1
|
Duan J, Zhang Q, Du J, Liu X, Wu S, Liao S. ZnS QDs Stabilized Concurrently with Glutathione and L-cysteine for Highly Sensitive Determining Adriamycin Based on the Fluorescence Enhancement Mechanism. J Fluoresc 2024; 34:2523-2531. [PMID: 37831353 DOI: 10.1007/s10895-023-03452-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
In this work, a facile and fast aqueous-phase synthetic method is proposed to prepare water-soluble ZnS quantum dots stabilized simultaneously with glutathione and L-cysteine (ZnS QDs-GSH/L-Cys). As-synthesized ZnS QDs-GSH/L-Cys were monodispersed spherical nanocrystals with a mean diameter of 5.0 ± 0.7 nm. Besides, the obtained ZnS QDs-GSH/L-Cys emitted more intensive blue fluorescence and exhibited an improved stability in aqueous solution compared with ZnS quantum dots merely stabilized with GSH (ZnS QDs-GSH). Interestingly, Adriamycin, a representative anticancer drug, was added into the solution of ZnS QDs-GSH/L-Cys, the blue fluorescence of ZnS QDs-GSH/L-Cys was greatly enhanced instead of being quenched, which indicated that ZnS QDs-GSH/L-Cys can be used as an enhanced-fluorescence nanoprobe for determining Adriamycin. The observed fluorescent enhancement could be attributed to the blocking of photoinduced electron transfer (PET) in ZnS QDs-GSH/L-Cys due to the electrostatic interaction between the -COO- groups on the surface of quantum dots and the -NH3+ groups in Adriamycin, followed by the coordination interaction among ZnS QDs-GSH/L-Cys and Adriamycin. The fluorescence intensity of ZnS QDs-GSH/L-Cys presented a good linear response with the concentration of Adriamycin ranging from 2.0 to 20 µg•mL-1. The proposed fluorescent nanoprobe exhibited an excellent sensitivity with the LOD of 0.1 µg•mL-1 and a good accuracy for detecting Adriamycin.
Collapse
Affiliation(s)
- Jingyi Duan
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Qikun Zhang
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Juan Du
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Xinyu Liu
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Shengmei Wu
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Shenghua Liao
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China.
| |
Collapse
|
2
|
Pilch-Wrobel A, Kotulska AM, Lahtinen S, Soukka T, Bednarkiewicz A. Engineering the Compositional Architecture of Core-Shell Upconverting Lanthanide-Doped Nanoparticles for Optimal Luminescent Donor in Resonance Energy Transfer: The Effects of Energy Migration and Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200464. [PMID: 35355389 DOI: 10.1002/smll.202200464] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 05/08/2023]
Abstract
Förster Resonance Energy Transfer (FRET) between single molecule donor (D) and acceptor (A) is well understood from a fundamental perspective and is widely applied in biology, biotechnology, medical diagnostics, and bio-imaging. Lanthanide doped upconverting nanoparticles (UCNPs) have demonstrated their suitability as alternative donor species. Nevertheless, while they solve most disadvantageous features of organic donor molecules, such as photo-bleaching, spectral cross-excitation, and emission bleed-through, the fundamental understanding and practical realizations of bioassays with UCNP donors remain challenging. Among others, the interaction between many donor ions (in donor UCNP) and many acceptors anchored on the NP surface and the upconversion itself within UCNPs, complicate the decay-based analysis of D-A interaction. In this work, the assessment of designed virtual core-shell NP (VNP) models leads to the new designs of UCNPs, such as …@Er, Yb@Er, Yb@YbEr, which are experimentally evaluated as donor NPs and compared to the simulations. Moreover, the luminescence rise and decay kinetics in UCNP donors upon RET is discussed in newly proposed disparity measurements. The presented studies help to understand the role of energy-transfer and energy migration between lanthanide ion dopants and how the architecture of core-shell UCNPs affects their performance as FRET donors to organic acceptor dyes.
Collapse
Affiliation(s)
- Aleksandra Pilch-Wrobel
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul.Okolna 2, Wrocław, 50-422, Poland
| | - Agata Maria Kotulska
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul.Okolna 2, Wrocław, 50-422, Poland
| | - Satu Lahtinen
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Artur Bednarkiewicz
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul.Okolna 2, Wrocław, 50-422, Poland
| |
Collapse
|
3
|
Liu YQ, Qin LY, Li HJ, Wang YX, Zhang R, Shi JM, Wu JH, Dong GX, Zhou P. Application of lanthanide-doped upconversion nanoparticles for cancer treatment: a review. Nanomedicine (Lond) 2021; 16:2207-2242. [PMID: 34533048 DOI: 10.2217/nnm-2021-0214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
With the excellent ability to transform near-infrared light to localized visible or UV light, thereby achieving deep tissue penetration, lanthanide ion-doped upconversion nanoparticles (UCNP) have emerged as one of the most striking nanoscale materials for more effective and safer cancer treatment. Up to now, UCNPs combined with photosensitive components have been widely used in the delivery of chemotherapy drugs, photodynamic therapy and photothermal therapy. Applications in these directions are reviewed in this article. We also highlight microenvironmental tumor monitoring and precise targeted therapies. Then we briefly summarize some new trends and the existing challenges for UCNPs. We hope this review can provide new ideas for future cancer treatment based on UCNPs.
Collapse
Affiliation(s)
- Yu-Qi Liu
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Li-Ying Qin
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Hong-Jiao Li
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yi-Xi Wang
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Rui Zhang
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jia-Min Shi
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jin-Hua Wu
- Department of Materials Science, School of Physical Science & Technology, Key Laboratory of Special Function Materials & Structure Design of Ministry of Education, Lanzhou University, Lanzhou, 730000, PR China
| | - Gen-Xi Dong
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Ping Zhou
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
4
|
Ansari AA, Thakur VK, Chen G. Functionalized upconversion nanoparticles: New strategy towards FRET-based luminescence bio-sensing. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213821] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Huang H, Wu L, Cheng S, Wu X, Zhan S, Liu Y. Upconversion nanoparticle–Ag@C@Ag composite films for rapid temperature sensing. CrystEngComm 2021. [DOI: 10.1039/d0ce01873b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The response rate of optical temperature sensing of upconversion nanoparticles is significantly improved by coupling with Ag@C@Ag nanoparticles which have excellent thermal conductivity.
Collapse
Affiliation(s)
- Hu Huang
- Department of Physics and Electronic Science
- Hunan University of Science and Technology
- Xiangtan
- China
| | - Lingqiong Wu
- Department of Physics and Electronic Science
- Hunan University of Science and Technology
- Xiangtan
- China
| | - Shengbin Cheng
- Department of Physics and Electronic Science
- Hunan University of Science and Technology
- Xiangtan
- China
| | - Xiaofeng Wu
- Department of Computer and Information Engineering
- Hunan University of Technology and Business
- Changsha
- China
| | - Shiping Zhan
- Department of Physics and Electronic Science
- Hunan University of Science and Technology
- Xiangtan
- China
| | - Yunxin Liu
- Department of Physics and Electronic Science
- Hunan University of Science and Technology
- Xiangtan
- China
- Department of Computer and Information Engineering
| |
Collapse
|
6
|
Lim K, Kim HK, Le XT, Nguyen NT, Lee ES, Oh KT, Choi HG, Youn YS. Highly Red Light-Emitting Erbium- and Lutetium-Doped Core-Shell Upconverting Nanoparticles Surface-Modified with PEG-Folic Acid/TCPP for Suppressing Cervical Cancer HeLa Cells. Pharmaceutics 2020; 12:E1102. [PMID: 33212942 PMCID: PMC7698343 DOI: 10.3390/pharmaceutics12111102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) combined with upconverting nanoparticles (UCNPs) are viewed together as an effective method of ablating tumors. After absorbing highly tissue-penetrating near-infrared (NIR) light, UCNPs emit a shorter wavelength light (~660 nm) suitable for PDT. In this study, we designed and prepared highly red fluorescence-emitting silica-coated core-shell upconverting nanoparticles modified with polyethylene glycol (PEG5k)-folic acid and tetrakis(4-carboxyphenyl)porphyrin (TCPP) (UCNPs@SiO2-NH2@FA/PEG/TCPP) as an efficient photodynamic agent for killing tumor cells. The UCNPs consisted of two simple lanthanides, erbium and lutetium, as the core and shell, respectively. The unique core-shell combination enabled the UCNPs to emit red light without green light. TCPP, folic acid, and PEG were conjugated to the outer silica layer of UCNPs as a photosensitizing agent, a ligand for tumor attachment, and a dispersing stabilizer, respectively. The prepared UCNPs of ~50 nm diameter and -34.5 mV surface potential absorbed 808 nm light and emitted ~660 nm red light. Most notably, these UCNPs were physically well dispersed and stable in the aqueous phase due to PEG attachment and were able to generate singlet oxygen (1O2) with a high efficacy. The HeLa cells were treated with each UCNP sample (0, 1, 5, 10, 20, 30 μg/mL as a free TCPP). The results showed that the combination of UCNPs@SiO2-NH2@FA/PEG/TCPP and the 808 nm laser was significantly cytotoxic to HeLa cells, almost to the same degree as naïve TCPP plus the 660 nm laser based on MTT and Live/Dead assays. Furthermore, the UCNPs@SiO2-NH2@FA/PEG/TCPP was well internalized into HeLa cells and three-dimensional HeLa spheroids, presumably due to the surface folic acid and small size in conjunction with endocytosis and the nonspecific uptake. We believe that our UCNPs@SiO2-NH2@FA/PEG/TCPP will serve as a new platform for highly efficient and deep-penetrating photodynamic agents suitable for various tumor treatments.
Collapse
Affiliation(s)
- Kyungseop Lim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea; (K.L.); (H.K.K.); (X.T.L.); (N.T.N.)
| | - Hwang Kyung Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea; (K.L.); (H.K.K.); (X.T.L.); (N.T.N.)
| | - Xuan Thien Le
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea; (K.L.); (H.K.K.); (X.T.L.); (N.T.N.)
| | - Nguyen Thi Nguyen
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea; (K.L.); (H.K.K.); (X.T.L.); (N.T.N.)
| | - Eun Seong Lee
- Division of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do 14662, Korea;
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Korea;
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea; (K.L.); (H.K.K.); (X.T.L.); (N.T.N.)
| |
Collapse
|
7
|
Le XT, Youn YS. Emerging NIR light-responsive delivery systems based on lanthanide-doped upconverting nanoparticles. Arch Pharm Res 2020; 43:134-152. [DOI: 10.1007/s12272-020-01208-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022]
|
8
|
Quarta A, Piccirillo C, Mandriota G, Di Corato R. Nanoheterostructures (NHS) and Their Applications in Nanomedicine: Focusing on In Vivo Studies. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E139. [PMID: 30609839 PMCID: PMC6337150 DOI: 10.3390/ma12010139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022]
Abstract
Inorganic nanoparticles have great potential for application in many fields, including nanomedicine. Within this class of materials, inorganic nanoheterostructures (NHS) look particularly promising as they can be formulated as the combination of different domains; this can lead to nanosystems with different functional properties, which, therefore, can perform different functions at the same time. This review reports on the latest development in the synthesis of advanced NHS for biomedicine and on the tests of their functional properties in in vivo studies. The literature discussed here focuses on the diagnostic and therapeutic applications with special emphasis on cancer. Considering the diagnostics, a description of the NHS for cancer imaging and multimodal imaging is reported; more specifically, NHS for magnetic resonance, computed tomography and luminescence imaging are considered. As for the therapeutics, NHS employed in magnetic hyperthermia or photothermal therapies are reported. Examples of NHS for cancer theranostics are also presented, emphasizing their dual usability in vivo, as imaging and therapeutic tools. Overall, NHS show a great potential for biomedicine application; further studies, however, are necessary regarding the safety associated to their use.
Collapse
Affiliation(s)
- Alessandra Quarta
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Clara Piccirillo
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Giacomo Mandriota
- Department of Mathematics and Physics "E. De Giorgi", University of Salento, via Arnesano, 73100 Lecce, Italy.
| | - Riccardo Di Corato
- Department of Mathematics and Physics "E. De Giorgi", University of Salento, via Arnesano, 73100 Lecce, Italy.
| |
Collapse
|
9
|
Shi L, Hu J, Wu X, Zhan S, Hu S, Tang Z, Chen M, Liu Y. Upconversion core/shell nanoparticles with lowered surface quenching for fluorescence detection of Hg2+ ions. Dalton Trans 2018; 47:16445-16452. [PMID: 30352108 DOI: 10.1039/c8dt02853b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, we reported a fluorescent nanoprobe assembled with upconversion core/shell nanoparticles and a chromophore ruthenium complex (N719@UCNPs).
Collapse
Affiliation(s)
- Lichun Shi
- Key Laboratory of Organic Polymer Photoelectric Materials
- School of Science
- Xijing University
- Xi'an
- China
| | - Junshan Hu
- School of Physics
- University of Electronic Science and Technology of China
- Chengdu
- China
| | - Xiaofeng Wu
- Department of Information Science
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Shiping Zhan
- Department of Physics and Electronic Science
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Shigang Hu
- Department of Information Science
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Zhijun Tang
- Department of Information Science
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Mingshu Chen
- Key Laboratory of Organic Polymer Photoelectric Materials
- School of Science
- Xijing University
- Xi'an
- China
| | - Yunxin Liu
- Department of Physics and Electronic Science
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| |
Collapse
|