, Bernal, Argentina.
| |
Collapse
|
18
|
Hasda AM, Vuppaladadium SSR, Qureshi D, Prasad G, Mohanty B, Banerjee I, Shaikh H, Anis A, Sarkar P, Pal K. Graphene oxide reinforced nanocomposite oleogels improves corneal permeation of drugs. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Chen L, Shao J, Yu Q, Wang S. High-strength, anti-fatigue, stretchable self-healing polyvinyl alcohol hydrogel based on borate bonds and hydrogen bonds. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1844740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Lijun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, People’s Republic of China
| | - Jia Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, People’s Republic of China
| | - Qijian Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, People’s Republic of China
| | - Sui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, People’s Republic of China
| |
Collapse
|
20
|
Cao J, Zhao X, Ye L. Facile Method to Fabricate Superstrong and Tough Poly(vinyl alcohol) Hydrogels with High Energy Dissipation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jinlong Cao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xiaowen Zhao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Lin Ye
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
21
|
Talebian S, Mehrali M, Raad R, Safaei F, Xi J, Liu Z, Foroughi J. Electrically Conducting Hydrogel Graphene Nanocomposite Biofibers for Biomedical Applications. Front Chem 2020; 8:88. [PMID: 32175306 PMCID: PMC7056842 DOI: 10.3389/fchem.2020.00088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 01/27/2020] [Indexed: 11/13/2022] Open
Abstract
Conductive biomaterials have recently gained much attention, specifically owing to their application for electrical stimulation of electrically excitable cells. Herein, flexible, electrically conducting, robust fibers composed of both an alginate biopolymer and graphene components have been produced using a wet-spinning process. These nanocomposite fibers showed better mechanical, electrical, and electrochemical properties than did single fibers that were made solely from alginate. Furthermore, with the aim of evaluating the response of biological entities to these novel nanocomposite biofibers, in vitro studies were carried out using C2C12 myoblast cell lines. The obtained results from in vitro studies indicated that the developed electrically conducting biofibers are biocompatible to living cells. The developed hybrid conductive biofibers are likely to find applications as 3D scaffolding materials for tissue engineering applications.
Collapse
Affiliation(s)
- Sepehr Talebian
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Mehdi Mehrali
- Department of Mechanical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Raad Raad
- School of Electrical, Computer and Telecommunications Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Farzad Safaei
- School of Electrical, Computer and Telecommunications Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Jiangtao Xi
- School of Electrical, Computer and Telecommunications Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Zhoufeng Liu
- School of Textile Engineering, Zhongyuan University of Technology, Zhengzhou, China
| | - Javad Foroughi
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Electrical, Computer and Telecommunications Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
22
|
Echave MC, Domingues RMA, Gómez-Florit M, Pedraz JL, Reis RL, Orive G, Gomes ME. Biphasic Hydrogels Integrating Mineralized and Anisotropic Features for Interfacial Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47771-47784. [PMID: 31789494 DOI: 10.1021/acsami.9b17826] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The innate graded structural and compositional profile of musculoskeletal tissue interfaces is disrupted and replaced by fibrotic tissue in the context of disease and degeneration. Tissue engineering strategies focused on the restoration of the transitional complexity found in those junctions present special relevance for regenerative medicine. Herein, we developed a gelatin-based multiphasic hydrogel system, where sections with distinct composition and microstructure were integrated in a single unit. In each phase, hydroxyapatite particles or cellulose nanocrystals (CNC) were incorporated into an enzymatically cross-linked gelatin network to mimic bone or tendon tissue, respectively. Stiffer hydrogels were produced with the incorporation of mineralized particles, and magnetic alignment of CNC resulted in anisotropic structure formation. The evaluation of the biological commitment with human adipose-derived stem cells toward the tendon-to-bone interface revealed an aligned cell growth and higher synthesis and deposition of tenascin in the anisotropic phase, while the activity of the secreted alkaline phosphatase and the expression of osteopontin were induced in the mineralized phase. These results highlight the potential versatility offered by gelatin-transglutaminase enzyme tandem for the development of strategies that mimic the graded, composite, and complex intersections of the connective tissues.
Collapse
Affiliation(s)
- Mari Carmen Echave
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU , Paseo de la Universidad 7 , Vitoria-Gasteiz 01006 , Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz 01006 , Spain
| | - Rui M A Domingues
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , University of Minho , AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra , Barco, 4805-017 Guimarães , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine , Headquarters at University of Minho , Avepark , Barco, 4805-017 Guimarães , Portugal
| | - Manuel Gómez-Florit
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , University of Minho , AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra , Barco, 4805-017 Guimarães , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães , Portugal
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU , Paseo de la Universidad 7 , Vitoria-Gasteiz 01006 , Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz 01006 , Spain
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , University of Minho , AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra , Barco, 4805-017 Guimarães , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine , Headquarters at University of Minho , Avepark , Barco, 4805-017 Guimarães , Portugal
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU , Paseo de la Universidad 7 , Vitoria-Gasteiz 01006 , Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz 01006 , Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua) , Vitoria 01006 , Spain
| | - Manuela E Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , University of Minho , AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra , Barco, 4805-017 Guimarães , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine , Headquarters at University of Minho , Avepark , Barco, 4805-017 Guimarães , Portugal
| |
Collapse
|
23
|
Lin C, Liu Y, Xie X. GO/PVA nanocomposites with significantly enhanced mechanical properties through metal ion coordination. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.11.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Lin C, Ye XY, Xie XM. High-performance multi-functional graphene/hexagonal boron nitride/poly(ethylene oxide) nanocomposites through enhanced interfacial interaction by coordination. RSC Adv 2018; 8:36761-36768. [PMID: 35558909 PMCID: PMC9088852 DOI: 10.1039/c8ra06325g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/05/2018] [Indexed: 11/21/2022] Open
Abstract
In this study, multi-functional nanocomposites with excellent mechanical, electrical and thermal properties were prepared through metal-ion coordination. Reduced graphene oxide (rGO) and hexagonal boron nitride (h-BN) interacted through calcium coordination bonding. Poly(ethylene oxide) (PEO) was added to bridge these two nanomaterials, providing more resistance to tensile deformation. The results of UV-Vis and FTIR spectra proved that coordination bonding was successfully formed among the three compounds. SEM images showed homogenous dispersions of the nanocomposite. After calcium-ion coordination, the mechanical, electrical and thermal properties of Ca2+-coordinated rGO/BN/PEO composite improved significantly, indicating that metal-ion coordination is a potential method for multi-functional nanocomposite fabrication.
Collapse
Affiliation(s)
- Chen Lin
- Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua UniversityBeijing 100084China
| | - Xiong-Ying Ye
- Department of Precision Instrument, Tsinghua UniversityBeijing 100084China
| | - Xu-Ming Xie
- Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua UniversityBeijing 100084China
| |
Collapse
|