1
|
Yang YX, Li P, Zhu BT. Binding of Selected Ligands to Human Protein Disulfide Isomerase and Microsomal Triglyceride Transfer Protein Complex and the Associated Conformational Changes: A Computational Molecular Modelling Study. ChemistryOpen 2025; 14:e202400034. [PMID: 39891321 PMCID: PMC11973510 DOI: 10.1002/open.202400034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 10/20/2024] [Indexed: 02/03/2025] Open
Abstract
Human protein disulfide isomerase (PDI) is a multifunctional protein, and also serves as the β subunit of the human microsomal triglyceride transfer protein (MTP) complex, a lipid transfer machinery. Dysfunction of the MTP complex is associated with certain disease conditions such as abetalipoproteinemia and cardiovascular diseases. It is known that the functions of PDI or the MTP complex can be regulated by the binding of a small-molecule ligand to either of these two proteins. In the present study, the conformational changes of the MTP complex upon the binding of three selected small-molecule ligands (17β-estradiol, lomitapide and a phospholipid) are investigated based on the available biochemical and structural information by using the protein-ligand docking method and molecular dynamics (MD) simulation. The ligand-binding sites, the binding poses and binding strengths, the key binding site residues, and the ligand binding-induced conformational changes in the MTP complex are analyzed based on the MD trajectories. The open-to-closed or closed-to-open transitions of PDI is found to occur in both reduced and oxidized states of PDI and also independent of the presence or absence of small-molecule ligands. It is predicted that lomitapide and 1,2-diacyl-sn-glycero-3-phosphocholine (a phospholipid) can bind inside the lipid-binding pocket in the MTP complex with high affinities, whereas 17β-estradiol interacts with the lipid-binding pocket in addition to its binding to the interface region of the MTP complex. Additionally, lomitapide can bind to the b' domain of PDI as reported earlier for E2. Key residues for the ligand-binding interactions are identified in this study. It will be of interest to further explore whether the binding of small molecules can facilitate the conformational transitions of PDI in the future. The molecular and structural insights gained from the present work are of value for understanding some of the important biological functions of PDI and the MTP complex.
Collapse
Affiliation(s)
- Yong Xiao Yang
- Shenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhen, Guangdong518172China
| | - Peng Li
- Shenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhen, Guangdong518172China
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhen, Guangdong518172China
- Shenzhen Bay LaboratoryShenzhen518055China
| |
Collapse
|
2
|
Ponzar N, Chinnaraj M, Pagotto A, De Filippis V, Flaumenhaft R, Pozzi N. Mechanistic basis of activation and inhibition of protein disulfide isomerase by allosteric antithrombotic compounds. J Thromb Haemost 2025; 23:577-587. [PMID: 39454880 PMCID: PMC11786983 DOI: 10.1016/j.jtha.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Protein disulfide isomerase (PDI) is a promising target for combating thrombosis. Extensive research over the past decade has identified numerous PDI-targeting compounds. However, limited information exists regarding how these compounds control PDI activity, which complicates further development. OBJECTIVES To define the mechanism of action of 2 allosteric antithrombotic compounds of therapeutic interest, quercetin-3-O-rutinoside and bepristat-2a. METHODS A multipronged approach that integrates single-molecule spectroscopy, steady-state kinetics, single-turnover kinetics, and site-specific mutagenesis. RESULTS PDI is a thiol isomerase consisting of 2 catalytic a domains and 2 inactive b domains arranged in the order a-b-b'-a'. The active sites CGHC are located in the a and a' domains. The binding site of quercetin-3-O-rutinoside and bepristat-2a is in the b' domain. Using a library of 9 Förster resonance energy transfer sensors, we showed that quercetin-3-O-rutinoside and bepristat-2a globally alter PDI structure and dynamics, leading to ligand-specific modifications of its shape and reorientation of the active sites. Combined with enzyme kinetics and mutagenesis of the active sites, Förster resonance energy transfer data reveal that binding of quercetin-3-O-rutinoside results in a twisted enzyme with reduced affinity for the substrate. In contrast, bepristat-2a promotes a more compact conformation of PDI, in which a greater enzymatic activity is achieved by accelerating the nucleophilic step of the a domain, leading to faster formation of the covalent enzyme-substrate complex. CONCLUSION This work reveals the mechanistic basis underlying PDI regulation by antithrombotic compounds quercetin-3-O-rutinoside and bepristat-2a and points to novel strategies for furthering the development of PDI-targeting compounds into drugs.
Collapse
Affiliation(s)
- Nathan Ponzar
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Mathivanan Chinnaraj
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Anna Pagotto
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Padua, Italy
| | - Vincenzo De Filippis
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Padua, Italy
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
3
|
Zhu Y, Wang L, Li J, Zhao Y, Yu X, Liu P, Deng X, Liu J, Yang F, Zhang Y, Yu J, Lai L, Wang C, Li Z, Wang L, Luo T. Photoaffinity labeling coupled with proteomics identify PDI-ADAM17 module is targeted by (-)-vinigrol to induce TNFR1 shedding and ameliorate rheumatoid arthritis in mice. Cell Chem Biol 2024; 31:452-464.e10. [PMID: 37913771 DOI: 10.1016/j.chembiol.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 08/01/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
Various biological agents have been developed to target tumor necrosis factor alpha (TNF-α) and its receptor TNFR1 for the rheumatoid arthritis (RA) treatment, whereas small molecules modulating such cytokine receptors are rarely reported in comparison to the biologicals. Here, by revealing the mechanism of action of vinigrol, a diterpenoid natural product, we show that inhibition of the protein disulfide isomerase (PDI, PDIA1) by small molecules activates A disintegrin and metalloprotease 17 (ADAM17) and then leads to the TNFR1 shedding on mouse and human cell membranes. This small-molecule-induced receptor shedding not only effectively blocks the inflammatory response caused by TNF-α in cells, but also reduces the arthritic score and joint damage in the collagen-induced arthritis mouse model. Our study indicates that targeting the PDI-ADAM17 signaling module to regulate the shedding of cytokine receptors by the chemical approach constitutes a promising strategy for alleviating RA.
Collapse
Affiliation(s)
- Yinhua Zhu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China
| | - Yuan Zhao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xuerong Yu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ping Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Deng
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jingjing Liu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fan Yang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Yini Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaojiao Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Luhua Lai
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Chu Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Zhanguo Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China.
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Tuoping Luo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
4
|
Juang YP, Tsai JY, Gu WL, Hsu HC, Lin CL, Wu CC, Liang PH. Discovery of 5-Hydroxy-1,4-naphthoquinone (Juglone) Derivatives as Dual Effective Agents Targeting Platelet-Cancer Interplay through Protein Disulfide Isomerase Inhibition. J Med Chem 2024; 67:3626-3642. [PMID: 38381886 PMCID: PMC10945480 DOI: 10.1021/acs.jmedchem.3c02107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
In this study, a series of 2- and/or 3-substituted juglone derivatives were designed and synthesized. Among them, 9, 18, 22, 30, and 31 showed stronger inhibition activity against cell surface PDI or recombinant PDI and higher inhibitory effects on U46619- and/or collagen-induced platelet aggregation than juglone. The glycosylated derivatives 18 and 22 showed improved selectivity for inhibiting the proliferation of multiple myeloma RPMI 8226 cells, and the IC50 values reached 61 and 48 nM, respectively, in a 72 h cell viability test. In addition, 18 and 22 were able to prevent tumor cell-induced platelet aggregation and platelet-enhanced tumor cell proliferation. The molecular docking showed the amino acid residues Gln243, Phe440, and Leu443 are important for the compound-protein interaction. Our results reveal the potential of juglone derivatives to serve as novel antiplatelet and anticancer dual agents, which are available to interrupt platelet-cancer interplay through covalent binding to PDI catalytic active site.
Collapse
Affiliation(s)
- Yu-Pu Juang
- School
of Pharmacy, College of Medicine, National
Taiwan University, Taipei 100, Taiwan
| | - Ju-Ying Tsai
- Graduate
Institute of Natural Product, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| | - Wan-Lan Gu
- School
of Pharmacy, College of Medicine, National
Taiwan University, Taipei 100, Taiwan
| | - Hui-Ching Hsu
- Graduate
Institute of Natural Product, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| | - Chao-Lung Lin
- School
of Pharmacy, College of Medicine, National
Taiwan University, Taipei 100, Taiwan
| | - Chin-Chung Wu
- Graduate
Institute of Natural Product, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| | - Pi-Hui Liang
- School
of Pharmacy, College of Medicine, National
Taiwan University, Taipei 100, Taiwan
- The
Genomics Research Center, Academia Sinica, Taipei 128, Taiwan
| |
Collapse
|
5
|
Khan AB, Siddiqui U, Fatima S, Rehman AA, Jairajpuri MA. Naringin binds to protein disulfide isomerase to inhibit its activity and modulate the blood coagulation rates: Implications in controlling thrombosis. Int J Biol Macromol 2023; 252:126241. [PMID: 37567521 DOI: 10.1016/j.ijbiomac.2023.126241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Currently used antithrombotic drugs are beset with several drawbacks which necessitates the need for new and cheaper alternatives. Protein disulfide isomerase (PDI) is secreted in the blood plasma in cellular stress conditions and initiates the thrombus formation. A screening of library of natural compounds revealed that naringin had a high binding affinity for the PDI (-8.2 kcal/mol). Recombinant PDI was purified using the affinity chromatography. Incubation of purified PDI (3 μM) with naringin (0-100 μM, pH 7.4, 25 °C) partially modulated its conformation. Consequently, the fluorescence emission spectra of the PDI binding to naringin were assessed using the Stern-Volmer equation, which indicated an association constant of 2.78 × 104 M-1 suggesting an appreciable affinity for the naringin, with a unique binding site. An insulin turbidity assay showed that PDI activity is decreased in the presence of naringin indicating inhibition. Molecular dynamic simulation studies showed the changes in the PDI structure on binding to the naringin. Incubation of naringin (80 μM) in fresh human plasma along with exogenous PDI (175 nM) showed a significant delay in the intrinsic and extrinsic coagulation pathways. We show that naringin is able to modulate the PDI conformation and activity resulting in altered blood coagulation rates.
Collapse
Affiliation(s)
- Abdul Burhan Khan
- Department of Bioscience, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Urfi Siddiqui
- Department of Bioscience, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Sana Fatima
- Department of Bioscience, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ahmed Abdur Rehman
- Department of Bioscience, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | | |
Collapse
|
6
|
Ghosh AK, Khan AH, Das PK. Naphthalimide-Based AIEgens for Sensing Protein Disulfide Isomerase through Thiol-Disulfide Redox Exchange. Anal Chem 2023; 95:13638-13648. [PMID: 37651212 DOI: 10.1021/acs.analchem.3c02442] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Aggregation-induced emission (AIE)-based fluorescent organic nanoparticles (FONPs) with distinctive characteristics are emerging as superior sensors due to their facile fabrication, high signal-to-noise ratio, and good biocompatibility. The present article delineates the detection and analysis of the redox behavior of the protein disulfide isomerase (PDI) enzyme by exploitation of the AIE of novel naphthalimide (NI) derivatives having thiol (-SH) and disulfide (-S-S-) moieties. Self-aggregated spherical-shaped organic nanoparticles were prepared by synthesized NI-based amphiphiles (NISH, NISS, NINSS, and TNINSH) through J-type aggregation in DMSO-water (fw = 99 vol %). Naphthyl residue containing NI-derived amphiphiles (NINSS and TNINSH) exhibited AIE (blue and yellow) at 470 and 550 nm, respectively, in DMSO-water (fw = 99 vol %). NINSS and TNINSH FONPs were suitably utilized in sensing PDI through their redox nature of thiol-disulfide exchange. Fluorescence quenching of NINSS FONPs was observed due to reduction of disulfide to thiol by PDI, whereas emission intensity was progressively red-shifted and enhanced ("Dual-AIE") for TNINSH (containing ER-targeting N-tosylethylenediamine), owing to oxidation of thiol to disulfide by PDI. NINSS and TNINSH FONPs were found to be highly efficient in sensing PDI through the AIE-based "fluorescence off/on" mechanism having limits of detection of ∼12.6-17.7 and ∼11.7-16.5 ng/mL, respectively. In vitro cell imaging for NIH3T3 (noncancer) and B16F10 (melanoma) cells with NINSS and TNINSH FONPs displayed excellent diagnosis of eukaryotic cells upon interaction with indigenous PDI. Notably, detection of cancer cells was more sensitive over the noncancerous cells by these FONPs due to overexpression of PDI within cancer cells.
Collapse
Affiliation(s)
- Anup Kumar Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| | - Aftab Hossain Khan
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| |
Collapse
|
7
|
Zheng G, Lv K, Wang H, Huang L, Feng Y, Gao B, Sun Y, Li Y, Huang J, Jin P, Xu X, Horgen FD, Fang C, Yao G. Piericones A and B as Potent Antithrombotics: Nanomolar Noncompetitive Protein Disulfide Isomerase Inhibitors with an Unexpected Chemical Architecture. J Am Chem Soc 2023; 145:3196-3203. [PMID: 36696679 DOI: 10.1021/jacs.2c12963] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Extracellular protein disulfide isomerase (PDI) is a promising target for thrombotic-related diseases. Four potent PDI inhibitors with unprecedented chemical architectures, piericones A-D (1-4), were isolated from Pieris japonica. Their structures were elucidated by spectroscopic data analysis, chemical methods, quantum 13C nuclear magnetic resonance DP4+ and electronic circular dichroism calculations, and single-crystal X-ray diffraction analysis. Piericones A (1) and B (2) were nanomolar noncompetitive PDI inhibitors possessing an unprecedented 3,6,10,15-tetraoxatetracyclo[7.6.0.04,9.01,12]pentadecane motif with nine contiguous stereogenic centers. Their biosynthetic pathways were proposed to include a key intermolecular aldol reaction and an intramolecular 1,2-migration reaction. Piericone A (1) significantly inhibited in vitro platelet aggregation and fibrin formation and in vivo thrombus formation via the inhibition of extracellular PDI without increasing the bleeding risk. The molecular docking and dynamics simulation of 1 and 2 provided a novel structure basis to develop PDI inhibitors as potent antithrombotics.
Collapse
Affiliation(s)
- Guijuan Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Keyu Lv
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, and The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei 430030, People's Republic of China
| | - Hao Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, and The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei 430030, People's Republic of China
| | - Lang Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Yuanyuan Feng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Biao Gao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Yenan Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Yaofeng Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, and The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei 430030, People's Republic of China
| | - Jiangeng Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Pengfei Jin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Xulin Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, and The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei 430030, People's Republic of China
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, Hawaii 96744, United States
| | - Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, and The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei 430030, People's Republic of China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| |
Collapse
|
8
|
Chetot T, Serfaty X, Carret L, Kriznik A, Sophie-Rahuel-Clermont, Grand L, Jacolot M, Popowycz F, Benoit E, Lambert V, Lattard V. Splice variants of protein disulfide isomerase - identification, distribution and functional characterization in the rat. Biochim Biophys Acta Gen Subj 2023; 1867:130280. [PMID: 36423740 DOI: 10.1016/j.bbagen.2022.130280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 10/28/2022] [Accepted: 11/13/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Protein Disulfide Isomerase (PDI) enzyme is an emerging therapeutic target in oncology and hematology. Although PDI reductase activity has been studied with isolated fragments of the protein, natural structural variations affecting reductase activity have not been addressed. METHODS In this study, we discovered four coding splice variants of the Pdi pre-mRNA in rats. In vitro Michaelis constants and apparent maximum steady-state rate constants after purification and distribution in different rat tissues were determined. RESULTS The consensus sequence was found to be the most expressed splice variant while the second most expressed variant represents 15 to 35% of total Pdi mRNA. The third variant shows a quasi-null expression profile and the fourth was not quantifiable. The consensus sequence splice variant and the second splice variant are widely expressed (transcription level) in the liver and even more present in males. Measurements of the reductase activity of recombinant PDI indicate that the consensus sequence and third splice variant are fully active variants. The second most expressed variant, differing by a lack of signal peptide, was found active but less than the consensus sequence. GENERAL SIGNIFICANCE Our work emphasizes the importance of taking splice variants into account when studying PDI-like proteins to understand the full biological functionalities of PDI.
Collapse
Affiliation(s)
- Thomas Chetot
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France
| | - Xavier Serfaty
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France
| | - Léna Carret
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France
| | | | | | - Lucie Grand
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 69621 Villeurbanne Cedex, France
| | - Maïwenn Jacolot
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 69621 Villeurbanne Cedex, France
| | - Florence Popowycz
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 69621 Villeurbanne Cedex, France
| | - Etienne Benoit
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France
| | - Véronique Lambert
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France
| | - Virginie Lattard
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France.
| |
Collapse
|
9
|
Chen D, Liu Y, Liu P, Zhou Y, Jiang L, Yuan C, Huang M. Orally delivered rutin in lipid-based nano-formulation exerts strong antithrombotic effects by protein disulfide isomerase inhibition. Drug Deliv 2022; 29:1824-1835. [PMID: 35674505 PMCID: PMC9186361 DOI: 10.1080/10717544.2022.2083726] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/21/2022] Open
Abstract
Thrombosis occurs in both macrovasculature and microvasculature, causing various cardio-cerebral vascular diseases. The lack of effective and safe antithrombotic drugs leads to a public health crisis. Mounting evidence suggests that protein disulfide isomerase (PDI) plays a critical role in the initial stage of thrombus formation, motivating the research of the feasibility of PDI inhibitors as novel anti-thrombotics. Rutin, one of the most potent PDI inhibitors, was reported to suppress platelet aggregation and thrombosis in animal models, but further studies and clinical translation were restricted due to its low aqueous solubility and oral bioavailability. In this work, we fabricated rutin-loaded lipid-based nano-formulation (NanoR) and characterized their physical-chemical properties, release profiles, pharmacokinetic process, and pharmacodynamic function against thrombosis in macrovessels and microvessels. NanoR provided increased solubility and dissolution of rutin to achieve earlier Tmax and higher Cmax than the sodium salt of rutin (NaR) after oral gavage. Ex vivo studies demonstrated that NanoR significantly inhibited thrombin generation and clot formation in the plasma of mice. Importantly, such effect was reversed by exogenous recombinant PDI, demonstrating the specificity of the NanoR. In direct current-induced arterial thrombosis model and ferric chloride-induced microvascular thrombosis model, NanoR exhibited greatly enhanced antithrombotic activity compared with NaR. NanoR also showed good safety performance according to tail bleeding assay, global coagulation tests, and histological analysis. Overall, our current results indicated that NanoR offers a promising antithrombotic treatment with potential for clinical translation.
Collapse
Affiliation(s)
- Dan Chen
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| | - Yurong Liu
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| | - Peiwen Liu
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| | - Yang Zhou
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| | - Longguang Jiang
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Mingdong Huang
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| |
Collapse
|
10
|
Liang C, Cai M, Xu Y, Fu W, Wu J, Liu Y, Liao X, Ning J, Li J, Huang M, Yuan C. Identification of Antithrombotic Natural Products Targeting the Major Substrate Binding Pocket of Protein Disulfide Isomerase. JOURNAL OF NATURAL PRODUCTS 2022; 85:1332-1339. [PMID: 35471830 DOI: 10.1021/acs.jnatprod.2c00080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein disulfide isomerase (PDI) is a vital oxidoreductase. Extracellular PDI promotes thrombus formation but does not affect physiological blood hemostasis. Inhibition of extracellular PDI has been demonstrated as a promising strategy for antithrombotic treatment. Herein, we focused on the major substrate binding site, a unique pocket in the PDI b' domain, and identified four natural products binding to PDI by combining virtual screening with tryptophan fluorescence-based assays against a customized natural product library. These hits all directly bound to the PDI-b' domain and inhibited the reductase activity of PDI. Among them, galangin showed the most prominent potency (5.9 μM) against PDI and as a broad-spectrum inhibitor for vascular thiol isomerases. In vivo studies manifested that galangin delayed the time of blood vessel occlusion in an electricity-induced mouse thrombosis model. Molecular docking and dynamics simulation further revealed that the hydroxyl-substituted benzopyrone moiety of galangin deeply inserted into the interface between the PDI-b' substrate-binding pocket and the a' domain. Together, these findings provide a potential antithrombotic drug candidate and demonstrate that the PDI b' domain is a critical domain for inhibitor development. Besides, we also report an innovative high-throughput screening method for the rapid discovery of PDI b' targeted inhibitors.
Collapse
Affiliation(s)
- Chenghui Liang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Meiqin Cai
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Yanyan Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Wei Fu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Juhong Wu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Yurong Liu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Xinyuan Liao
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Jiamin Ning
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| |
Collapse
|
11
|
Liao X, Zhuang X, Liang C, Li J, Flaumenhaft R, Yuan C, Huang M. Flavonoids as Protein Disulfide Isomerase Inhibitors: Key Molecular and Structural Features for the Interaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4475-4483. [PMID: 35377153 DOI: 10.1021/acs.jafc.1c07994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quercetin-3-rutinoside (rutin) is a bioflavonoid that is common in foods. The finding that quercetin-3-rutinoside inhibits protein disulfide isomerase (PDI) and potently blocks thrombosis in vivo has enabled the evaluation of PDI inhibition in multiple animal models of thrombus formation and has prompted clinical studies of PDI inhibition in thrombosis. Nonetheless, how quercetin-3-rutinoside blocks PDI activity remains an unanswered question. Combining NMR spectroscopy, site-directed mutagenesis, and biological assays, we identified H256 as the key residue for PDI interacting with quercetin-3-rutinoside. Quercetin-3-rutinoside inhibited the activity of PDI (WT) but not PDI (H256A). Molecular dynamic simulations indicated that the flavonoid skeleton, but not the rutinoside conjugate, is embedded in the major binding pocket on the b' domain. Among several quercetin-3-rutinoside analogues tested, only compounds with a phenoxyl group at position 7 showed direct binding to PDI, further supporting our molecular model. Studies using purified coagulation factors showed that quercetin-3-rutinoside inhibited the augmenting effects of PDI (WT), but not PDI (H256A), on tissue factor (TF) activity. Quercetin-3-rutinoside also inhibited chemotherapy-induced TF activity enhancement on endothelial cells. Together, our studies show that residue H256 in PDI and the phenoxyl group at position 7 in quercetin-3-rutinoside are essential for inhibition of PDI by quercetin-3-rutinoside. These results provide new insight into the molecular mechanism by which flavonoids block PDI activity.
Collapse
Affiliation(s)
- Xinyuan Liao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xingxing Zhuang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chenghui Liang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
12
|
Carvalho LAC, Queijo RG, Baccaro ALB, Siena ÁDD, Silva WA, Rodrigues T, Maria-Engler SS. Redox-Related Proteins in Melanoma Progression. Antioxidants (Basel) 2022; 11:438. [PMID: 35326089 PMCID: PMC8944639 DOI: 10.3390/antiox11030438] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most aggressive type of skin cancer. Despite the available therapies, the minimum residual disease is still refractory. Reactive oxygen and nitrogen species (ROS and RNS) play a dual role in melanoma, where redox imbalance is involved from initiation to metastasis and resistance. Redox proteins modulate the disease by controlling ROS/RNS levels in immune response, proliferation, invasion, and relapse. Chemotherapeutics such as BRAF and MEK inhibitors promote oxidative stress, but high ROS/RNS amounts with a robust antioxidant system allow cells to be adaptive and cooperate to non-toxic levels. These proteins could act as biomarkers and possible targets. By understanding the complex mechanisms involved in adaptation and searching for new targets to make cells more susceptible to treatment, the disease might be overcome. Therefore, exploring the role of redox-sensitive proteins and the modulation of redox homeostasis may provide clues to new therapies. This study analyzes information obtained from a public cohort of melanoma patients about the expression of redox-generating and detoxifying proteins in melanoma during the disease stages, genetic alterations, and overall patient survival status. According to our analysis, 66% of the isoforms presented differential expression on melanoma progression: NOS2, SOD1, NOX4, PRX3, PXDN and GPX1 are increased during melanoma progression, while CAT, GPX3, TXNIP, and PRX2 are decreased. Besides, the stage of the disease could influence the result as well. The levels of PRX1, PRX5 and PRX6 can be increased or decreased depending on the stage. We showed that all analyzed isoforms presented some genetic alteration on the gene, most of them (78%) for increased mRNA expression. Interestingly, 34% of all melanoma patients showed genetic alterations on TRX1, most for decreased mRNA expression. Additionally, 15% of the isoforms showed a significant reduction in overall patient survival status for an altered group (PRX3, PRX5, TR2, and GR) and the unaltered group (NOX4). Although no such specific antioxidant therapy is approved for melanoma yet, inhibitors or mimetics of these redox-sensitive proteins have achieved very promising results. We foresee that forthcoming investigations on the modulation of these proteins will bring significant advances for cancer therapy.
Collapse
Affiliation(s)
- Larissa A. C. Carvalho
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo 05508-00, SP, Brazil; (L.A.C.C.); (R.G.Q.)
| | - Rodrigo G. Queijo
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo 05508-00, SP, Brazil; (L.A.C.C.); (R.G.Q.)
| | - Alexandre L. B. Baccaro
- Centro de Pós-Graduação e Pesquisa Oswaldo Cruz, Faculdade Oswaldo Cruz, Rua Brigadeiro Galvão, 535, Sao Paulo 01151-000, SP, Brazil;
| | - Ádamo D. D. Siena
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, SP, Brazil; (Á.D.D.S.); (W.A.S.J.)
| | - Wilson A. Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, SP, Brazil; (Á.D.D.S.); (W.A.S.J.)
| | - Tiago Rodrigues
- Center for Natural and Human Sciences, Federal University of ABC, Avenida dos Estados, 5001, Santo Andre 09210-580, SP, Brazil;
| | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo 05508-00, SP, Brazil; (L.A.C.C.); (R.G.Q.)
| |
Collapse
|
13
|
Mnafgui K, Ghazouani L, Hajji R, Tlili A, Derbali F, da Silva FI, Araújo JL, de Oliveira Schinoff B, Bachega JFR, da Silva Santos AL, Allouche N. Oleuropein Protects Against Cerebral Ischemia Injury in Rats: Molecular Docking, Biochemical and Histological Findings. Neurochem Res 2021; 46:2131-2142. [PMID: 34008118 DOI: 10.1007/s11064-021-03351-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022]
Abstract
This study was designed to evaluate the underlying protective mechanisms of oleuropein involved in alleviating brain damage in a rat model of ischemic stroke. Male Wistar rats were divided into four groups; Control, stroke (MCAO), MCAO + clopidogrel (Clop) and MCAO + oleuropein (Ole). Results showed that the MCAO group evidenced significant brain edema (+ 9%) as well as increases of plasma cardiac markers such as lactate deshydrogenase (LDH), creatine kinase (CK-MB), fibrinogen and Trop-T by 11 %, 43%, 168 and 590%, respectively, as compared to the control group. Moreover, infarcted rats exhibited remarkable elevated levels of angiotensin converting enzyme (ACE), both in plasma and brain tissue, with astrocyte swelling and necrotic neurons in the infarct zone, hyponatremia, and increased rate of thiobarbituric acid-reactive substances (TBARS) by 89% associated with decreases in the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (Cat) by 51%, 44 and 42%, respectively, compared to normal control rats. However, MCAO rats treated with oleuropein underwent mitigation of cerebral edema, correction of hyponatremia, remarkable decrease of plasma fibrinogen and cardiac dysfunctional enzymes, inhibition of ACE activity and improvement of oxidative stress status in brain tissue. Furthermore, in silico analysis showed considerable inhibitions of ACE, protein disulfide isomerase (PDI) and TGF-β1, an indicative of potent anti-embolic properties. Overall, oleuropein offers a neuroprotective effect against ischemic stroke through its antioxidative and antithrombotic activities.
Collapse
Affiliation(s)
- Kais Mnafgui
- Laboratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax, P.O. Box 95, 3052, Sfax, Tunisia.
| | - Lakhdar Ghazouani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, University of Gafsa, 2112, Gafsa, Tunisia
| | - Raouf Hajji
- Service de Médecine Interne, Faculté de Médecine de Sousse, Hôpital de Sidi Bouzid, Université de Sousse, Sidi Bouzid 9100, 4200, Sousse, Tunisia
| | - Abir Tlili
- Faculty of Medicine of Monastir, 5000, Monastir, Tunisia
| | - Fatma Derbali
- Service de Médecine Interne, Faculté de Médecine de Sousse, Hôpital de Sidi Bouzid, Université de Sousse, Sidi Bouzid 9100, 4200, Sousse, Tunisia
| | - Francisco Ivan da Silva
- Department of Chemistry, Center for Natural Sciences, Federal University of Piauí, Campus Ministro Petrônio Portela, 64049-550, Teresina, PI, Brazil
| | - Joabe Lima Araújo
- Programa de Pós-Graduação em Nanociência e Nanobiotecnologia, Departamento de Genética e Morfologia, Universidade de Brasília, s/n Campus Universitário Darcy Ribeiro, 70910-900, Brasília, DF, Brasil
| | - Bianca de Oliveira Schinoff
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - José Fernando Ruggiero Bachega
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Programa de pós-graduação em Biologia Celular e molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Antônia Laíres da Silva Santos
- Department of Chemistry, Center for Natural Sciences, Federal University of Piauí, Campus Ministro Petrônio Portela, 64049-550, Teresina, PI, Brazil
| | - Noureddine Allouche
- Laboratory of Organic Chemistry LR17ES08 (Natural Substances Team), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
14
|
Mnafgui K, Khdhiri E, Hajji R, Feriani A, Ivan da Silva F, Laíres da Silva Santos A, Tlili A, Mlayeh S, Bouzidi M, Ammar H, Abid S. Potential effect of new (E)-4-hydroxy -N'-(1-(7-hydroxy-2-oxo-2H-chromen-3-yl) ethylidene) benzohydrazide against acute myocardial infarction: Haemodynamic, biochemical and histological studies. Clin Exp Pharmacol Physiol 2021; 48:107-120. [PMID: 32780517 DOI: 10.1111/1440-1681.13397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 01/14/2023]
Abstract
This study aimed to explore the cardioprotective effect of new synthesized coumarin (E)-4-hydroxy-N'-(1-(7-hydroxy-2-oxo-2H-chromen-3-yl) ethylidene) benzohydrazide denoted (Hyd.Cou) against myocardial infarction disorders. Male Wistar rats were divided into four groups; Control, isoproterenol (ISO), ISO + Acenocoumarol (Ac) and ISO + Hyd.Cou. Results showed that the ISO group exhibited serious alteration in EGC pattern, significant heart hypertrophy (+33%), haemodynamic disturbance and increase in plasma rate of CK-MB, LDH and troponin-T by 44, 53, and 170%, respectively, as compared to Control. Moreover, isoproterenol induced a rise in plasma angiotensin-converting enzyme activity (ACE) by 49%, dyslipidaemia, and increased thiobarbituric acid-reactive substances (TBARS) by 117% associated with decrease in the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) by 46% and 58%, respectively in myocardium. Interestingly, the molecular docking calculation demonstrated strong interactions of Hyd.Cou with the receptors of the protein disulphide isomerase (PDI) which could highlight the antithrombotic effect. Moreover, Hyd.Cou improved plasma cardiac dysfunction biomarkers, mitigated the ventricle remodelling process and alleviated heart oxidative stress damage. Overall, Hyd.Cou prevented the heart from the remodelling process through inhibition of ACE activity and oxidative stress improvement.
Collapse
Affiliation(s)
- Kais Mnafgui
- Laboratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Emna Khdhiri
- Laboratoire de Chimie Appliquée 'Hétérocycles Corps Gras & Polymères', Faculté des Sciences, Université de Sfax, Sfax, Tunisie
| | - Raouf Hajji
- Service de Médecine Interne, Hôpital de Sidi Bouzid, Sidi Bouzid, Tunisie
- Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisie
| | - Anouar Feriani
- Laboratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | | | | | - Abir Tlili
- Faculty of Medicine of Monastir, Monastir, Tunisia
| | - Souhail Mlayeh
- Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisie
| | - Moncef Bouzidi
- Service de Médecine Interne, Hôpital de Sidi Bouzid, Sidi Bouzid, Tunisie
| | - Houcine Ammar
- Laboratoire de Chimie Appliquée 'Hétérocycles Corps Gras & Polymères', Faculté des Sciences, Université de Sfax, Sfax, Tunisie
| | - Souhir Abid
- Laboratoire de Chimie Appliquée 'Hétérocycles Corps Gras & Polymères', Faculté des Sciences, Université de Sfax, Sfax, Tunisie
| |
Collapse
|
15
|
Khan AB, Gupta N, Rashid Q, Ahmad I, Bano S, Siddiqui U, Abid M, Jairajpuri MA. Quercetin 3, 3′, 4′, 5, 7-O- pentasulfate (QPS): A novel activator of protein disulfide isomerase. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
16
|
Gaspar RS, da Silva SA, Stapleton J, Fontelles JLDL, Sousa HR, Chagas VT, Alsufyani S, Trostchansky A, Gibbins JM, Paes AMDA. Myricetin, the Main Flavonoid in Syzygium cumini Leaf, Is a Novel Inhibitor of Platelet Thiol Isomerases PDI and ERp5. Front Pharmacol 2020; 10:1678. [PMID: 32116678 PMCID: PMC7011086 DOI: 10.3389/fphar.2019.01678] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/23/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Flavonoids have been characterized as a prominent class of compounds to treat thrombotic diseases through the inhibition of thiol isomerases. Syzygium cumini is a flavonoid-rich medicinal plant that contains myricetin and gallic acid. Little is known about the potential antiplatelet properties of S. cumini and its constituent flavonoids. OBJECTIVE To evaluate the antiplatelet effects and mechanism of action of a polyphenol-rich extract (PESc) from S. cumini leaf and its most prevalent polyphenols, myricetin and gallic acid. METHODS PESc, myricetin, and gallic acid were incubated with platelet-rich plasma and washed platelets to assess platelet aggregation and activation. In vitro platelet adhesion and thrombus formation as well as in vivo bleeding time were performed. Finally, myricetin was incubated with recombinant thiol isomerases to assess its potential to bind and inhibit these, while molecular docking studies predicted possible binding sites. RESULTS PESc decreased platelet activation and aggregation induced by different agonists. Myricetin exerted potent antiplatelet effects, whereas gallic acid did not. Myricetin reduced the ability of platelets to spread on collagen, form thrombi in vitro without affecting hemostasis in vivo. Fluorescence quenching studies suggested myricetin binds to different thiol isomerases with similar affinity, despite inhibiting only protein disulfide isomerase (PDI) and ERp5 reductase activities. Finally, molecular docking studies suggested myricetin formed non-covalent bonds with PDI and ERp5. CONCLUSIONS PESc and its most abundant flavonoid myricetin strongly inhibit platelet function. Additionally, myricetin is a novel inhibitor of ERp5 and PDI, unveiling a new therapeutic perspective for the treatment of thrombotic disorders.
Collapse
Affiliation(s)
- Renato Simões Gaspar
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Brazil
| | - Samira Abdalla da Silva
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Brazil
| | - Jennifer Stapleton
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - João Lucas de Lima Fontelles
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Brazil
| | - Hiran Reis Sousa
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Brazil
| | - Vinicyus Teles Chagas
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Brazil
| | - Shuruq Alsufyani
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jonathan M. Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Brazil
| |
Collapse
|
17
|
Guyette J, Cherubin P, Serrano A, Taylor M, Abedin F, O'Donnell M, Burress H, Tatulian SA, Teter K. Quercetin-3-Rutinoside Blocks the Disassembly of Cholera Toxin by Protein Disulfide Isomerase. Toxins (Basel) 2019; 11:E458. [PMID: 31382673 PMCID: PMC6722528 DOI: 10.3390/toxins11080458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/24/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Protein disulfide isomerase (PDI) is mainly located in the endoplasmic reticulum (ER) but is also secreted into the bloodstream where its oxidoreductase activity is involved with thrombus formation. Quercetin-3-rutinoside (Q3R) blocks this activity, but its inhibitory mechanism against PDI is not fully understood. Here, we examined the potential inhibitory effect of Q3R on another process that requires PDI: disassembly of the multimeric cholera toxin (CT). In the ER, PDI physically displaces the reduced CTA1 subunit from its non-covalent assembly in the CT holotoxin. This is followed by CTA1 dislocation from the ER to the cytosol where the toxin interacts with its G protein target for a cytopathic effect. Q3R blocked the conformational change in PDI that accompanies its binding to CTA1, which, in turn, prevented PDI from displacing CTA1 from its holotoxin and generated a toxin-resistant phenotype. Other steps of the CT intoxication process were not affected by Q3R, including PDI binding to CTA1 and CT reduction by PDI. Additional experiments with the B chain of ricin toxin found that Q3R could also disrupt PDI function through the loss of substrate binding. Q3R can thus inhibit PDI function through distinct mechanisms in a substrate-dependent manner.
Collapse
Affiliation(s)
- Jessica Guyette
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Patrick Cherubin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Albert Serrano
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Michael Taylor
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Faisal Abedin
- Department of Physics, College of Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Morgan O'Donnell
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Helen Burress
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Suren A Tatulian
- Department of Physics, College of Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|