1
|
Krappmann D, Hirsch A. Synthesis and photoinduced switching properties of C 7-heteroatom containing push-pull norbornadiene derivatives. Beilstein J Org Chem 2025; 21:807-816. [PMID: 40297250 PMCID: PMC12035880 DOI: 10.3762/bjoc.21.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
We report the synthesis and characterization of heteroatom-incorporated norbornadiene (NBD) derivatives. Push-pull substitution on the 2 and 3 position as well as introduction of oxygen or nitrogen at position 7 of the NBD scaffold have led to the development of a new family of photoswitches. We studied the potential conversion of norbornadiene to quadricyclane (QC) isomers. As main investigation tools, UV-vis and NMR spectroscopy were utilized. We determined significant spectral features of the formed NBD species, including λmax and λonset values, all of which exhibit redshifts compared to their isocyclic counterparts. Additionally, the selected QC isomers were subjected to thermal and catalytic back-conversion studies.
Collapse
Affiliation(s)
- Daniel Krappmann
- Department Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger Straße 10, 91058 Erlangen, Germany
| | - Andreas Hirsch
- Department Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger Straße 10, 91058 Erlangen, Germany
| |
Collapse
|
2
|
Oberhof N, Darian LKP, Dreuw A. Meta-Connected Oligo-Azobenzenes Outperform Their Para Counterparts. Chemphyschem 2025; 26:e202400799. [PMID: 39504497 PMCID: PMC11832058 DOI: 10.1002/cphc.202400799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/08/2024]
Abstract
Systems with multiple photoswitchable units in one molecule have attracted considerable attention in the past years as they are useful for a broad variety of possible applications. Especially, linked azobenzenes sharing one benzene ring are of high interest since their direct linkage introduces an additional photoswitchable unit at only small increase in molecular weight. In this spirit, linear oligo-azobenzenes had been synthesized, though their photochemical properties have only been investigated for short chain lengths. In this study, we use (time-dependent) density functional methodology for the evaluation of the excitations of meta- and para-connected oligo-azobenzenes to predict their switching ability. It becomes apparent, that the meta connection pattern enables each azobenzene subunit to act as an individual switchable unit, whereas they are strongly coupled and loose their individuality in para connection. Therefore, meta-oligo-azobenzenes are ideal candidates for future studies of azobenzene-based functional polymers, while para-oligo-azobenzenes are not.
Collapse
Affiliation(s)
- Nils Oberhof
- Interdisciplinary Center for Scientific ComputingHeidelberg UniversityIm Neuenheimer Feld 20569120HeidelbergGermany
| | - Leon Kambiz Paschai Darian
- Interdisciplinary Center for Scientific ComputingHeidelberg UniversityIm Neuenheimer Feld 20569120HeidelbergGermany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific ComputingHeidelberg UniversityIm Neuenheimer Feld 20569120HeidelbergGermany
| |
Collapse
|
3
|
Titov E. The Role of Double Excitations in Exciton Dynamics of Multiazobenzenes: Trisazobenzenophane as a Test Case. J Phys Chem Lett 2024; 15:7482-7488. [PMID: 39011968 DOI: 10.1021/acs.jpclett.4c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Molecular exciton dynamics underlie energy and charge transfer processes in organic multichromophoric systems. A particularly interesting class of the latter is multiphotochromic systems made of molecules capable of photochemical transformations. Exciton dynamics in assemblies of photoswitches have been recently investigated using either the molecular exciton model or supermolecular configuration interaction (CI) singles, both approaches being based on a semiempirical Hamiltonian and combined with surface hopping molecular dynamics. Here, we study how inclusion of double excitations in nonadiabatic dynamics simulations affects exciton dynamics of multiazobenzenes, using trisazobenzenophane as an example. We find that both CI singles and CI singles and doubles yield virtually the same time scale of dynamical exciton localization, ∼50 fs for the studied multiazobenzene. However, inclusion of double excitations considerably affects the excited state lifetimes and isomerization quantum yields.
Collapse
Affiliation(s)
- Evgenii Titov
- University of Potsdam, Institute of Chemistry, Theoretical Chemistry, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| |
Collapse
|
4
|
Titov E, Beqiraj A. Exciton States of Azobenzene Aggregates: A First‐Principles Study. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Affiliation(s)
- Evgenii Titov
- University of Potsdam, Institute of Chemistry, Theoretical Chemistry Karl‐Liebknecht‐Straße 24‐25 14476 Potsdam Germany
| | - Alkit Beqiraj
- University of Potsdam, Institute of Chemistry, Theoretical Chemistry Karl‐Liebknecht‐Straße 24‐25 14476 Potsdam Germany
| |
Collapse
|
5
|
Sun S, Liang S, Xu WC, Wang M, Gao J, Zhang Q, Wu S. Photoswitches with different numbers of azo chromophores for molecular solar thermal storage. SOFT MATTER 2022; 18:8840-8849. [PMID: 36373235 DOI: 10.1039/d2sm01073a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We investigate three azo-chromophore-containing photoswitches (1, 2 and 3) for molecular solar thermal storage (MOST) based on reversible Z-E isomerization. 1, 2 and 3 are photoswitchable compounds that contain one, two and three azo chromophores, respectively. In solution, 1, 2 and 3 were charged via UV-light-induced E-to-Z isomerization. Among these three compounds, 2 exhibited an energy density as high as 272 ± 1.8 J g-1, which showed the best energy storage performance. This result originated from the low molecular weight, a high degree of photoisomerization, and moderate steric hindrance of 2, which demonstrated the advantages of the meta-bisazobenzene structure for MOST. In addition, we studied the performances of these photoswitches in the solvent-free state. Only 1 showed photoinduced reversible solid-to-liquid transitions, which enabled the charging of 1 in a solvent-free state. The stored energy density for 1 in a solvent-free state was 237 ± 1.5 J g-1. By contrast, 2 and 3 could not be charged in the solvent-free state due to the lack of solid-state photoisomerization. Our findings provide a better understanding of the structure-performance relationship for azobenzenebased MOST and pave the way for the development of high-density solar thermal fuels.
Collapse
Affiliation(s)
- Shaodong Sun
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Shuofeng Liang
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Wen-Cong Xu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Minghao Wang
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Jiangang Gao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Qijin Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
6
|
Dhiman A, Paras, Ramachandran C. Opto-electronic properties of isomers of azobispyridine. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
On the Computational Design of Azobenzene-Based Multi-State Photoswitches. Int J Mol Sci 2022; 23:ijms23158690. [PMID: 35955820 PMCID: PMC9369132 DOI: 10.3390/ijms23158690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
In order to theoretically design multi-state photoswitches with specific properties, an exhaustive computational study is first carried out for an azobenzene dimer that has been recently synthesized and experimentally studied. This study allows for a full comprehension of the factors that govern the photoactivated isomerization processes of these molecules so to provide a conceptual/computational protocol that can be applied to generic multi-state photoswitches. From this knowledge a new dimer with a similar chemical design is designed and also fully characterized. Our theoretical calculations predict that the new dimer proposed is one step further in the quest for a double photoswitch, where the four metastable isomers could be selectively interconverted through the use of different irradiation sequences.
Collapse
|
8
|
Kumar P, Gupta D, Grewal S, Srivastava A, Kumar Gaur A, Venkataramani S. Multiple Azoarenes Based Systems - Photoswitching, Supramolecular Chemistry and Application Prospects. CHEM REC 2022; 22:e202200074. [PMID: 35860915 DOI: 10.1002/tcr.202200074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/16/2022] [Indexed: 11/05/2022]
Abstract
In the recent decades, the investigations on photoresponsive molecular systems with multiple azoarenes are quite popular in diverse perspectives ranging from fundamental understanding of multiple photoswitches, supramolecular chemistry, and various application prospects. In fact, several insightful and conceptual designs of such systems were investigated with architectural distinctions. In particular, the demonstration of applications such as data storage with the help of multistate or orthogonal photoswitches, light modulation of catalysis via cooperative switching, sensors using supramolecular host-guest interactions, and materials such as liquid crystals, grating, actuators, etc. are some of the milestones in this area. Herein, we cover the recent advancements in the research areas of multiazoarenes containing systems that have been classified into Type-1 {linear, non-linear, and core-based (A)}, Type-2 {tripodal C3 -symmetric (C3)} and Type-3 {macrocyclic (M)} structural motifs.
Collapse
Affiliation(s)
- Pravesh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Debapriya Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Surbhi Grewal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Anjali Srivastava
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Ankit Kumar Gaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| |
Collapse
|
9
|
Dowds M, Stenspil SG, de Souza JH, Laursen BW, Cacciarini M, Nielsen MB. Orthogonal‐ and Path‐dependent Photo/Acidoswitching in an Eight‐state Dihydroazulene‐Spiropyran Dyad. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mathias Dowds
- University of Copenhagen Department of Chemistry DENMARK
| | | | | | - Bo W. Laursen
- University of Copenhagen Department of Chemistry DENMARK
| | | | - Mogens Brøndsted Nielsen
- University of Copenhagen Department of Chemistry Universitetsparken 5 DK-2100 Copenhagen DENMARK
| |
Collapse
|
10
|
Truong VX, Ehrmann K, Seifermann M, Levkin PA, Barner-Kowollik C. Wavelength Orthogonal Photodynamic Networks. Chemistry 2022; 28:e202104466. [PMID: 35213069 PMCID: PMC9310740 DOI: 10.1002/chem.202104466] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/17/2022]
Abstract
The ability of light to remotely control the properties of soft matter materials in a dynamic fashion has fascinated material scientists and photochemists for decades. However, only recently has our ability to map photochemical reactivity in a finely wavelength resolved fashion allowed for different colors of light to independently control the material properties of polymer networks with high precision, driven by monochromatic irradiation enabling orthogonal reaction control. The current concept article highlights the progress in visible light‐induced photochemistry and explores how it has enabled the design of polymer networks with dynamically adjustable properties. We will explore current applications ranging from dynamic hydrogel design to the light‐driven adaptation of 3D printed structures on the macro‐ and micro‐scale. While the alternation of mechanical properties via remote control is largely reality for soft matter materials, we herein propose the next frontiers for adaptive properties, including remote switching between conductive and non‐conductive properties, hydrophobic and hydrophilic surfaces, fluorescent or non‐fluorescent, and cell adhesive vs. cell repellent properties.
Collapse
Affiliation(s)
- Vinh X Truong
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Katharina Ehrmann
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Maximilian Seifermann
- Institute of Biological and Chemical Systems, Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Pl. 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Pavel A Levkin
- Institute of Biological and Chemical Systems, Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Pl. 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Institute for Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| |
Collapse
|
11
|
Gerwien A, Jehle B, Irmler M, Mayer P, Dube H. An Eight-State Molecular Sequential Switch Featuring a Dual Single-Bond Rotation Photoreaction. J Am Chem Soc 2022; 144:3029-3038. [PMID: 35157802 PMCID: PMC8874910 DOI: 10.1021/jacs.1c11183] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Typical photoswitches
interconvert between two different states
by simple isomerization reactions, which represents a fundamental
limit for applications. To expand the switching capacity usually different
photoswitches have to be linked together leading to strong increase
in molecular weight, diminished switching function, and less precision
and selectivity of switching events. Herein we present an approach
for solving this essential problem with a different photoswitching
concept. A basic molecular switch architecture provides precision
photoswitching between eight different states via controlled rotations
around three adjacent covalent bonds. All eight states can be populated
one after another in an eight-step cycle by alternating between photochemical
Hula-Twist isomerizations and thermal single-bond rotations. By simply
changing solvent and temperature the same switch can also undergo
a different cycle instead interconverting just five isomers in a selective
sequence. This behavior is enabled through the discovery of an unprecedented
photoreaction, a one-photon dual single-bond rotation.
Collapse
Affiliation(s)
- Aaron Gerwien
- Ludwig-Maximilians Universität München, Department of Chemistry and Center for Integrated Protein Science CIPSM, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Benjamin Jehle
- Ludwig-Maximilians Universität München, Department of Chemistry and Center for Integrated Protein Science CIPSM, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Marvin Irmler
- Ludwig-Maximilians Universität München, Department of Chemistry and Center for Integrated Protein Science CIPSM, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Peter Mayer
- Ludwig-Maximilians Universität München, Department of Chemistry and Center for Integrated Protein Science CIPSM, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Henry Dube
- Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| |
Collapse
|
12
|
Morikawa MA, Yamanaka Y, Kimizuka N. Liquid bisazobenzenes as molecular solar thermal fuel with enhanced energy density. CHEM LETT 2022. [DOI: 10.1246/cl.210822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masa-aki Morikawa
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395
- Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395
| | - Yuta Yamanaka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395
- Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395
| |
Collapse
|
13
|
Sanchez DM, Raucci U, Martínez TJ. In Silico Discovery of Multistep Chemistry Initiated by a Conical Intersection: The Challenging Case of Donor-Acceptor Stenhouse Adducts. J Am Chem Soc 2021; 143:20015-20021. [PMID: 34761899 DOI: 10.1021/jacs.1c06648] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Detailed mechanistic understanding of multistep chemical reactions triggered by internal conversion via a conical intersection is a challenging task that emphasizes limitations in theoretical and experimental techniques. We present a discovery-based, hypothesis-free computational approach based on first-principles molecular dynamics to discover and refine the switching mechanism of donor-acceptor Stenhouse adducts (DASAs). We simulate the photochemical experiment in silico, following the "hot" ground state dynamics for 10 ps after photoexcitation. Using state-of-the-art graphical processing units-enabled electronic structure calculations we performed in total ∼2 ns of nonadiabatic ab initio molecular dynamics discovering (a) critical intermediates that are involved in the open-to-closed transformation, (b) several competing pathways which lower the overall switching yield, and (c) key elements for future design strategies. Our dynamics describe the natural evolution of both the nuclear and electronic degrees of freedom that govern the interconversion between DASA ground-state intermediates, exposing significant elements for future design strategies of molecular switches.
Collapse
Affiliation(s)
- David M Sanchez
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.,Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Umberto Raucci
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.,Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Todd J Martínez
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.,Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
14
|
ortho-Substituted 2-Phenyldihydroazulene Photoswitches: Enhancing the Lifetime of the Photoisomer by ortho-Aryl Interactions. Molecules 2021; 26:molecules26216462. [PMID: 34770871 PMCID: PMC8588411 DOI: 10.3390/molecules26216462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 11/17/2022] Open
Abstract
Photochromic molecules are systems that undergo a photoisomerization to high-energy isomers and are attractive for the storage of solar energy in a closed-energy cycle, for example, in molecular solar thermal energy storage systems. One challenge is to control the discharge time of the high-energy isomer. Here, we show that different substituents in the ortho position of a phenyl ring at C-2 of dihydroazulene (DHA-Ph) significantly increase the half-life of the metastable vinylheptafulvene (VHF-Ph) photoisomer; thus, the energy-releasing VHF-to-DHA back-reaction rises from minutes to days in comparison to the corresponding para- and meta-substituted systems. Systems with two photochromic DHA-Ph units connected by a diacetylene bridge either at the para, meta and ortho positions and corresponding to a linear or to a cross-conjugated pathway between the two photochromes are also presented. Here, the ortho substitution was found to compromise the switching properties. Thus, irradiation of ortho-bridged DHA-DHA resulted in degradation, probably due to the proximity of the different functional groups that can give rise to side-reactions.
Collapse
|
15
|
Fang D, Zhang ZY, Shangguan Z, He Y, Yu C, Li T. (Hetero)arylazo-1,2,3-triazoles: "Clicked" Photoswitches for Versatile Functionalization and Electronic Decoupling. J Am Chem Soc 2021; 143:14502-14510. [PMID: 34476949 DOI: 10.1021/jacs.1c08704] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of light-responsive chemical systems often relies on the rational design and suitable incorporation of molecular photoswitches such as azobenzenes. Linking a photoswitch core with another π-conjugated molecular entity may give rise to intramolecular electronic coupling, which can dramatically impair the photoswitch function. Decoupling strategies have been developed based on additionally inserting a linker that can disrupt the through-bond electronic communication. Here we show that 1,2,3-triazole-a commonly used decoupling spacer-can be directly merged into the azoswitch core to construct a class of "self-decoupling" azoswitches called (hetero)arylazo-1,2,3-triazoles. Such azotriazole photoswitches are easily accessed and modularly functionalized by click chemistry. Their photoswitch property can be optimized by rational design of the substituent groups or heteroaryl rings, allowing (near-)quantitative E⇆Z photoisomerization yields and tunable Z-isomer thermal half-lives from days to years. Combined experimental and theoretical results demonstrate that the electronic structure of the photoswitch core is not substantially affected by various substituents attached to the 1,2,3-triazole unit, benefiting from its cross-conjugated nature. The combination of clickable synthesis, tunable photoswitch property, and self-decoupling ability makes (hetero)arylazo-1,2,3-triazoles intriguing molecular tools in developing photoresponsive systems with desired performance.
Collapse
Affiliation(s)
- Dong Fang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhichun Shangguan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yixin He
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Titov E. On the Low-Lying Electronically Excited States of Azobenzene Dimers: Transition Density Matrix Analysis. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26144245. [PMID: 34299521 PMCID: PMC8303869 DOI: 10.3390/molecules26144245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
Azobenzene-containing molecules may associate with each other in systems such as self-assembled monolayers or micelles. The interaction between azobenzene units leads to a formation of exciton states in these molecular assemblies. Apart from local excitations of monomers, the electronic transitions to the exciton states may involve charge transfer excitations. Here, we perform quantum chemical calculations and apply transition density matrix analysis to quantify local and charge transfer contributions to the lowest electronic transitions in azobenzene dimers of various arrangements. We find that the transitions to the lowest exciton states of the considered dimers are dominated by local excitations, but charge transfer contributions become sizable for some of the lowest ππ* electronic transitions in stacked and slip-stacked dimers at short intermolecular distances. In addition, we assess different ways to partition the transition density matrix between fragments. In particular, we find that the inclusion of the atomic orbital overlap has a pronounced effect on quantifying charge transfer contributions if a large basis set is used.
Collapse
Affiliation(s)
- Evgenii Titov
- Theoretical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| |
Collapse
|
17
|
Gupta D, Gaur AK, Kumar P, Kumar H, Mahadevan A, Devi S, Roy S, Venkataramani S. Tuning of Bistability, Thermal Stability of the Metastable States, and Application Prospects in the C 3 -Symmetric Designs of Multiple Azo(hetero)arenes Systems. Chemistry 2021; 27:3463-3472. [PMID: 33107995 DOI: 10.1002/chem.202004620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Light-responsive molecular systems with multiple photoswitches in C3 -symmetric designs have enormous application potential. The design part of such molecular systems is critical due to its influence in several properties associated with the photoswitches. In order to tune, and in the evaluation of the design-property relationship, we synthesized 18 tripodal systems with variations in the core, linkers, connectivity, and azo(hetero)arene photoswitches. Through extensive spectroscopic and computational studies, we envisaged the factors controlling near-quantitative photoisomerization in both the directions (bistability) and the thermal stability of the metastable states. Furthermore, we also evaluated the impact of designs in obtaining reversible photo-responsive sol-gel phase transitions, solvatochromism, photo- and thermochromism.
Collapse
Affiliation(s)
- Debapriya Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Ankit Kumar Gaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Pravesh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Himanshu Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Anjali Mahadevan
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Sudha Devi
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Saonli Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| |
Collapse
|
18
|
Kretz B, Egger DA. Accurate Molecular Geometries in Complex Excited-State Potential Energy Surfaces from Time-Dependent Density Functional Theory. J Chem Theory Comput 2021; 17:357-366. [PMID: 33284603 DOI: 10.1021/acs.jctc.0c00858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interplay of electronic excitations and structural changes in molecules impacts nonradiative decay and charge transfer in the excited state, thus influencing excited-state lifetimes and photocatalytic reaction rates in optoelectronic and energy devices. To capture such effects requires computational methods providing an accurate description of excited-state potential energy surfaces and geometries. We suggest time-dependent density functional theory using optimally tuned range-separated hybrid (OT-RSH) functionals as an accurate approach to obtain excited-state molecular geometries. We show that OT-RSH provides accurate molecular geometries in excited-state potential energy surfaces that are complex and involve an interplay of local and charge-transfer excitations, for which conventional semilocal and hybrid functionals fail. At the same time, the nonempirical OT-RSH approach maintains the high accuracy of parametrized functionals (e.g., B3LYP) for predicting excited-state geometries of small organic molecules showing valence excited states.
Collapse
Affiliation(s)
- Bernhard Kretz
- Department of Physics, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - David A Egger
- Department of Physics, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
19
|
Yang Y, Zheng W, Xie H, Ren L, Xu X, Liang Y. Theoretical study on adiabatic electron affinity of fatty acids. NEW J CHEM 2021. [DOI: 10.1039/d1nj02456f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The AEA of saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids with typical substituents were calculated by the ωB97X method.
Collapse
Affiliation(s)
- Yaxin Yang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Wenrui Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Hongyun Xie
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Lufei Ren
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xiaofei Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yingning Liang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|
20
|
Petersen AU, Kirschner Solberg Hansen J, Sperling Andreasen E, Peder Christensen S, Tolstrup A, Bo Skov A, Vlasceanu A, Cacciarini M, Brøndsted Nielsen M. Multi-Photochromic Molecules Based on Dihydroazulene Units. Chemistry 2020; 26:13419-13428. [PMID: 32092209 DOI: 10.1002/chem.202000530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Indexed: 01/09/2023]
Abstract
Multi-photochromic systems incorporating individually addressable switching units are attractive for development of advanced data storage devices. Here, we present the synthesis and properties of a selection of such molecular systems incorporating the dihydroazulene/vinylheptafulvene (DHA/VHF) photo-/thermoswitch. The influence of the linker (meta-phenylene vs. azulene-1,3-diyl vs. thiophene-2,5-diyl) separating two DHA units on the switching properties was investigated. An azulene-1,3-diyl spacer largely inhibited both the DHA-to-VHF photoisomerizations and the thermal VHF-to-DHA back-reactions; the latter occurred ten times slower than for the related compound with a meta-phenylene spacer. A DHA trimer containing three DHA units around a central benzene ring was found to undergo stepwise DHA-to-VHF photoisomerizations, whereas the thermal back-reactions occurred at similar rates for the three VHF entities. A meta-phenylene-bridged DHA dimer was subjected to further structural modifications at position C-1 of each DHA, having strong implications for the switching events, and synthetic steps for further functionalizations at position C-7 of each DHA were investigated. Finally, the molecular structure (from X-ray crystallographic analysis) between the meta-phenylene-bridged DHA dimer and CuI is presented.
Collapse
Affiliation(s)
- Anne Ugleholdt Petersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | | | | | - Søren Peder Christensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Anders Tolstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Anders Bo Skov
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Alexandru Vlasceanu
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Martina Cacciarini
- Department of Chemistry, University of Florence, via della Lastruccia 3-13, 50019, Sesto F.No (FI), Italy
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| |
Collapse
|
21
|
Mai S, González L. Molecular Photochemistry: Recent Developments in Theory. Angew Chem Int Ed Engl 2020; 59:16832-16846. [PMID: 32052547 PMCID: PMC7540682 DOI: 10.1002/anie.201916381] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Indexed: 12/16/2022]
Abstract
Photochemistry is a fascinating branch of chemistry that is concerned with molecules and light. However, the importance of simulating light-induced processes is reflected also in fields as diverse as biology, material science, and medicine. This Minireview highlights recent progress achieved in theoretical chemistry to calculate electronically excited states of molecules and simulate their photoinduced dynamics, with the aim of reaching experimental accuracy. We focus on emergent methods and give selected examples that illustrate the progress in recent years towards predicting complex electronic structures with strong correlation, calculations on large molecules, describing multichromophoric systems, and simulating non-adiabatic molecular dynamics over long time scales, for molecules in the gas phase or in complex biological environments.
Collapse
Affiliation(s)
- Sebastian Mai
- Photonics InstituteVienna University of TechnologyGusshausstrasse 27–291040ViennaAustria
| | - Leticia González
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Strasse 171090ViennaAustria
| |
Collapse
|
22
|
Zhang N, Qi Y, Zhang Y, Luo J, Cui P, Jiang W. A Review on Oil/Water Mixture Separation Material. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02524] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ning Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Yunfei Qi
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Yana Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| | - Jialiang Luo
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| | - Ping Cui
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Wei Jiang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| |
Collapse
|
23
|
Mai S, González L. Molekulare Photochemie: Moderne Entwicklungen in der theoretischen Chemie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sebastian Mai
- Institut für Photonik Technische Universität Wien Gußhausstraße 27–29 1040 Wien Österreich
| | - Leticia González
- Institut für theoretische Chemie Fakultät für Chemie Universität Wien Währinger Straße 17 1090 Wien Österreich
| |
Collapse
|
24
|
Heindl AH, Wegner HA. Starazo triple switches - synthesis of unsymmetrical 1,3,5-tris(arylazo)benzenes. Beilstein J Org Chem 2020; 16:22-31. [PMID: 31976013 PMCID: PMC6964668 DOI: 10.3762/bjoc.16.4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
Multistate switches allow to drastically increase the information storage capacity and complexity of smart materials. In this context, unsymmetrical 1,3,5-tris(arylazo)benzenes - 'starazos' - which merge three photoswitches on one benzene ring, were successfully prepared. Two different synthetic strategies, one based on Baeyer-Mills reactions and the other based on Pd-catalyzed coupling reactions of arylhydrazides and aryl halides, followed by oxidation, were investigated. The Pd-catalyzed route efficiently led to the target compounds, unsymmetrical tris(arylazo)benzenes. These triple switches were preliminarily characterized in terms of their isomerization behavior using UV-vis and 1H NMR spectroscopy. The efficient synthesis of this new class of unsymmetrical tris(arylazo)benzenes opened new avenues to novel multistate switching materials.
Collapse
Affiliation(s)
- Andreas H Heindl
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center for Material Research (LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center for Material Research (LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| |
Collapse
|
25
|
Kilde MD, Mansø M, Ree N, Petersen AU, Moth-Poulsen K, Mikkelsen KV, Nielsen MB. Norbornadiene-dihydroazulene conjugates. Org Biomol Chem 2019; 17:7735-7746. [PMID: 31386755 DOI: 10.1039/c9ob01545k] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The introduction of various photochromic units into the same molecule is an attractive approach for the development of novel molecular solar thermal (MOST) energy storage systems. Here, we present the synthesis and characterisation of a series of covalently linked norbornadiene/dihydroazulene (NBD/DHA) conjugates, using the Sonogashira coupling as the key synthetic step. Generation of the fully photoisomerized quadricyclane/vinylheptafulvene (QC/VHF) isomer was found to depend strongly on how the two units are connected - by linear conjugation (a para-phenylene bridge) or cross-conjugation (a meta-phenylene bridge) or by linking to the five- or seven-membered ring of DHA - as well as on the electronic character of another substituent group on the NBD unit. When the QC-VHF system could be reached, the QC-to-NBD back-reaction occurred faster than the VHF-to-DHA back-reaction, while the latter could be promoted simply by the addition of Cu(i) ions. The absence or presence of Cu(i) can thus be used to control whether heat releases should occur on different or identical time scales. The experimental findings were rationalized in a computational study by comparing natural transition orbitals (NTOs). Moreover, the calculations revealed an energy storage capacity of 106-110 kJ mol-1 of the QC-VHF isomers, which is higher than the sum of the capacities of the individual, separate units. The major contribution to the energy storage relates to the energetic QC form, while the major contribution to the absorption of visible light originates from the DHA photochrome; some of the NBD-DHA conjugates had absorption onsets at 450 nm or beyond.
Collapse
Affiliation(s)
- Martin Drøhse Kilde
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.
| | - Mads Mansø
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark. and Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Nicolai Ree
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.
| | - Anne Ugleholdt Petersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
26
|
Heindl AH, Becker J, Wegner HA. Selective switching of multiple azobenzenes. Chem Sci 2019; 10:7418-7425. [PMID: 31489164 PMCID: PMC6713861 DOI: 10.1039/c9sc02347j] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
Multi-state photoswitchable compounds are highly attractive for application in data storage or multi-responsive materials. Herein, a trisazobenzene macrocycle is presented, which can be switched selectively into three individual states.
Multi-state photoswitchable compounds are highly attractive for application in data storage or multi-responsive materials. In this work, a trisazobenzene macrocycle capable of three-state isomerization is presented. The compound can be switched into each of the states with more than 70% of the isomer solely by light and heat as stimuli representing the first example for an oligo-azobenzene containing identical photochromic units which can be selectively adressed. Detailed spectroscopic, crystallographic, HPLC as well as computational investigations and the comparison to a less and a higher strained derivative revealed macrocyclic ring strain to be responsible for the compounds unique isomerization behavior.
Collapse
Affiliation(s)
- Andreas H Heindl
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany . .,Center for Materials Research (LaMa) , Justus-Liebig-University , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
| | - Jonathan Becker
- Institute of Inorganic and Analytical Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany . .,Center for Materials Research (LaMa) , Justus-Liebig-University , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
| |
Collapse
|
27
|
Boumrifak C, Yang C, Bellotto S, Wegner HA, Wachtveitl J, Dreuw A, Slavov C. Isomerization Dynamics of Electronically Coupled but Thermodynamically Decoupled Bisazobenzenes. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chokri Boumrifak
- Institute of Physical and Theoretical ChemistryGoethe University Frankfurt 60438 Germany
| | - Chong Yang
- Interdisciplinary Center for Scientific Computing (IWR)University of Heidelberg Heidelberg 69120 Germany
| | - Silvia Bellotto
- Center for Materials Research (LaMa)Justus Liebig University Giessen 35392 Germany
| | - Hermann A. Wegner
- Center for Materials Research (LaMa)Justus Liebig University Giessen 35392 Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical ChemistryGoethe University Frankfurt 60438 Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing (IWR)University of Heidelberg Heidelberg 69120 Germany
| | - Chavdar Slavov
- Institute of Physical and Theoretical ChemistryGoethe University Frankfurt 60438 Germany
| |
Collapse
|
28
|
Qu R, Liu Y, Zhang W, Li X, Feng L, Jiang L. Aminoazobenzene@Ag modified meshes with large extent photo-response: towards reversible oil/water removal from oil/water mixtures. Chem Sci 2019; 10:4089-4096. [PMID: 31049191 PMCID: PMC6469292 DOI: 10.1039/c9sc00020h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/23/2019] [Indexed: 01/15/2023] Open
Abstract
A large-extent photo-responsive wettability transformation is realized by aminoazobenzene@Ag to selectively remove oil/water.
Photo-responsive materials with superwetting properties, especially in the azo-based class, have been used in water treatment because of their smart performance on wettability changes. However, their transformation extent in wettability has always troubled researchers. Here, we modified nano-Ag pine needles and aminoazobenzene (AABN) on polydopamine (PDA) pre-treated porous meshes, realizing a large-extent reversible photo-responsive wettability transformation from highly hydrophobic to highly hydrophilic. The contact angle is about 150.0° after being exposed to visible light, and is about 10.0° under 365 nm UV light. Accordingly, the modified mesh can achieve photo-responsive removal between oil and water from oil/water mixtures. This facile and universal approach based on trans–cis isomerization of AABN could be endowed to various commercial conductive meshes. Moreover, the modified meshes exhibit satisfactory removal efficiency, reusability and physical/chemical stability, which are more promising for practical applications such as fuel recycling, remote controlled oil/water separation and astronautical resource regeneration.
Collapse
Affiliation(s)
- Ruixiang Qu
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China .
| | - Yanan Liu
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China .
| | - Weifeng Zhang
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China .
| | - Xiangyu Li
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China .
| | - Lin Feng
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China .
| | - Lei Jiang
- Key Laboratory of Bio-inspired Smart Interface Sciences , Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing , 100084 , P. R. China
| |
Collapse
|
29
|
Hoffmann K, Guentner M, Mayer P, Dube H. Symmetric and nonsymmetric bis-hemithioindigos – precise visible light controlled shape-shifters. Org Chem Front 2019. [DOI: 10.1039/c9qo00202b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of bis-hemithioindigo photoswitches with different molecular setups are presented allowing precise manipulation of molecular shapes with visible light.
Collapse
Affiliation(s)
- Kerstin Hoffmann
- The Faculty for Chemistry and Pharmacy
- Ludwig-Maximilians-University
- Munich
- Germany
| | - Manuel Guentner
- The Faculty for Chemistry and Pharmacy
- Ludwig-Maximilians-University
- Munich
- Germany
| | - Peter Mayer
- The Faculty for Chemistry and Pharmacy
- Ludwig-Maximilians-University
- Munich
- Germany
| | - Henry Dube
- The Faculty for Chemistry and Pharmacy
- Ludwig-Maximilians-University
- Munich
- Germany
| |
Collapse
|