1
|
Christofi E, O’Hanlon M, Curtis R, Barman A, Keen J, Nagy T, Barran P. Hybrid Mass Spectrometry Applied across the Production of Antibody Biotherapeutics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:44-57. [PMID: 39573914 PMCID: PMC11697328 DOI: 10.1021/jasms.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 01/02/2025]
Abstract
Post expression from the host cells, biotherapeutics undergo downstream processing steps before final formulation. Mass spectrometry and biophysical characterization methods are valuable for examining conformational and stoichiometric changes at these stages, although typically not used in biomanufacturing, where stability is assessed via bulk property studies. Here we apply hybrid MS methods to understand how solution condition changes impact the structural integrity of a biopharmaceutical across the processing pipeline. As an exemplar product, we use the model IgG1 antibody, mAb4. Flexibility, stability, aggregation propensity, and bulk properties are evaluated in relation to perfusion media, purification stages, and formulation solutions. Comparisons with Herceptin, an extensively studied IgG1 antibody, were conducted in a mass spectrometry-compatible solution. Despite presenting similar charge state distributions (CSD) in native MS, mAb4, and Herceptin show distinct unfolding patterns in activated ion mobility mass spectrometry (aIM-MS) and differential scanning fluorimetry (DSF). Herceptin's greater structural stability and aggregation onset temperature (Tagg) are attributed to heavier glycosylation and kappa-class light chains, unlike the lambda-class light chains in mAb4. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) revealed that mAb4 undergoes substantial structural changes during purification, marked by high flexibility, low melting temperature (Tm), and prevalent repulsive protein-protein interactions but transitions to a compact and stable structure in high-salt and formulated environments. Notably, in formulation, the third constant domain (CH3) of the heavy chain retains flexibility and is a region of interest for aggregation. Future work could translate features of interest from comprehensive studies like this to targeted approaches that could be utilized early in the development stage to aid in decision-making regarding targeted mutations or to guide the design space of bioprocesses and formulation choices.
Collapse
Affiliation(s)
- Emilia Christofi
- Michael
Barber Centre for Collaborative Mass Spectrometry, MBCCMS, Princess Street, Manchester M17DN, U.K.
- Manchester
Institute of Biotechnology, University of
Manchester, Princess Street, Manchester M17DN, U.K.
| | - Mark O’Hanlon
- Manchester
Institute of Biotechnology, University of
Manchester, Princess Street, Manchester M17DN, U.K.
| | - Robin Curtis
- Manchester
Institute of Biotechnology, University of
Manchester, Princess Street, Manchester M17DN, U.K.
| | - Arghya Barman
- FUJIFILM
Diosynth Biotechnologies, Belasis Ave, Stockton-on-Tees, Billingham TS23 1LH, U.K.
| | - Jeff Keen
- FUJIFILM
Diosynth Biotechnologies, Belasis Ave, Stockton-on-Tees, Billingham TS23 1LH, U.K.
| | - Tibor Nagy
- FUJIFILM
Diosynth Biotechnologies, Belasis Ave, Stockton-on-Tees, Billingham TS23 1LH, U.K.
| | - Perdita Barran
- Michael
Barber Centre for Collaborative Mass Spectrometry, MBCCMS, Princess Street, Manchester M17DN, U.K.
- Manchester
Institute of Biotechnology, University of
Manchester, Princess Street, Manchester M17DN, U.K.
| |
Collapse
|
2
|
Villafuerte-Vega RC, Li HW, Bergman AE, Slaney TR, Chennamsetty N, Chen G, Tao L, Ruotolo BT. Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding Rapidly Characterize the Structural Polydispersity and Stability of an Fc-Fusion Protein. Anal Chem 2024; 96:10003-10012. [PMID: 38853531 DOI: 10.1021/acs.analchem.4c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Fc-fusion proteins are an emerging class of protein therapeutics that combine the properties of biological ligands with the unique properties of the fragment crystallizable (Fc) domain of an immunoglobulin G (IgG). Due to their diverse higher-order structures (HOSs), Fc-fusion proteins remain challenging characterization targets within biopharmaceutical pipelines. While high-resolution biophysical tools are available for HOS characterization, they frequently demand extended time frames and substantial quantities of purified samples, rendering them impractical for swiftly screening candidate molecules. Herein, we describe the development of ion mobility-mass spectrometry (IM-MS) and collision-induced unfolding (CIU) workflows that aim to fill this technology gap, where we focus on probing the HOS of a model Fc-Interleukin-10 (Fc-IL-10) fusion protein engineered using flexible glycine-serine linkers. We evaluate the ability of these techniques to probe the flexibility of Fc-IL-10 in the absence of bulk solvent relative to other proteins of similar size, as well as localize structural changes of low charge state Fc-IL-10 ions to specific Fc and IL-10 unfolding events during CIU. We subsequently apply these tools to probe the local effects of glycine-serine linkers on the HOS and stability of IL-10 homodimer, which is the biologically active form of IL-10. Our data reveals that Fc-IL-10 produces significantly more structural transitions during CIU and broader IM profiles when compared to a wide range of model proteins, indicative of its exceptional structural dynamism. Furthermore, we use a combination of enzymatic approaches to annotate these intricate CIU data and localize specific transitions to the unfolding of domains within Fc-IL-10. Finally, we detect a strong positive, quadratic relationship between average linker mass and fusion protein stability, suggesting a cooperative influence between glycine-serine linkers and overall fusion protein stability. This is the first reported study on the use of IM-MS and CIU to characterize HOS of Fc-fusion proteins, illustrating the practical applicability of this approach.
Collapse
Affiliation(s)
| | - Henry W Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Addison E Bergman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas R Slaney
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Naresh Chennamsetty
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Guodong Chen
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Li Tao
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Whittington C, Sharma A, Hill SG, Iavarone AT, Hoffman BM, Offenbacher AR. Impact of N-Glycosylation on Protein Structure and Dynamics Linked to Enzymatic C-H Activation in the M. oryzae Lipoxygenase. Biochemistry 2024; 63:1335-1346. [PMID: 38690768 PMCID: PMC11587536 DOI: 10.1021/acs.biochem.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Lipoxygenases (LOXs) from pathogenic fungi are potential therapeutic targets for defense against plant and select human diseases. In contrast to the canonical LOXs in plants and animals, fungal LOXs are unique in having appended N-linked glycans. Such important post-translational modifications (PTMs) endow proteins with altered structure, stability, and/or function. In this study, we present the structural and functional outcomes of removing or altering these surface carbohydrates on the LOX from the devastating rice blast fungus, M. oryzae, MoLOX. Alteration of the PTMs did notinfluence the active site enzyme-substrate ground state structures as visualized by electron-nuclear double resonance (ENDOR) spectroscopy. However, removal of the eight N-linked glycans by asparagine-to-glutamine mutagenesis nonetheless led to a change in substrate selectivity and an elevated activation energy for the reaction with substrate linoleic acid, as determined by kinetic measurements. Comparative hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis of wild-type and Asn-to-Gln MoLOX variants revealed a regionally defined impact on the dynamics of the arched helix that covers the active site. Guided by these HDX results, a single glycan sequon knockout was generated at position 72, and its comparative substrate selectivity from kinetics nearly matched that of the Asn-to-Gln variant. The cumulative data from model glyco-enzyme MoLOX showcase how the presence, alteration, or removal of even a single N-linked glycan can influence the structural integrity and dynamics of the protein that are linked to an enzyme's catalytic proficiency, while indicating that extensive glycosylation protects the enzyme during pathogenesis by protecting it from protease degradation.
Collapse
Affiliation(s)
- Chris Whittington
- Department of Chemistry, East Carolina University, Greenville NC, 27858, United States
| | - Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - S. Gage Hill
- Department of Chemistry, East Carolina University, Greenville NC, 27858, United States
| | - Anthony T. Iavarone
- California Institute for Quantitative Biosciences, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville NC, 27858, United States
| |
Collapse
|
4
|
Harvey SR, Gadkari VV, Ruotolo BT, Russell DH, Wysocki VH, Zhou M. Expanding Native Mass Spectrometry to the Masses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:646-652. [PMID: 38303101 PMCID: PMC11821079 DOI: 10.1021/jasms.3c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
At the 33rd ASMS Sanibel Meeting, on Membrane Proteins and Their Complexes, a morning roundtable discussion was held discussing the current challenges facing the field of native mass spectrometry and approaches to expanding the field to nonexperts. This Commentary summarizes the discussion and current initiatives to address these challenges.
Collapse
Affiliation(s)
- Sophie R. Harvey
- Department of Chemistry and Biochemistry, Native Mass Spectrometry Guided Structural Biology Center, The Ohio State University, Columbus, OH, USA, 43210
| | - Varun V. Gadkari
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA, 55455
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA, 48109
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, TX, USA, 77844
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, Native Mass Spectrometry Guided Structural Biology Center, The Ohio State University, Columbus, OH, USA, 43210
| | - Mowei Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China, 310058
| |
Collapse
|
5
|
Gozzo TA, Bush MF. Quantitatively Differentiating Antibodies Using Charge-State Manipulation, Collisional Activation, and Ion Mobility-Mass Spectrometry. Anal Chem 2024; 96:505-513. [PMID: 38146701 DOI: 10.1021/acs.analchem.3c04638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Antibody-based therapeutics continue to expand both in the number of products and in their use in patients. These heterogeneous proteins challenge traditional drug characterization strategies, but ion mobility (IM) and mass spectrometry (MS) approaches have eased the challenge of higher-order structural characterization. Energy-dependent IM-MS, e.g., collision-induced unfolding (CIU), has been demonstrated to be sensitive to subtle differences in structure. In this study, we combine a charge-reduction method, cation-to-anion proton-transfer reactions (CAPTR), with energy-dependent IM-MS and varied solution conditions to probe their combined effects on the gas-phase structures of IgG1κ and IgG4κ from human myeloma. CAPTR paired with MS-only analysis improves the confidence of charge-state assignments and the resolution of the interfering protein species. Collision cross-section distributions were determined for each of the charge-reduced products. Similarity scoring was used to quantitatively compare distributions determined from matched experiments analyzing samples of the two antibodies. Relative to workflows using energy-dependent IM-MS without charge-state manipulation, combining CAPTR and energy-dependent IM-MS enhanced the differentiation of these antibodies. Combined, these results indicate that CAPTR can benefit many aspects of antibody characterization and differentiation.
Collapse
Affiliation(s)
- Theresa A Gozzo
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
6
|
Castel J, Delaux S, Hernandez-Alba O, Cianférani S. Recent advances in structural mass spectrometry methods in the context of biosimilarity assessment: from sequence heterogeneities to higher order structures. J Pharm Biomed Anal 2023; 236:115696. [PMID: 37713983 DOI: 10.1016/j.jpba.2023.115696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
Biotherapeutics and their biosimilar versions have been flourishing in the biopharmaceutical market for several years. Structural and functional characterization is needed to achieve analytical biosimilarity through the assessment of critical quality attributes as required by regulatory authorities. The role of analytical strategies, particularly mass spectrometry-based methods, is pivotal to gathering valuable information for the in-depth characterization of biotherapeutics and biosimilarity assessment. Structural mass spectrometry methods (native MS, HDX-MS, top-down MS, etc.) provide information ranging from primary sequence assessment to higher order structure evaluation. This review focuses on recent developments and applications in structural mass spectrometry for biotherapeutic and biosimilar characterization.
Collapse
Affiliation(s)
- Jérôme Castel
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Sarah Delaux
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France.
| |
Collapse
|
7
|
Zheng Z, Ma M, Jia Y, Cui Y, Zhao R, Li S, Wenthur C, Li L, Li G. Expedited Evaluation of Conformational Stability-Heterogeneity Associations for Crude Polyclonal Antibodies in Response to Conjugate Vaccines. Anal Chem 2023; 95:10895-10902. [PMID: 37433088 PMCID: PMC10695093 DOI: 10.1021/acs.analchem.3c00223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Conjugate vaccines have been demonstrated to be a promising strategy for immunotherapeutic intervention in substance use disorder, wherein a hapten structurally similar to the target drug is conjugated to an immunogenic carrier protein. The antibodies generated following immunization with these species can provide long-lasting protection against overdose through sequestration of the abused drug in the periphery, which mitigates its ability to cross the blood-brain barrier. However, these antibodies exhibit a high degree of heterogeneity in structure. The resultant variations in chemical and structural compositions have not yet been clearly linked to the stability that directly affects their in vivo functional performance. In this work, we describe a rapid mass-spectrometry-based analytical workflow capable of simultaneous and comprehensive interrogation of the carrier protein-dependent heterogeneity and stability of crude polyclonal antibodies in response to conjugate vaccines. Quantitative collision-induced unfolding-ion mobility-mass spectrometry with an all-ion mode is adapted to rapidly assess the conformational heterogeneity and stability of crude serum antibodies collected from four different vaccine conditions, in an unprecedented manner. A series of bottom-up glycoproteomic experiments was performed to reveal the driving force underlying these observed heterogeneities. Overall, this study not only presents a generally applicable workflow for fast assessment of crude antibody conformational stability and heterogeneity at the intact protein level but also leverages carrier protein optimization as a simple solution to antibody quality control.
Collapse
Affiliation(s)
- Zhen Zheng
- State Key Laboratory of Pharmaceutical Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Yifei Jia
- State Key Laboratory of Pharmaceutical Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yusi Cui
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Rui Zhao
- State Key Laboratory of Pharmaceutical Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shuangshuang Li
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Cody Wenthur
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Gongyu Li
- State Key Laboratory of Pharmaceutical Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
8
|
Villafuerte-Vega RC, Li HW, Slaney TR, Chennamsetty N, Chen G, Tao L, Ruotolo BT. Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics. Anal Chem 2023; 95:6962-6970. [PMID: 37067470 DOI: 10.1021/acs.analchem.3c00344] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Bispecific antibodies (bsAbs) represent a critically important class of emerging therapeutics capable of targeting two different antigens simultaneously. As such, bsAbs have been developed as effective treatment agents for diseases that remain challenging for conventional monoclonal antibody (mAb) therapeutics to access. Despite these advantages, bsAbs are intricate molecules, requiring both the appropriate engineering and pairing of heavy and light chains derived from separate parent mAbs. Current analytical tools for tracking the bsAb construction process have demonstrated a limited ability to robustly probe the higher-order structure (HOS) of bsAbs. Native ion mobility-mass spectrometry (IM-MS) and collision-induced unfolding (CIU) have proven to be useful tools in probing the HOS of mAb therapeutics. In this report, we describe a series of detailed and quantitative IM-MS and CIU data sets that reveal HOS details associated with a knob-into-hole (KiH) bsAb model system and its corresponding parent mAbs. We find that quantitative analysis of CIU data indicates that global KiH bsAb stability occupies an intermediate space between the stabilities recorded for its parent mAbs. Furthermore, our CIU data identify the hole-containing half of the KiH bsAb construct to be the least stable, thus driving much of the overall stability of the KiH bsAb. An analysis of both intact bsAb and enzymatic fragments allows us to associate the first and second CIU transitions observed for the intact KiH bsAb to the unfolding Fab and Fc domains, respectively. This result is likely general for CIU data collected for low charge state mAb ions and is supported by data acquired for deglycosylated KiH bsAb and mAb constructs, each of which indicates greater destabilization of the second CIU transition observed in our data. When integrated, our CIU analysis allows us to link changes in the first CIU transition primarily to the Fab region of the hole-containing halfmer, while the second CIU transition is likely strongly connected to the Fc region of the knob-containing halfmer. Taken together, our results provide an unprecedented road map for evaluating the domain-level stabilities and HOS of both KiH bsAb and mAb constructs using CIU.
Collapse
Affiliation(s)
| | - Henry W Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas R Slaney
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Naresh Chennamsetty
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Guodong Chen
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Li Tao
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Christofi E, Barran P. Ion Mobility Mass Spectrometry (IM-MS) for Structural Biology: Insights Gained by Measuring Mass, Charge, and Collision Cross Section. Chem Rev 2023; 123:2902-2949. [PMID: 36827511 PMCID: PMC10037255 DOI: 10.1021/acs.chemrev.2c00600] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 02/26/2023]
Abstract
The investigation of macromolecular biomolecules with ion mobility mass spectrometry (IM-MS) techniques has provided substantial insights into the field of structural biology over the past two decades. An IM-MS workflow applied to a given target analyte provides mass, charge, and conformation, and all three of these can be used to discern structural information. While mass and charge are determined in mass spectrometry (MS), it is the addition of ion mobility that enables the separation of isomeric and isobaric ions and the direct elucidation of conformation, which has reaped huge benefits for structural biology. In this review, where we focus on the analysis of proteins and their complexes, we outline the typical features of an IM-MS experiment from the preparation of samples, the creation of ions, and their separation in different mobility and mass spectrometers. We describe the interpretation of ion mobility data in terms of protein conformation and how the data can be compared with data from other sources with the use of computational tools. The benefit of coupling mobility analysis to activation via collisions with gas or surfaces or photons photoactivation is detailed with reference to recent examples. And finally, we focus on insights afforded by IM-MS experiments when applied to the study of conformationally dynamic and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Emilia Christofi
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita Barran
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
10
|
Deslignière E, Ollivier S, Beck A, Ropartz D, Rogniaux H, Cianférani S. Benefits and Limitations of High-Resolution Cyclic IM-MS for Conformational Characterization of Native Therapeutic Monoclonal Antibodies. Anal Chem 2023; 95:4162-4171. [PMID: 36780376 DOI: 10.1021/acs.analchem.2c05265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Monoclonal antibodies (mAbs) currently represent the main class of therapeutic proteins. mAbs approved by regulatory agencies are selected from IgG1, IgG2, and IgG4 subclasses, which possess different interchain disulfide connectivities. Ion mobility coupled to native mass spectrometry (IM-MS) has emerged as a valuable approach to tackle the challenging characterization of mAbs' higher order structures. However, due to the limited resolution of first-generation IM-MS instruments, subtle conformational differences on large proteins have long been hard to capture. Recent technological developments have aimed at increasing available IM resolving powers and acquisition mode capabilities, namely, through the release of high-resolution IM-MS (HR-IM-MS) instruments, like cyclic IM-MS (cIM-MS). Here, we outline the advantages and drawbacks of cIM-MS for better conformational characterization of intact mAbs (∼150 kDa) in native conditions compared to first-generation instruments. We first assessed the extent to which multipass cIM-MS experiments could improve the separation of mAbs' conformers. These initial results evidenced some limitations of HR-IM-MS for large native biomolecules which possess rich conformational landscapes that remain challenging to decipher even with higher IM resolving powers. Conversely, for collision-induced unfolding (CIU) approaches, higher resolution proved to be particularly useful (i) to reveal new unfolding states and (ii) to enhance the separation of coexisting activated states, thus allowing one to apprehend gas-phase CIU behaviors of mAbs directly at the intact level. Altogether, this study offers a first panoramic overview of the capabilities of cIM-MS for therapeutic mAbs, paving the way for more widespread HR-IM-MS/CIU characterization of mAb-derived formats.
Collapse
Affiliation(s)
- Evolène Deslignière
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67000, France.,Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg 67087, France
| | - Simon Ollivier
- UR BIA, INRAE, Nantes F-44316, France.,PROBE Research Infrastructure, BIBS Facility, INRAE, Nantes F-44316, France
| | - Alain Beck
- IRPF Centre d'Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois 74160, France
| | - David Ropartz
- UR BIA, INRAE, Nantes F-44316, France.,PROBE Research Infrastructure, BIBS Facility, INRAE, Nantes F-44316, France
| | - Hélène Rogniaux
- UR BIA, INRAE, Nantes F-44316, France.,PROBE Research Infrastructure, BIBS Facility, INRAE, Nantes F-44316, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67000, France.,Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg 67087, France
| |
Collapse
|
11
|
van Schaick G, Domínguez-Vega E, Castel J, Wuhrer M, Hernandez-Alba O, Cianférani S. Online Collision-Induced Unfolding of Therapeutic Monoclonal Antibody Glyco-Variants through Direct Hyphenation of Cation Exchange Chromatography with Native Ion Mobility-Mass Spectrometry. Anal Chem 2023; 95:3932-3939. [PMID: 36791123 PMCID: PMC9979139 DOI: 10.1021/acs.analchem.2c03163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/16/2022] [Indexed: 02/16/2023]
Abstract
Post-translational modifications (PTMs) not only substantially increase structural heterogeneity of proteins but can also alter the conformation or even biological functions. Monitoring of these PTMs is particularly important for therapeutic products, including monoclonal antibodies (mAbs), since their efficacy and safety may depend on the PTM profile. Innovative analytical strategies should be developed to map these PTMs as well as explore possible induced conformational changes. Cation-exchange chromatography (CEX) coupled with native mass spectrometry has already emerged as a valuable asset for the characterization of mAb charge variants. Nevertheless, questions regarding protein conformation cannot be explored using this approach. Thus, we have combined CEX separation with collision-induced unfolding (CIU) experiments to monitor the unfolding pattern of separated mAbs and thereby pick up subtle conformational differences without impairing the CEX resolution. Using this novel strategy, only four CEX-CIU runs had to be recorded for a complete CIU fingerprint either at the intact mAb level or after enzymatic digestion at the mAb subunit level. As a proof of concept, CEX-CIU was first used for an isobaric mAb mixture to highlight the possibility to acquire individual CIU fingerprints of CEX-separated species without compromising CEX separation performances. CEX-CIU was next successfully applied to conformational characterization of mAb glyco-variants, in order to derive glycoform-specific information on the gas-phase unfolding, and CIU patterns of Fc fragments, revealing increased resistance of sialylated glycoforms against gas-phase unfolding. Altogether, we demonstrated the possibilities and benefits of combining CEX with CIU for in-depth characterization of mAb glycoforms, paving the way for linking conformational changes and resistance to gas-phase unfolding charge variants.
Collapse
Affiliation(s)
- Guusje van Schaick
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Elena Domínguez-Vega
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Jérôme Castel
- Laboratoire
de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France
- Infrastructure
Nationale de Protéomique ProFI, FR2048
CNRS CEA, Strasbourg 67087, France
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Oscar Hernandez-Alba
- Laboratoire
de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France
- Infrastructure
Nationale de Protéomique ProFI, FR2048
CNRS CEA, Strasbourg 67087, France
| | - Sarah Cianférani
- Laboratoire
de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France
- Infrastructure
Nationale de Protéomique ProFI, FR2048
CNRS CEA, Strasbourg 67087, France
| |
Collapse
|
12
|
Oganesyan I, Hajduk J, Harrison JA, Marchand A, Czar MF, Zenobi R. Exploring Gas-Phase MS Methodologies for Structural Elucidation of Branched N-Glycan Isomers. Anal Chem 2022; 94:10531-10539. [PMID: 35833795 DOI: 10.1021/acs.analchem.2c02019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural isomers of N-glycans that are identical in mass and atomic composition provide a great challenge to conventional mass spectrometry (MS). This study employs additional dimensions of structural elucidation including ion mobility (IM) spectroscopy coupled to hydrogen/deuterium exchange (HDX) and electron capture dissociation (ECD) to characterize three main A2 N-glycans and their conformers. A series of IM-MS experiments were able to separate the low abundance N-glycans and their linkage-based isomers (α1-3 and α1-6 for A2G1). HDX-IM-MS data indicated the presence of multiple gas-phase structures for each N-glycan including the isomers of A2G1. Identification of A2G1 isomers by their collision cross section was complicated due to the preferential collapse of sugars in the gas phase, but it was possible by further ECD fragmentation. The cyclic IM-ECD approach was capable of assigning and identifying each isomer to its IM peak. Two unique cross-ring fragments were identified for each isomer: m/z = 624.21 for α1-6 and m/z = 462.16 for α1-3. Based on these key fragments, the first IM peak, indicating a more compact conformation, was assigned to α1-3 and the second IM peak, a more extended conformer, was assigned to α1-6.
Collapse
Affiliation(s)
- Irina Oganesyan
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Joanna Hajduk
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Julian A Harrison
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Adrien Marchand
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Martin F Czar
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Renato Zenobi
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
13
|
Vallejo DD, Ramírez CR, Parson KF, Han Y, Gadkari VG, Ruotolo BT. Mass Spectrometry Methods for Measuring Protein Stability. Chem Rev 2022; 122:7690-7719. [PMID: 35316030 PMCID: PMC9197173 DOI: 10.1021/acs.chemrev.1c00857] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mass spectrometry is a central technology in the life sciences, providing our most comprehensive account of the molecular inventory of the cell. In parallel with developments in mass spectrometry technologies targeting such assessments of cellular composition, mass spectrometry tools have emerged as versatile probes of biomolecular stability. In this review, we cover recent advancements in this branch of mass spectrometry that target proteins, a centrally important class of macromolecules that accounts for most biochemical functions and drug targets. Our efforts cover tools such as hydrogen-deuterium exchange, chemical cross-linking, ion mobility, collision induced unfolding, and other techniques capable of stability assessments on a proteomic scale. In addition, we focus on a range of application areas where mass spectrometry-driven protein stability measurements have made notable impacts, including studies of membrane proteins, heat shock proteins, amyloidogenic proteins, and biotherapeutics. We conclude by briefly discussing the future of this vibrant and fast-moving area of research.
Collapse
Affiliation(s)
- Daniel D. Vallejo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carolina Rojas Ramírez
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kristine F. Parson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yilin Han
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Varun G. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
14
|
Wang T, Liu L, Voglmeir J. mAbs N-glycosylation: Implications for biotechnology and analytics. Carbohydr Res 2022; 514:108541. [DOI: 10.1016/j.carres.2022.108541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/29/2022]
|
15
|
Low-energy electron holography imaging of conformational variability of single-antibody molecules from electrospray ion beam deposition. Proc Natl Acad Sci U S A 2021; 118:2112651118. [PMID: 34911762 PMCID: PMC8713884 DOI: 10.1073/pnas.2112651118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
Molecular imaging at the single-molecule level of large and flexible proteins such as monoclonal IgG antibodies is possible by low-energy electron holography after chemically selective sample preparation by native electrospray ion beam deposition (ES-IBD) from native solution conditions. The single-molecule nature of the measurement allows the mapping of the structural variability of the molecules that originates from their intrinsic flexibility and from different adsorption geometries. Additionally, we can distinguish gas-phase–related conformations and conformations induced by the landing of the molecules on the surface. Our results underpin the relation between the gas-phase structure of protein ions created by native electrospray ionization (ESI) and the native protein structure and are of relevance for structural biology applications in the gas phase. Imaging of proteins at the single-molecule level can reveal conformational variability, which is essential for the understanding of biomolecules. To this end, a biologically relevant state of the sample must be retained during both sample preparation and imaging. Native electrospray ionization (ESI) can transfer even the largest protein complexes into the gas phase while preserving their stoichiometry and overall shape. High-resolution imaging of protein structures following native ESI is thus of fundamental interest for establishing the relation between gas phase and solution structure. Taking advantage of low-energy electron holography’s (LEEH) unique capability of imaging individual proteins with subnanometer resolution, we investigate the conformational flexibility of Herceptin, a monoclonal IgG antibody, deposited by native electrospray mass-selected ion beam deposition (ES-IBD) on graphene. Images reconstructed from holograms reveal a large variety of conformers. Some of these conformations can be mapped to the crystallographic structure of IgG, while others suggest that a compact, gas-phase–related conformation, adopted by the molecules during ES-IBD, is retained. We can steer the ratio of those two types of conformations by changing the landing energy of the protein on the single-layer graphene surface. Overall, we show that LEEH can elucidate the conformational heterogeneity of inherently flexible proteins, exemplified here by IgG antibodies, and thereby distinguish gas-phase collapse from rearrangement on surfaces.
Collapse
|
16
|
Chen G, Tao L, Li Z. Recent advancements in mass spectrometry for higher order structure characterization of protein therapeutics. Drug Discov Today 2021; 27:196-206. [PMID: 34571276 DOI: 10.1016/j.drudis.2021.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/30/2021] [Accepted: 09/20/2021] [Indexed: 01/15/2023]
Abstract
Molecular characterization of higher order structure (HOS) in protein therapeutics is crucial to the selection of candidate molecules, understanding of structure-function relationships, formulation development, stability assessment, and comparability studies. Recent advances in mass spectrometry (MS), including native MS, hydrogen/deuterium exchange (HDX)-MS, and fast photochemical oxidation of proteins (FPOP) coupled with MS, have provided orthogonal ways to characterize HOS of protein therapeutics. In this review, we present the utility of native MS, HDX-MS and FPOP-MS in protein therapeutics discovery and development, with a focus on epitope mapping, aggregation assessment, and comparability studies. We also discuss future trends in the application of these MS methods to HOS characterization.
Collapse
Affiliation(s)
- Guodong Chen
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, NJ, USA.
| | - Li Tao
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Zhengjian Li
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, NJ, USA
| |
Collapse
|
17
|
Komuczki D, Dutra G, Gstöttner C, Dominguez‐Vega E, Jungbauer A, Satzer P. Media on-demand: Continuous reconstitution of a chemically defined media directly from solids. Biotechnol Bioeng 2021; 118:3382-3394. [PMID: 33656168 PMCID: PMC8451748 DOI: 10.1002/bit.27738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022]
Abstract
Chemically defined media are reconstituted batchwise and stored in hold tanks until use. To avoid large hold tanks and batchwise production of media, we developed continuous on-demand reconstitutions directly from solids consisting of a hopper and a screw conveyor capable of feeding dry powdered media with the required precision ±5% at low dosing rates of 0.171 g min-1 . A commercially available dry powdered cell culture medium was continuously fed over a duration of 12 h into a mixer which was connected to a UV-cell for monitoring and the media were compared to a batchwise production. A comparable amino acid, carbohydrate, and osmolality profile to a batchwise reconstitution could be obtained. Cell cultivation showed comparable performance of batch and continuous reconstitution for two CHO cell lines producing the antibodies adalimumab and trastuzumab on a small and benchtop scale. In-depth analysis of the produced antibodies showed the same glycosylation pattern, other posttranslational profiles such as methionine oxidation and deamidation compared to batchwise reconstitution. Therefore, we conclude a continuous reconstitution of the medium results in the same quality of the product. A continuous on-demand media reconstitution will impact the supply chain and significantly reduce the floor space necessary for preparation and storage.
Collapse
Affiliation(s)
- Daniel Komuczki
- Department of Biotechnology, Institute of Bioprocess Science and EngineeringUniversity of Natural Resources and Life SciencesViennaAustria
| | - Gregory Dutra
- Department of Biotechnology, Institute of Bioprocess Science and EngineeringUniversity of Natural Resources and Life SciencesViennaAustria
| | - Christoph Gstöttner
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenNetherlands
| | - Elena Dominguez‐Vega
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenNetherlands
| | - Alois Jungbauer
- Department of Biotechnology, Institute of Bioprocess Science and EngineeringUniversity of Natural Resources and Life SciencesViennaAustria
- Austrian Centre of Industrial BiotechnologyViennaAustria
| | - Peter Satzer
- Department of Biotechnology, Institute of Bioprocess Science and EngineeringUniversity of Natural Resources and Life SciencesViennaAustria
- Austrian Centre of Industrial BiotechnologyViennaAustria
| |
Collapse
|
18
|
Abstract
Mass spectrometry (MS) is a powerful technique for protein identification, quantification and characterization that is widely applied in biochemical studies, and which can provide data on the quantity, structural integrity and post-translational modifications of proteins. It is therefore a versatile and widely used analytic tool for quality control of biopharmaceuticals, especially in quantifying host-cell protein impurities, identifying post-translation modifications and structural characterization of biopharmaceutical proteins. Here, we summarize recent advances in MS-based analyses of these key quality attributes of the biopharmaceutical development and manufacturing processes.
Collapse
|
19
|
Imberti C, Lermyte F, Friar EP, O'Connor PB, Sadler PJ. Facile protein conjugation of platinum for light-activated cytotoxic payload release. Chem Commun (Camb) 2021; 57:7645-7648. [PMID: 34250984 PMCID: PMC8330822 DOI: 10.1039/d1cc02722k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022]
Abstract
The novel Pt(iv) complex trans,trans-[Pt(N3)2(Py)2(OH)(OCO-(PEG)2-NHCSNH-Ph-NCS)] (Pt4) conjugates to the side chain of lysine amino acids in proteins under mild conditions. Reaction with myoglobin generated a bioconjugate that was stable in the dark, but released a Pt(iv) prodrug upon visible light irradiation. A similar procedure was used to conjugate Pt4 to the antibody trastuzumab, resulting in the first photoactivatable Pt(iv)-antibody conjugate, demonstrating potential for highly selective cancer phototherapy.
Collapse
Affiliation(s)
- Cinzia Imberti
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Frederik Lermyte
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK. and Department of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt 64287, Germany
| | - Emily P Friar
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
20
|
Lebede M, Di Marco F, Esser-Skala W, Hennig R, Wohlschlager T, Huber CG. Exploring the Chemical Space of Protein Glycosylation in Noncovalent Protein Complexes: An Expedition along Different Structural Levels of Human Chorionic Gonadotropin by Employing Mass Spectrometry. Anal Chem 2021; 93:10424-10434. [PMID: 34288669 PMCID: PMC8340079 DOI: 10.1021/acs.analchem.1c02199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
Modern analytical
approaches employing high-resolution mass spectrometry
(MS) facilitate the generation of a vast amount of structural data
of highly complex glycoproteins. Nevertheless, systematic interpretation
of this data at different structural levels remains an analytical
challenge. The glycoprotein utilized as a model system in this study,
human chorionic gonadotropin (hCG), exists as a heterodimer composed
of two heavily glycosylated subunits. In order to unravel the multitude
of glycoforms of recombinant hCG (drug product Ovitrelle), we combine
established techniques, such as released glycan and glycopeptide analysis,
with novel approaches employing high-performance liquid chromatography-mass
spectrometry (HPLC-MS) to characterize protein subunits and native
MS to analyze the noncovalent hCG complex. Starting from the deconvoluted
mass spectrum of dimeric hCG comprising about 50 signals, it was possible
to explore the chemical space of hCG glycoforms and elucidate the
complexity that hides behind just 50 signals. Systematic, stepwise
integration of data obtained at the levels of released glycans, glycopeptides,
and subunits using a computational annotation tool allowed us to reveal
1031 underlying glycoforms. Additionally, critical quality attributes
such as sialylation and core fucosylation were compared for two batches
of Ovitrelle to assess the potential product variability.
Collapse
Affiliation(s)
- Maximilian Lebede
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Fiammetta Di Marco
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Wolfgang Esser-Skala
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria.,Department of Biosciences, Computational Systems Biology Group, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - René Hennig
- glyXera GmbH, Brenneckestraße 20 - ZENIT, 39120 Magdeburg, Germany.,Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Therese Wohlschlager
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Christian G Huber
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| |
Collapse
|
21
|
Deslignière E, Ehkirch A, Duivelshof BL, Toftevall H, Sjögren J, Guillarme D, D’Atri V, Beck A, Hernandez-Alba O, Cianférani S. State-of-the-Art Native Mass Spectrometry and Ion Mobility Methods to Monitor Homogeneous Site-Specific Antibody-Drug Conjugates Synthesis. Pharmaceuticals (Basel) 2021; 14:ph14060498. [PMID: 34073805 PMCID: PMC8225019 DOI: 10.3390/ph14060498] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are biotherapeutics consisting of a tumor-targeting monoclonal antibody (mAb) linked covalently to a cytotoxic drug. Early generation ADCs were predominantly obtained through non-selective conjugation methods based on lysine and cysteine residues, resulting in heterogeneous populations with varying drug-to-antibody ratios (DAR). Site-specific conjugation is one of the current challenges in ADC development, allowing for controlled conjugation and production of homogeneous ADCs. We report here the characterization of a site-specific DAR2 ADC generated with the GlyCLICK three-step process, which involves glycan-based enzymatic remodeling and click chemistry, using state-of-the-art native mass spectrometry (nMS) methods. The conjugation process was monitored with size exclusion chromatography coupled to nMS (SEC-nMS), which offered a straightforward identification and quantification of all reaction products, providing a direct snapshot of the ADC homogeneity. Benefits of SEC-nMS were further demonstrated for forced degradation studies, for which fragments generated upon thermal stress were clearly identified, with no deconjugation of the drug linker observed for the T-GlyGLICK-DM1 ADC. Lastly, innovative ion mobility-based collision-induced unfolding (CIU) approaches were used to assess the gas-phase behavior of compounds along the conjugation process, highlighting an increased resistance of the mAb against gas-phase unfolding upon drug conjugation. Altogether, these state-of-the-art nMS methods represent innovative approaches to investigate drug loading and distribution of last generation ADCs, their evolution during the bioconjugation process and their impact on gas-phase stabilities. We envision nMS and CIU methods to improve the conformational characterization of next generation-empowered mAb-derived products such as engineered nanobodies, bispecific ADCs or immunocytokines.
Collapse
Affiliation(s)
- Evolène Deslignière
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, 67087 Strasbourg, France; (E.D.); (A.E.); (O.H.-A.)
- Infrastructure Nationale de Protéomique ProFI—FR2048, 67087 Strasbourg, France
| | - Anthony Ehkirch
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, 67087 Strasbourg, France; (E.D.); (A.E.); (O.H.-A.)
- Infrastructure Nationale de Protéomique ProFI—FR2048, 67087 Strasbourg, France
| | - Bastiaan L. Duivelshof
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland; (B.L.D.); (D.G.); (V.D.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | | | | | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland; (B.L.D.); (D.G.); (V.D.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland; (B.L.D.); (D.G.); (V.D.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Alain Beck
- IRPF—Centre d’Immunologie Pierre-Fabre (CIPF), 74160 Saint-Julien-en-Genevois, France;
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, 67087 Strasbourg, France; (E.D.); (A.E.); (O.H.-A.)
- Infrastructure Nationale de Protéomique ProFI—FR2048, 67087 Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, 67087 Strasbourg, France; (E.D.); (A.E.); (O.H.-A.)
- Infrastructure Nationale de Protéomique ProFI—FR2048, 67087 Strasbourg, France
- Correspondence:
| |
Collapse
|
22
|
Glycoproteomics Technologies in Glycobiotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:413-434. [PMID: 33205259 DOI: 10.1007/10_2020_144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Glycosylation is a key factor determining the pharmacological properties of biotherapeutics, including their stability, solubility, bioavailability, pharmacokinetics, and immunogenicity. As such, comprehensive information about glycosylation of biotherapeutics is critical to demonstrate similarity. Regulatory agencies also require extensive documentation of the comprehensive analyses of glycosylation-related critical quality attributes (CQAs) during the development, manufacturing, and release of biosimilars. Mass spectrometry has catalysed tremendous advancements in the characterisation of glycosylation CQAs of biotherapeutics. Here we provide a perspective overview on the MS-based technologies relevant for biotherapeutic product characterisation with an emphasis on the recent developments that allow determination of glycosylation features such as site of glycosylation, sialic acid linkage, glycan structure, and content.
Collapse
|
23
|
Mass spectrometry-based methods for structural biology on a proteome-wide scale. Biochem Soc Trans 2020; 48:945-954. [DOI: 10.1042/bst20190794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/17/2022]
Abstract
Mass spectrometry (MS) has long been used to study proteins mainly via sequence identification and quantitation of expression abundance. In recent years, MS has emerged as a tool for structural biology. Intact protein structural analysis has been enabled by the development of methods such as native MS, top-down proteomics, and ion mobility MS. Other MS-based structural methods include affinity purification MS, chemical cross-linking, and protein footprinting. These methods have enabled the study of protein–protein and protein–ligand interactions and regions of conformational change. The coupling of MS with liquid chromatography has permitted the analysis of complex samples. This bottom-up proteomics workflow enables the study of protein structure in the native cellular environment and provides structural information across the proteome. It has been demonstrated that the crowded environment of the cell affects protein binding interactions and affinities. Performing studies in this complex environment is essential for understanding the functional roles of proteins. MS-based structural methods permit analysis of samples such as cell lysates, intact cells, and tissue to provide a more physiological view of protein structure. This mini-review discusses the various MS-based methods that can be used for proteome-wide structural studies and highlights some of their application.
Collapse
|
24
|
Kang J, Kim SY, Vallejo D, Hageman TS, White DR, Benet A, Coghlan J, Sen KI, Ford M, Saveliev S, Tolbert TJ, Weis DD, Schwendeman SP, Ruotolo BT, Schwendeman A. Multifaceted assessment of rituximab biosimilarity: The impact of glycan microheterogeneity on Fc function. Eur J Pharm Biopharm 2020; 146:111-124. [PMID: 31841688 DOI: 10.1016/j.ejpb.2019.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 01/08/2023]
Abstract
Biosimilars are poised to reduce prices and increase patient access to expensive, but highly effective biologic products. However, questions still remain about the degree of similarity and scarcity of information on biosimilar products from outside of the US/EU in the public domain. Thus, as an independent entity, we performed a comparative analysis between the innovator, Rituxan® (manufactured by Genentech/Roche), and a Russian rituximab biosimilar, Acellbia® (manufactured by Biocad). We evaluated biosimilarity of these two products by a variety of state-of-the-art analytical mass spectrometry techniques, including tandem MS mapping, HX-MS, IM-MS, and intact MS. Both were found to be generally similar regarding primary and higher order structure, though differences were identified in terms of glycoform distribution levels of C-terminal Lys, N-terminal pyroGlu, charge variants and soluble aggregates. Notably, we confirmed that the biosimilar had a higher level of afucosylated glycans, resulting in a stronger FcγIIIa binding affinity and increased ADCC activity. Taken together, our work provides a comprehensive comparison of Rituxan® and Acellbia®.
Collapse
Affiliation(s)
- Jukyung Kang
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Sang Yeop Kim
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Daniel Vallejo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Tyler S Hageman
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, United States
| | - Derek R White
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, United States
| | - Alexander Benet
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jill Coghlan
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - K Ilker Sen
- Protein Metrics Inc., San Carlos, CA 94070, United States
| | | | | | - Thomas J Tolbert
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, United States
| | - David D Weis
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, United States; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, United States
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|