1
|
Arii S, Yu Z, Chen H, Mitsunuma H, Kanai M. Ion-Pair Hydrogen Atom Transfer Catalysis Enables Cr-Catalyzed Allylation of Ketones Using Hydrocarbon Alkenes. Angew Chem Int Ed Engl 2025:e202503249. [PMID: 40052898 DOI: 10.1002/anie.202503249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/18/2025]
Abstract
We report a catalytic allylation of ketones using simple hydrocarbon alkenes, enabled by a synergistic system comprising chromocene and photo-activatable ion-pair hydrogen atom transfer (IP-HAT) catalysts derived from a thiophosphoryl imide and N-heteroaromatics. This catalyst system generates highly nucleophilic, electron-rich allylchromium(III) species directly from unactivated alkenes, demonstrating broad applicability to various ketones, including aromatic, aliphatic, and multifunctional ketones. The reaction proceeds under mild conditions with high functional group tolerance. The modular design of the IP-HAT catalysts allows precise tuning of redox potential and HAT activity, with the enhanced reduction potential of the reduced N-heteroaromatics catalyst playing a pivotal role in efficiently regenerating the electron-rich chromocene(II) catalyst.
Collapse
Affiliation(s)
- Suguru Arii
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Zonghan Yu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hongyu Chen
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
2
|
Onge PS, Nugraha H, Newman SG. Hydroalkylation of Vinylarenes by Transition-Metal-Free In Situ Generation of Benzylic Nucleophiles Using Tetramethyldisiloxane and Potassium tert-Butoxide. Angew Chem Int Ed Engl 2025; 64:e202421077. [PMID: 39688529 DOI: 10.1002/anie.202421077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/18/2024]
Abstract
Hydrosilanes and Lewis bases are known to promote various reductive defunctionalizations, rearrangements, and silylation reactions, facilitated by enigmatic silicon/Lewis base-derived reactive intermediates. Despite the wide variety of transformations enabled by this reagent combination, no examples of intermolecular C(sp3)-C(sp3) forming reactions have been reported. In this work, we've identified 1,1,3,3-tetramethyldisiloxane (TMDSO) and KOtBu as a unique reagent combination capable of generating benzylic nucleophiles in situ from styrene derivatives, which can subsequently react with alkyl halides to give a new C(sp3)-C(sp3) linkage via formal hydroalkylation. Mechanistic experiments suggest that the reaction proceeds through a key hydrogen atom transfer (HAT) step from a hydrosilane reducing agent to styrene, affording a benzylic radical that undergoes reductive radical polar crossover (RRPC) and subsequent SN2 alkylation.
Collapse
Affiliation(s)
- Piers St Onge
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Hana Nugraha
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
3
|
Yang JS, Wang XY, Li YY, Zhang FM, Zhang XM, Tu YQ. Catalytic Asymmetric 1,4-Hydrocarbonation of 1,3-Enynes via Photoredox/Cobalt/Chromium Triple Catalysis. Angew Chem Int Ed Engl 2025; 64:e202420563. [PMID: 39797407 DOI: 10.1002/anie.202420563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
A synergistic photoredox/cobalt/chromium triple catalysis system for regioselective, enantioselective, and diastereoselective 1,4-hydrocarbonation of readily available 1,3-enyne precursors was explored, providing a modular synthetic platform for various trisubstituted axially chiral allenes bearing an extra central chirality. The protocol features a broad substrate scope, good functional group tolerance, excellent selectivity, and mild reaction conditions. Furthermore, a possible reaction mechanism is proposed based on numerous control experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Ju-Song Yang
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai Minhang, 200240, China
| | - Xing-Yu Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yong-Yao Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yong-Qiang Tu
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai Minhang, 200240, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
4
|
Tang SY, Wang ZJ, Ao Y, Wang N, Huang HM. Photoredox/Cr-catalyzed enantioselective radical-polar crossover transformation via C-H functionalization. Nat Commun 2025; 16:1354. [PMID: 39904991 PMCID: PMC11794612 DOI: 10.1038/s41467-025-56372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Asymmetric multicomponent reactions that aim to control multiple chiral centers with high selectivity in a single step remain an on-gonging challenge. The realm of enantioselective radical-polar crossover transformation achieved through C-H Functionalization has yet to be fully explored. Herein, we present a successful description of a photoredox/Cr-catalyzed enantioselective three-component (hetero)arylalkylation of 1,3-dienes through C-H functionalization. A diverse array of chiral homoallylic alcohols could be obtained in good to excellent yields, accompanied by outstanding enantioselectivity. The asymmetric radical-polar crossover transformation could build two chiral centers simultaneously and demonstrates broad substrate tolerance, accommodating various drug-derived aldehydes, (hetero)aromatics, and 1,3-diene derivatives. Preliminary mechanistic studies indicate the involvement of a radical intermediate, with the chiral allylic chromium species reacting with various aliphatic and aromatic aldehydes through Zimmerman-Traxler transition states enabled by dual photoredox and chiral chromium catalysis.
Collapse
Affiliation(s)
- Si-Yuan Tang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhan-Jie Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yu Ao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ning Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
5
|
Li YB, Xu M, Kellermann LA, Erchinger JE, Dutta S, Daniliuc CG, Qi X, Glorius F. A General Three-Component Nozaki-Hiyama-Kishi-Type Reaction Enabled by Delayed Radical-Polar Crossover. J Am Chem Soc 2025; 147:2642-2652. [PMID: 39772560 DOI: 10.1021/jacs.4c14913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Nozaki-Hiyama-Kishi (NHK) reactions offer a mild approach for the formation of alcohol motifs through radical-polar crossover-based pathways from various radical precursors. However, the application of multicomponent NHK-type reactions, which allow the formation of multiple bonds in a single step, has been largely restricted to bulky alkyl radical precursors, thus limiting their expanded utilization. Herein, we disclose a general three-component NHK-type reaction enabled by delayed radical-polar crossover, which efficiently tolerates a plethora of radical precursors that were previously unavailable. This method enables the modular assembly of versatile homoallylic alcohols from feedstock chemicals with excellent chemo-, regio-, diastereo-, and enantioselectivities in a single step. Experimental studies and density functional theory (DFT) calculations reveal that the kinetically favored formation of an allylchromium(III) species is paramount for enforcing the delayed radical-polar crossover over direct radical addition. Finally, straightforward transformations and applications of the homoallylic alcohol products were demonstrated, showcasing the synthetic utility of this method.
Collapse
Affiliation(s)
- Yan-Bo Li
- Organisch-Chemisches Institut, Universität Münster, Münster 48149, Germany
| | - Minghao Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | | | | | - Subhabrata Dutta
- Organisch-Chemisches Institut, Universität Münster, Münster 48149, Germany
| | | | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- State Key Laboratory of Power Grid Environmental Protection, Wuhan University, Wuhan 430072, P. R. China
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Münster 48149, Germany
| |
Collapse
|
6
|
Xia D, Zhang N, Zhong M, Wang W, Li Q, Zhang Y, Zhang WD. Photoinduced synthesis of trisubstituted allylic molecules via migratory allylation of olefins. Chem Commun (Camb) 2025; 61:1653-1656. [PMID: 39744851 DOI: 10.1039/d4cc05368k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
A transition-metal-free method to afford diverse trisubstituted allylic molecules via migratory allylation of olefins under light irradiation is described. This system tolerated diverse N-tosylhydrazones and olefinic boronic acids. Successful allylation of drugs and natural-product analogues was achieved. The gram-scale synthesis and subsequent post-transformation demonstrated the potential applications of this strategy.
Collapse
Affiliation(s)
- Dingding Xia
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China.
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Na Zhang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Mingdong Zhong
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Weijie Wang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China.
| | - Qiannan Li
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China.
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yu Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China.
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China.
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
7
|
Peng C, Wu T, Yang X, Pei M, Wang S, Kanai M, Shimizu Y, Wei X. Copper(I)-Catalyzed Asymmetric Nucleophilic Addition to Aldehydes with Skipped Enynes. Org Lett 2024; 26:10072-10077. [PMID: 39555775 DOI: 10.1021/acs.orglett.4c03449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The development of sustainable and novel strategies for constructing complex chiral molecules with versatile transformation potential is a long-term pursuit in the chemistry community. We report a copper(I)-catalyzed enyne addition to aldehydes under proton-transfer conditions, unlike previous examples which were limited to the use of preformed reactive nucleophiles containing allylic heteroatoms or electron-withdrawing groups. This protocol provides an efficient platform for installing chiral allylic alcohol moieties with a broad substrate scope and high regio-, stereo-, and enantioselectivity.
Collapse
Affiliation(s)
- Cheng Peng
- School of Pharmacy, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Tianle Wu
- School of Pharmacy, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Xueyan Yang
- Department of Medicinal Chemistry, College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Mengyao Pei
- School of Pharmacy, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Siyuan Wang
- Department of Medicinal Chemistry, College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yohei Shimizu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0808, Japan
- List Sustainable Digital Transformation Catalyst Collaboration Research Platform, Institute for Chemical Reaction Design and Discovery (ICReDD List-PF), Hokkaido University, Sapporo 060-0808, Japan
| | - Xiaofeng Wei
- School of Pharmacy, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| |
Collapse
|
8
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
9
|
Weindl C, Hintermann L. Synthesis of Indolines via Base-Mediated C-H Activation and Defluorinative C-N Coupling, with no Need for Transition-Metals. Chemistry 2024; 30:e202401034. [PMID: 38693605 DOI: 10.1002/chem.202401034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/20/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Syntheses of (partially) aromatic nitrogen heterocycles increasingly rely on transition-metal catalyzed C-C- and C-N-cross-coupling reactions. Here we describe a different approach to the synthesis of indolines by a domino C(sp3)-H activation, 1,2-addition, and defluorinative SNAr-cyclization sequence to provide the target 1,2-diarylindolines (1,2-diaryl-2,3-dihydroindoles) from ortho-fluorinated methyl-arenes and N-aryl imines (benzylidene anilines) in a cyclocondensation that is mediated by potassium hexamethyldisilazide (KHMDS) as base exclusively. This transition-metal-free process via C-H and C-F bond activation provides a one-step entry into a wide array of indoline scaffolds (43 examples, up to 96 % yield). This privileged substructure is common in natural products and pharmaceuticals alike, and cannot be accessed by traditional condensation reactions.
Collapse
Affiliation(s)
- Christian Weindl
- School of Natural Science, Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching bei München, 85748, Germany
- TUM Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Str. 1, Garching bei München, 85748, Germany
| | - Lukas Hintermann
- School of Natural Science, Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching bei München, 85748, Germany
- TUM Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Str. 1, Garching bei München, 85748, Germany
| |
Collapse
|
10
|
Lin A, Lee S, Knowles RR. Organic Synthesis Away from Equilibrium: Contrathermodynamic Transformations Enabled by Excited-State Electron Transfer. Acc Chem Res 2024; 57:1827-1838. [PMID: 38905487 PMCID: PMC11831427 DOI: 10.1021/acs.accounts.4c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
ConspectusChemists have long been inspired by biological photosynthesis, wherein a series of excited-state electron transfer (ET) events facilitate the conversion of low energy starting materials such as H2O and CO2 into higher energy products in the form of carbohydrates and O2. While this model for utilizing light-driven charge transfer to drive catalytic reactions thermodynamically "uphill" has been extensively adapted for small molecule activation, molecular machines, photoswitches, and solar fuel chemistry, its application in organic synthesis has been less systematically developed. However, the potential benefits of these approaches are significant, both in enabling transformations that cannot be readily achieved using conventional thermal chemistry and in accessing distinct selectivity regimes that are uniquely enabled by excited-state mechanisms. In this Account, we present work from our group that highlights the ability of visible light photoredox catalysis to drive useful organic transformations away from their equilibrium positions, addressing a number of long-standing synthetic challenges.We first discuss how excited-state ET enabled the first general methods for the catalytic anti-Markovnikov hydroamination of unactivated alkenes with alkyl amines. In these reactions, an excited-state iridium(III) photocatalyst reversibly oxidizes secondary amine substrates to their corresponding aminium radical cations (ARCs). These electrophilic N-centered radicals can then react with olefins to furnish valuable tertiary amine products with complete anti-Markovnikov regioselectivity. Notably, some of these products are less thermodynamically stable than their corresponding amine and alkene starting materials. We next present a strategy for light-driven C-C bond cleavage within various aliphatic alcohols mediated by homolytic activation of alcohol O-H bonds by excited-state proton-coupled electron transfer (PCET). The resulting alkoxy radical intermediates then undergo C-C β-scission to ultimately provide isomeric linear carbonyl products that are often higher in energy than their cyclic alcohol precursors. Applications of this chemistry for the light-driven depolymerization of lignin biomass, commercial phenoxy resin, hydroxylated polyolefin derivatives, and thermoset polymers are presented as well. We then describe a method for the contrathermodynamic positional isomerization of highly substituted olefins by means of cooperative photoredox and chromium(II) catalysis. In this work, generation of an allylchromium(III) species that can undergo highly regioselective in situ protodemetalation enables access to a less substituted and thermodynamically less stable positional isomer. Product selectivity in this reaction is determined by the large differential in oxidation potentials between differently substituted olefin isomers. Lastly, we discuss a light-driven deracemization reaction developed in collaboration with the Miller group, wherein a racemic urea substrate undergoes spontaneous optical enrichment upon visible light irradiation in the presence of an iridium(III) chromophore, a chiral Brønsted base, and a chiral peptide thiol. Excellent levels of enantioselectivity are achieved via sequential and synergistic proton transfer (PT) and H atom transfer (HAT) steps. Taken together, these examples highlight the ability of excited-state ET events to enable access to nonequilibrium product distributions across a wide range of catalytic, redox-neutral transformations in which photons are the only stoichiometric reagents.
Collapse
Affiliation(s)
- Angela Lin
- Department of Chemistry, Princeton University, Princeton NJ 08544 (USA)
| | - Sumin Lee
- Department of Chemistry, Princeton University, Princeton NJ 08544 (USA)
| | - Robert R. Knowles
- Department of Chemistry, Princeton University, Princeton NJ 08544 (USA)
| |
Collapse
|
11
|
Hu H, Shi Z, Guo X, Zhang FH, Wang Z. A Radical Approach for Asymmetric α-C-H Addition of N-Sulfonyl Benzylamines to Aldehydes. J Am Chem Soc 2024; 146:5316-5323. [PMID: 38364304 DOI: 10.1021/jacs.3c12043] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Efficient synthesis of enantioenriched amines is of great importance due to their significant synthetic and biological applications. Photoredox-mediated asymmetric α-amino C(sp3)-H functionalization offers an atom-economical and sustainable approach to access chiral amines. However, the development of analogous reactions is in its early stages, generally affording chiral amines with a single stereocenter. Herein, we present a novel synergistic triple-catalysis approach for the asymmetric α-C-H addition of readily available N-sulfonyl amines to aldehydes under mild conditions. This method allows for the efficient synthesis of a diverse array of valuable β-amino alcohols bearing vicinal stereocenters. Unlike previous reports, our protocol employs a radical approach using earth-abundant Cr catalysis. Quinuclidine plays a dual role by facilitating highly selective hydrogen-atom transfer to generate α-amino radicals and promoting the dissociation of the Cr-O bond, which is crucial for the overall catalytic cycle as evidenced by control, NMR, and DFT experiments. Preliminary mechanistic studies, including radical trapping, nonlinear effect, Stern-Volmer plot, kinetic isotope effect, and Hammett plot, offer valuable insights into the reaction pathway.
Collapse
Affiliation(s)
- Hui Hu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou ,Zhejiang Province 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou ,Zhejiang Province 310024, China
| | - Zhaoxin Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou ,Zhejiang Province 310030, China
| | - Xiaochong Guo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou ,Zhejiang Province 310030, China
| | - Feng-Hua Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou ,Zhejiang Province 310030, China
| | - Zhaobin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou ,Zhejiang Province 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou ,Zhejiang Province 310024, China
| |
Collapse
|
12
|
Xu GQ, Wang WD, Xu PF. Photocatalyzed Enantioselective Functionalization of C(sp 3)-H Bonds. J Am Chem Soc 2024; 146:1209-1223. [PMID: 38170467 DOI: 10.1021/jacs.3c06169] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT), visible-light photocatalysis has emerged as a sustainable and efficient platform for organic synthesis. These processes provide a powerful avenue for the direct functionalization of C(sp3)-H bonds under mild conditions. Over the past decade, there have been remarkable advances in the enantioselective functionalization of the C(sp3)-H bond via photocatalysis combined with conventional asymmetric catalysis. Herein, we summarize the advances in asymmetric C(sp3)-H functionalization involving visible-light photocatalysis and discuss two main pathways in this emerging field: (a) SET-driven carbocation intermediates are followed by stereospecific nucleophile attacks; and (b) photodriven alkyl radical intermediates are further enantioselectively captured by (i) chiral π-SOMOphile reagents, (ii) stereoselective transition-metal complexes, and (iii) another distinct stereoscopic radical species. We aim to summarize key advances in reaction design, catalyst development, and mechanistic understanding, to provide new insights into this rapidly evolving area of research.
Collapse
Affiliation(s)
- Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
13
|
Wang H, Erchinger JE, Lenz M, Dutta S, Daniliuc CG, Glorius F. syn-Selective Difunctionalization of Bicyclobutanes Enabled by Photoredox-Mediated C-S σ-Bond Scission. J Am Chem Soc 2023; 145:23771-23780. [PMID: 37852210 DOI: 10.1021/jacs.3c08512] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Given the importance of cyclic frameworks in molecular scaffolds and drug discovery, it is intriguing to precisely forge and manipulate ring systems in synthetic chemistry. In this field, the intermolecular synthesis of densely substituted cyclobutanes with precise diastereocontrol under simple reaction conditions remains a challenge. Herein, a photoredox strategy for the difunctionalization of bicyclo[1.1.0]butanes (BCBs) under high regio- and syn-selectivity is disclosed. C-S σ-bond cleavage of partially unsaturated sulfur-containing bifunctional reagents in an overall strain-release-driven process enables the thio-alkynylation, -alkenylation, and -allylation of BCBs under mild conditions and demonstrates the generality of this protocol. Mechanistic studies suggest that the intermediacy of cyclic distonic radical cations might be key for the efficient scission of C-S σ-bonds and the origin of diastereoselectivity.
Collapse
Affiliation(s)
- Huamin Wang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Johannes E Erchinger
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Madina Lenz
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Subhabrata Dutta
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
14
|
Venditto NJ, Boerth JA. Photoredox-Catalyzed Multicomponent Synthesis of Functionalized γ-Amino Butyric Acids via Reductive Radical Polar Crossover. Org Lett 2023; 25:3429-3434. [PMID: 37163325 DOI: 10.1021/acs.orglett.3c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Multicomponent radical polar crossover (RPC) reactions are useful for leveraging both radical and polar bond-forming steps to rapidly build molecular complexity in a single transformation. However, multicomponent RPC reactions that utilize carbonyl π-bond electrophiles are underrepresented in the literature. Herein, we describe a mild, photoredox-catalyzed decarboxylative multicomponent RPC reaction that couples carboxylic acids, Michael acceptors, and carbonyl electrophiles for the formation of diversely functionalized γ-amino butyric acid derivatives. This transformation also facilitates the synthesis of complex and biologically relevant γ-lactam compounds.
Collapse
Affiliation(s)
- Nicholas J Venditto
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Jeffrey A Boerth
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| |
Collapse
|
15
|
Peng P, Zhong Y, Zhou C, Tao Y, Li D, Lu Q. Unlocking the Nucleophilicity of Strong Alkyl C-H Bonds via Cu/Cr Catalysis. ACS CENTRAL SCIENCE 2023; 9:756-762. [PMID: 37122460 PMCID: PMC10141608 DOI: 10.1021/acscentsci.2c01389] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 05/03/2023]
Abstract
Direct functionalization of inert C-H bonds is one of the most attractive yet challenging strategies for constructing molecules in organic chemistry. Herein, we disclose an unprecedented and Earth abundant Cu/Cr catalytic system in which unreactive alkyl C-H bonds are transformed into nucleophilic alkyl-Cr(III) species at room temperature, enabling carbonyl addition reactions with strong alkyl C-H bonds. Various aryl alkyl alcohols are furnished under mild reaction conditions even on a gram scale. Moreover, this new radical-to-polar crossover approach is further applied to the 1,1-difunctionalization of aldehydes with alkanes and different nucleophiles. Mechanistic investigations reveal that the aldehyde not only acts as a reactant but also serves as a photosensitizer to recycle the Cu and Cr catalysts.
Collapse
Affiliation(s)
- Pan Peng
- The
Institute for Advanced Studies (IAS), Wuhan
University, Wuhan 430072, P. R. China
| | - Yifan Zhong
- The
Institute for Advanced Studies (IAS), Wuhan
University, Wuhan 430072, P. R. China
| | - Cong Zhou
- The
Institute for Advanced Studies (IAS), Wuhan
University, Wuhan 430072, P. R. China
| | - Yongsheng Tao
- The
Institute for Advanced Studies (IAS), Wuhan
University, Wuhan 430072, P. R. China
| | - Dandan Li
- Key
Laboratory of Micro-Nano Materials for Energy Storage and Conversion
of Henan Province, Institute of Surface Micro and Nano Materials,
College of Chemical and Materials Engineering, Xuchang University, Henan 461000, P. R. China
| | - Qingquan Lu
- The
Institute for Advanced Studies (IAS), Wuhan
University, Wuhan 430072, P. R. China
| |
Collapse
|
16
|
Drennhaus T, Leifert D, Lammert J, Drennhaus JP, Bergander K, Daniliuc CG, Studer A. Enantioselective Copper-Catalyzed Fukuyama Indole Synthesis from 2-Vinylphenyl Isocyanides. J Am Chem Soc 2023; 145:8665-8676. [PMID: 37029692 DOI: 10.1021/jacs.3c01667] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Enantioenriched chiral indoles are of high interest for the pharmaceutical and agrochemical industries. Herein, we present an asymmetric Fukuyama indole synthesis through a mild and efficient radical cascade reaction to access 2-fluoroalkylated 3-(α-cyanobenzylated) indoles by stereochemical control with a chiral copper-bisoxazoline complex using 2-vinylphenyl arylisocyanides as radical acceptors and fluoroalkyl iodides as C-radical precursors. Radical addition to the isonitrile moiety, 5-exo-trig cyclization, and Cu-catalyzed stereoselective cyanation provide the targeted indoles with excellent enantioselectivity and good yields. Due to the similar electronic and steric properties of the two aryl substituents to be differentiated, the enantioselective construction of the cyano diaryl methane stereocenter is highly challenging. Mechanistic studies reveal a negative nonlinear effect which allows proposing a model to explain the stereochemical outcome. Scalability and potential utility of the enantioenriched 3-(α-cyanobenzylated) indoles as hubs for chiral tryptamines, indole-3-acetic acid derivatives, and triarylmethanes are demonstrated, and a formal synthesis of a natural product analogue is disclosed.
Collapse
Affiliation(s)
- Till Drennhaus
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Jessika Lammert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | | | - Klaus Bergander
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| |
Collapse
|
17
|
Pradhan S, Chakraborty P, Paira S, Sundararaju B. Allenyl Carbonate as a Butadiene Surrogate in Cobalt-Catalyzed Crotylation of Aldehydes. J Org Chem 2023; 88:5893-5899. [PMID: 37071873 DOI: 10.1021/acs.joc.3c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Allenyl carbonate was used as a 1,3-butadiene surrogate to develop a photocatalytically sustainable protocol for cobalt-catalyzed crotylation of aldehydes. The developed method tolerated a wide range of aromatic and aliphatic aldehydes with retention of functional groups under mild conditions and produced good-to-excellent yields of crotylated secondary alcohols. Based on preliminary mechanistic studies and literature precedents, a plausible mechanism is proposed.
Collapse
Affiliation(s)
- Subhankar Pradhan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Priyanka Chakraborty
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Soumen Paira
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
18
|
Weindl C, Helmbrecht SL, Hintermann L. Rapid C-H Transformation: Addition of Diarylmethanes to Imines in Seconds by Catalytic Use of Base. J Org Chem 2023; 88:4155-4161. [PMID: 36972371 DOI: 10.1021/acs.joc.2c02658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The addition of diarylmethanes or methylarenes via activation of benzylic C(sp3)-H bonds to N-aryl imines proceeds under catalysis by alkali hexamethyldisilazide (HMDS) base to give N-(1,2,2-triarylethyl)anilines or N-(1,2-diarylethyl)anilines, respectively. In the presence of 10 mol % of LiHMDS at room temperature, the diarylmethane addition equilibrates within 20-30 s and is driven to near completion by cooling the reaction mixture to -25 °C, providing N-(1,2,2-triarylethyl)aniline in a >90% yield.
Collapse
Affiliation(s)
- Christian Weindl
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching bei München, Germany
- TUM Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Str. 1, 85748 Garching bei München, Germany
| | - Sebastian L Helmbrecht
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching bei München, Germany
- TUM Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Str. 1, 85748 Garching bei München, Germany
| | - Lukas Hintermann
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching bei München, Germany
- TUM Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Str. 1, 85748 Garching bei München, Germany
| |
Collapse
|
19
|
Wang R, Wang Y, Ding R, Staub PB, Zhao CZ, Liu P, Wang YM. Designed Iron Catalysts for Allylic C-H Functionalization of Propylene and Simple Olefins. Angew Chem Int Ed Engl 2023; 62:e202216309. [PMID: 36622129 PMCID: PMC9974915 DOI: 10.1002/anie.202216309] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/17/2022] [Accepted: 01/09/2023] [Indexed: 01/10/2023]
Abstract
Propylene gas is produced worldwide by steam cracking on million-metric-ton scale per year. It serves as a valuable starting material for π-bond functionalization but is rarely applied in transition metal-catalyzed allylic C-H functionalization for fine chemical synthesis. Herein, we report that a newly-developed cationic cyclopentadienyliron dicarbonyl complex allows for the conversion of propylene to its allylic C-C bond coupling products under catalytic conditions. This approach was also found applicable to the allylic functionalization of simple α-olefins with distinctive branched selectivity. Experimental and computational mechanistic studies supported the allylic deprotonation of the metal-coordinated alkene as the turnover-limiting step and led to insights into the multifaceted roles of the newly designed ligand in promoting allylic C-H functionalization with enhanced reactivity and stereoselectivity.
Collapse
Affiliation(s)
- Ruihan Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yidong Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Ruiqi Ding
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Parker B Staub
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Christopher Z Zhao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
20
|
Chen Q, Zhang R, Dang Y. Mechanistic explorations on the decarboxylative allylation of amino esters via dual photoredox and palladium catalysis. Org Biomol Chem 2023; 21:1138-1142. [PMID: 36636962 DOI: 10.1039/d2ob02161g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mechanistic studies reveal that the decarboxylative allylation of amino esters via dual photoredox and palladium catalysis occurs via oxidation giving π-allyl-Pd(II) species and carboxylate, which is oxidized by *Ir(III)-catalyst offering benzyl radicals. The alkylated product is formed via an SN2 pathway. Single-electron transfer between Pd(I)-species and Ir(II)-catalysis restores both catalysts.
Collapse
Affiliation(s)
- Qingqing Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
21
|
Liu YT, Fan YH, Mei Y, Li DJ, Jiang Y, Yu WH, Pan F. Chromium-Catalyzed Defluorinative Reductive Coupling of Aldehydes with gem-Difluoroalkenes. Org Lett 2023; 25:549-554. [PMID: 36637443 DOI: 10.1021/acs.orglett.3c00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Herein, a mild and convenient defluorinative reductive cross coupling of gem-difluoroalkenes with aliphatic aldehydes has been developed to afford diverse silyl-protected β-fluorinated allylic alcohols. The reaction is operationally simple and shows good functional group tolerance with moderate to excellent yields. The utility of this method is demonstrated by converting the products into various bioactive fluorinated compounds, showing its potential applications in drug discovery and biochemistry.
Collapse
Affiliation(s)
- Yu-Tao Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Yu-Hang Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Yan Mei
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Dong-Jie Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Yan Jiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Wen-Hao Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| |
Collapse
|
22
|
Verma R, Jindal P, Prasad J, Kothari SL, Lamba NP, Dandia A, Khangarot RK, Chauhan MS. Recent Trends in Photocatalytic Enantioselective Reactions. Top Curr Chem (Cham) 2022; 380:48. [DOI: 10.1007/s41061-022-00402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/31/2022] [Indexed: 11/30/2022]
|
23
|
Abstract
Creating, conserving and modifying the stereochemistry of organic compounds has been the subject of significant research efforts in synthetic chemistry. Most synthetic routes are designed according to the stereoselectivity-determining step. Stereochemical editing is an alternative strategy, wherein the chiral-defining or geometry-defining steps are independent of the construction of the major scaffold or complexity. It enables late-stage alterations of stereochemistry and can generate isomers from a single compound. However, in many instances, stereochemical editing processes are contra-thermodynamic, meaning the transformation is unfavourable. To overcome this barrier, photocatalysis uses photogenerated radical species and introduces thermochemical biases. A range of synthetically valuable contra-thermodynamic stereochemical editing processes have been invented, including deracemization of chiral molecules, positional alkene isomerization and dynamic epimerization of sugars and diols. In this Review, we highlight the fundamental mechanisms of visible-light photocatalysis and the general reactivity modes of the photogenerated radical intermediates towards contra-thermodynamic stereochemical editing processes.
Collapse
|
24
|
Gavin JT, Belli RG, Roberts CC. Radical-Polar Crossover Catalysis with a d 0 Metal Enabled by a Redox-Active Ligand. J Am Chem Soc 2022; 144:21431-21436. [DOI: 10.1021/jacs.2c09114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Joshua T. Gavin
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| | - Roman G. Belli
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| | - Courtney C. Roberts
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
25
|
Schäfers F, Dutta S, Kleinmans R, Mück-Lichtenfeld C, Glorius F. Asymmetric Addition of Allylsilanes to Aldehydes: A Cr/Photoredox Dual Catalytic Approach Complementing the Hosomi–Sakurai Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Felix Schäfers
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, Münster 48149, Germany
| | - Subhabrata Dutta
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, Münster 48149, Germany
| | - Roman Kleinmans
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, Münster 48149, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, Münster 48149, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, Münster 48149, Germany
| |
Collapse
|
26
|
Zhang FH, Guo X, Zeng X, Wang Z. Asymmetric 1,4-functionalization of 1,3-enynes via dual photoredox and chromium catalysis. Nat Commun 2022; 13:5036. [PMID: 36028488 PMCID: PMC9418150 DOI: 10.1038/s41467-022-32614-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
The merger of photoredox and transition-metal catalysis has evolved as a robust platform in organic synthesis over the past decade. The stereoselective 1,4-functionalization of 1,3-enynes, a prevalent synthon in synthetic chemistry, could afford valuable chiral allene derivatives. However, tremendous efforts have been focused on the ionic reaction pathway. The radical-involved asymmetric 1,4-functionalization of 1,3-enynes remains a prominent challenge. Herein, we describe the asymmetric three-component 1,4-dialkylation of 1,3-enynes via dual photoredox and chromium catalysis to provide chiral allenols. This method features readily available starting materials, broad substrate scope, good functional group compatibility, high regioselectivity, and simultaneous control of axial and central chiralities. Mechanistic studies suggest that this reaction proceeds through a radical-involved redox-neutral pathway.
Collapse
Affiliation(s)
- Feng-Hua Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| | - Xiaochong Guo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| | - Xianrong Zeng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| | - Zhaobin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, Zhejiang Province, China. .,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China.
| |
Collapse
|
27
|
Irie Y, Chen H, Fuse H, Mitsunuma H, Kanai M. Linear‐Selective Allylation of Aldehydes with Simple Alkenes Mediated by Quadruple Hybrid Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yu Irie
- The University of Tokyo JAPAN
| | | | | | | | | |
Collapse
|
28
|
calogero F, Magagnano G, Potenti S, Gualandi A, Fermi A, Ceroni P, Cozzi PG. Dual Photoredox and Nickel Catalysed Reductive Coupling of Alkynes and Aldehydes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Limburg B, Cristòfol À, Kleij AW. Decoding Key Transient Inter-Catalyst Interactions in a Reductive Metallaphotoredox-Catalyzed Allylation Reaction. J Am Chem Soc 2022; 144:10912-10920. [PMID: 35675904 PMCID: PMC9228067 DOI: 10.1021/jacs.2c03692] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metallaphotoredox chemistry has recently witnessed a surge in interest within the field of synthetic organic chemistry through the use of abundant first-row transition metals combined with suitable photocatalysts. The intricate details arising from the combination of two (or more) catalytic components during the reaction and especially the inter-catalyst interactions remain poorly understood. As a representative example of a catalytic process featuring such intricacies, we here present a meticulous study of the mechanism of a cobalt-organophotoredox catalyzed allylation of aldehydes. Importantly, the commonly proposed elementary steps in reductive metallaphotoredox chemistry are more complex than previously assumed. After initial reductive quenching, a transient charge-transfer complex forms that interacts with both the transition-metal catalyst and the catalytic base. Surprisingly, the former interaction leads to deactivation due to induced charge recombination, while the latter promotes deprotonation of the electron donor, which is the crucial step to initiate productive catalysis but is often neglected. Due to the low efficiency of this latter process, the overall catalytic reaction is photon-limited and the cobalt catalyst remains in a dual resting state, awaiting photoinduced reduction. These new insights are of general importance to the synthetic community, as metallaphotoredox chemistry has become a powerful tool used in the formation of elusive compounds through carbon-carbon bond formations. Understanding the underlying aspects that determine the efficiency of such reactions provides a conceptually stronger reactivity paradigm to empower future approaches to synthetic challenges that rely on dual metallaphotoredox catalysis.
Collapse
Affiliation(s)
- Bart Limburg
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Àlex Cristòfol
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain.,Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluïs Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
30
|
Peng X, Hirao Y, Yabu S, Sato H, Higashi M, Akai T, Masaoka S, Mitsunuma H, Kanai M. A Catalytic Alkylation of Ketones via sp3 C-H Bond Activation. J Org Chem 2022; 88:6333-6346. [PMID: 35649206 DOI: 10.1021/acs.joc.2c00603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We identified a ternary hybrid catalyst system composed of an acridinium photoredox catalyst, a thiophosphoric imide (TPI) catalyst, and a titanium complex catalyst that promoted an intermolecular addition reaction of organic molecules with various ketones through sp3 C-H bond activation. The thiyl radical generated via single-electron oxidation of TPI by the excited photoredox catalyst abstracted a hydrogen atom from organic molecules such as toluene, benzyl alcohol, alkenes, aldehydes, and THF. The thus-generated carbon-centered radical species underwent addition to ketones and aldehydes. This intrinsically unfavorable step was promoted by single-electron reduction of the intermediate alkoxy radical by catalytically generated titanium(III) species. This reaction provided an efficient and straightforward route to a broad range of tertiary alcohols and was successfully applied to late-stage functionalization of drugs or their derivatives. The proposed mechanism was supported by both experimental and theoretical studies.
Collapse
Affiliation(s)
- Xue Peng
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Hirao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shunsuke Yabu
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan.,Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| | - Takuya Akai
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Shigeyuki Masaoka
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
31
|
Abstract
The carbonyl group stands as a fundamental scaffold and plays a ubiquitous role in synthetically important chemical reactions in both academic and industrial contexts. Venerable transformations, including the aldol reaction, Grignard reaction, Wittig reaction, and Nozaki-Hiyama-Kishi reaction, constitute a vast and empowering synthetic arsenal. Notwithstanding, two-electron mechanisms inherently confine the breadth of accessible reactivity and topological patterns.Fostered by the rapid development of photoredox catalysis, combing well-entrenched carbonyl addition and radicals can harness several unique and increasingly sustainable transformations. In particular, unusual carbon-carbon and carbon-heteroatom disconnections, which are out of reach of two-electron carbonyl chemistry, can be conceived. To meet this end, a novel strategy toward the utilization of simple carbonyl compounds as intermolecular radical acceptors was developed. The reaction is enabled by visible-light photoredox-initiated hole catalysis. In situ Brønsted acid activation of the carbonyl moiety prevents β-scission from occurring. Furthermore, this regioselective alkyl radical addition reaction obviates the use of metals, ligands, or additives, thus offering a high degree of atom economy under mild conditions. On the basis of the same concept and the work of Schindler and co-workers, carbonyl-olefin cross-metathesis, induced by visible light, has also been achieved, leveraging a radical Prins-elimination sequence.Recently, dual chromium and photoredox catalysis has been developed by us and Kanai, offering a complementary approach to the revered Nozaki-Hiyama-Kishi reaction. Leveraging the intertwined synergy between light and metal, several radical-to-polar crossover transformations toward eminent molecular motifs have been developed. Reactions such as the redox-neutral allylation of aldehydes and radical carbonyl alkylation can harvest the power of light and enable the use of catalytic chromium metal. Overall, exquisite levels of diastereoselectivity can be enforced via highly compact transition states. Other examples, such as the dialkylation of 1,3-dienes and radical carbonyl propargylation portray the versatile combination of radicals and carbonyl addition in multicomponent coupling endeavors. Highly valuable motifs, which commonly occur in complex drug and natural product architectures, can now be accessed in a single operational step. Going beyond carbonyl addition, seminal contributions from Fagnoni and MacMillan preconized photocatalytic HAT-based acyl radical formation as a key aldehyde valorization strategy. Our group articulated this concept, leveraging carboxy radicals as hydrogen atom abstractors in high regio- and chemoselective carbonyl alkynylation and aldehyde trifluoromethylthiolation.This Account, in addition to the narrative of our group and others' contributions at the interface between carbonyl addition and radical-based photochemistry, aims to provide core guiding foundations toward novel disruptive synthetic developments. We envisage that extending radical-to-polar crossovers beyond Nozaki-Hiyama-Kishi manifolds, taming less-activated carbonyls, leveraging multicomponent processes, and merging single electron steps with energy-transfer events will propel eminent breakthroughs in the near future.
Collapse
Affiliation(s)
- Huan-Ming Huang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
32
|
Yu H, Zhan T, Zhou Y, Chen L, Liu X, Feng X. Visible-Light-Activated Asymmetric Addition of Hydrocarbons to Pyridine-Based Ketones. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Han Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Tangyu Zhan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Long Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
33
|
Calogero F, Potenti S, Magagnano G, Mosca G, Gualandi A, Marchini M, Ceroni P, Cozzi PG. A Photoredox Nozaki‐Hiyama Reaction Catalytic in Chromium. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Francesco Calogero
- University of Bologna Faculty of Mathematical Physical and Natural Sciences: Universita degli Studi di Bologna Scuola di Scienze Dipartimento di Chimica "G. Ciamician" ITALY
| | - Simone Potenti
- University of Bologna Faculty of Mathematical Physical and Natural Sciences: Universita degli Studi di Bologna Scuola di Scienze Dipartimento di Chimica "G. Ciamician" ITALY
| | - Giandomenico Magagnano
- University of Bologna Faculty of Mathematical Physical and Natural Sciences: Universita degli Studi di Bologna Scuola di Scienze Dipartimento di Chimica "G. Ciamician" ITALY
| | - Giampaolo Mosca
- University of Bologna School of Science: Universita degli Studi di Bologna Scuola di Scienze Dipartimento di Chimica "G. Ciamician" ITALY
| | - Andrea Gualandi
- University of Bologna School of Science: Universita degli Studi di Bologna Scuola di Scienze Dipartimento di Chimica "G. Ciamician" ITALY
| | - Marianna Marchini
- University of Bologna School of Science: Universita degli Studi di Bologna Scuola di Scienze Dipartimento di Chimica "G. Ciamician" ITALY
| | - Paola Ceroni
- University of Bologna School of Science: Universita degli Studi di Bologna Scuola di Scienze Dipartimento di Chimica "G. Ciamician" ITALY
| | - Pier Giorgio Cozzi
- Universita di Bologna Dipartimento di chimica Via Selmi 2 40126 Bologna ITALY
| |
Collapse
|
34
|
Mitsunuma H, Kanai M, Katayama Y. Recent Progress in Chromium-Mediated Carbonyl Addition Reactions. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1696-6429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractOrganochromium(III) species are versatile nucleophiles in complex molecule synthesis due to their high functional group tolerance and chemoselectivity for aldehydes. Traditionally, carbonyl addition reactions of organochromium(III) species were performed through reduction of organohalides either using stoichiometric chromium(II) salts or catalytic chromium salts in the presence of stoichiometric reductants [such as Mn(0)]. Recently, alternative methods emerged involving organoradical formation from readily available starting materials (e.g., N-hydroxyphthalimide esters, alkenes, and alkanes), followed by trapping the radical with stoichiometric or catalytic chromium(II) salts. Such methods, especially using catalytic chromium(II) salts, will lead to the development of sustainable chemical processes minimizing salt wastes and number of synthetic steps. In this review, methods for generation of organochromium(III) species for addition reactions to carbonyl compounds, classified by nucleophiles are described.1 Introduction2 Alkylation2.1 Branch-Selective Reductive Alkylation of Aldehydes Using Unactivated Alkenes2.2 Linear-Selective Alkylation of Aldehydes2.2.1 Catalytic Decarboxylative Alkylation of Aldehydes Using NHPI Esters2.2.2 Catalytic Reductive Alkylation of Aldehydes Using Unactivated Alkenes2.2.3 Alkylation of Aldehydes via C(sp3)–H Bond Functionalization of Unactivated Alkanes2.3 Catalytic α-Aminoalkylation of Carbonyl Compounds3 Allylation3.1 Catalytic Allylation of Aldehydes via Three-Component Coupling3.2 Catalytic Allylation of Aldehydes via C(sp3)–H Bond Functionalization of Alkenes4 Propargylation: Catalytic Propargylation of Aldehydes via Three-Component Coupling5 Conclusion
Collapse
|
35
|
Murugesan K, Donabauer K, Narobe R, Derdau V, Bauer A, König B. Photoredox-Catalyzed Site-Selective Generation of Carbanions from C(sp 3)–H Bonds in Amines. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kathiravan Murugesan
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| | - Karsten Donabauer
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| | - Rok Narobe
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| | - Volker Derdau
- Sanofi Germany, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, G876, Frankfurt am Main 65926, Germany
| | - Armin Bauer
- Sanofi Germany, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, G876, Frankfurt am Main 65926, Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| |
Collapse
|
36
|
Wang H, Xu Y, Zhang F, Liu Y, Feng X. Bimetallic Palladium/Cobalt Catalysis for Enantioselective Allylic C-H Alkylation via a Transient Chiral Nucleophile Strategy. Angew Chem Int Ed Engl 2022; 61:e202115715. [PMID: 35040550 DOI: 10.1002/anie.202115715] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 01/08/2023]
Abstract
An asymmetric allylic C-H functionalization has been developed by making use of transient chiral nucleophiles, as well as bimetallic synergistic catalysis with an achiral Pd0 catalyst and a chiral N,N'-dioxide-CoII complex. A variety of β-ketoesters and N-Boc oxindoles coupled with allylbenzenes and aliphatic terminal alkenes were well tolerated, furnishing the desired allylic alkylation products in high yields (up to 99 %) with excellent regioselectivities and enantioselectivities (up to 99 % ee).
Collapse
Affiliation(s)
- Hongkai Wang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China.,Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Yang Xu
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Fangqing Zhang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yangbin Liu
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xiaoming Feng
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.,Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
37
|
Buendia MB, Higginson B, Kegnæs S, Kramer S, Martin R. Redox-Neutral Ni-Catalyzed sp 3 C–H Alkylation of α-Olefins with Unactivated Alkyl Bromides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mikkel B. Buendia
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Bradley Higginson
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Rovira i Virgili, Department de Quimica, c/Marcel i Domingo, 1, 43007 Tarragona, Spain
| | - Søren Kegnæs
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Søren Kramer
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
38
|
Diallo AG, Paris D, Faye D, Gaillard S, Lautens M, Renaud JL. Dual Ni/Organophotoredox Catalyzed Allylative Ring Opening Reaction of Oxabenzonorbornadienes and Analogs. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Abdoul G. Diallo
- Normandie University, LCMT, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France
| | - Déborah Paris
- Normandie University, LCMT, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France
| | - Djiby Faye
- Normandie University, LCMT, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France
- University of Cheikh Anta Diop de Dakar, Department of Chemistry, Faculty of Sciences, 10700 Dakar, Sénégal
| | - Sylvain Gaillard
- Normandie University, LCMT, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jean-Luc Renaud
- Normandie University, LCMT, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France
| |
Collapse
|
39
|
Michigami K, Mita T, Sato Y. Catalytic Carbonyl Allylation Using Terminal Alkenes as Nucleophiles. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kenichi Michigami
- Department of Chemistry, Faculty of Science, Osaka Prefecture University
| | - Tsuyoshi Mita
- Institution for Chemical Reaction Design and Discovery, Hokkaido University
| | | |
Collapse
|
40
|
Xie H, Breit B. Organophotoredox/Ni-Cocatalyzed Allylation of Allenes: Regio- and Diastereoselective Access to Homoallylic Alcohols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hui Xie
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
41
|
Yamashita Y, Sato I, Fukuyama R, Kobayashi S. Brønsted base-catalyzed imino-ene-type allylation reactions of simple alkenes as unactivated allyl compounds. Chem Commun (Camb) 2022; 58:2866-2869. [PMID: 35144278 DOI: 10.1039/d1cc06983g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic imino-ene-type allylation reactions of unactivated allyl compounds were achieved. In the presence of a catalytic amount of a strongly basic KOtBu-LiTMP or NaOtBu-LiTMP mixed system, the desired reactions proceeded smoothly at low temperature. Notably, a gaseous alkene, propylene, could also be used in this reaction system.
Collapse
Affiliation(s)
- Yasuhiro Yamashita
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Io Sato
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Ryota Fukuyama
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shū Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
42
|
Yamane M, Kanzaki Y, Mitsunuma H, Kanai M. Titanium(IV) Chloride-Catalyzed Photoalkylation via C(sp 3)-H Bond Activation of Alkanes. Org Lett 2022; 24:1486-1490. [PMID: 35166548 DOI: 10.1021/acs.orglett.2c00138] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the sophistication of C-H functionalization as one of the most powerful tools in organic synthesis, methodology for performing hydrogen-atom transfer of unactivated alkanes remains rather scarce. Herein, we describe chlorine radical-catalyzed C(sp3)-H photoalkylation using titanium(IV) chloride via a ligand-to-metal charge transfer process. Enabled by the unique properties of this abundant metal salt, the reaction not only effected the coupling of various alkanes with radical acceptors but also was shown to be applicable to direct photoalkylation of aromatic ketones.
Collapse
Affiliation(s)
- Mina Yamane
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yamato Kanzaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
43
|
Abstract
The fields of C-H functionalization and photoredox catalysis have garnered enormous interest and utility in the past several decades. Many different scientific disciplines have relied on C-H functionalization and photoredox strategies including natural product synthesis, drug discovery, radiolabeling, bioconjugation, materials, and fine chemical synthesis. In this Review, we highlight the use of photoredox catalysis in C-H functionalization reactions. We separate the review into inorganic/organometallic photoredox catalysts and organic-based photoredox catalytic systems. Further subdivision by reaction class─either sp2 or sp3 C-H functionalization─lends perspective and tactical strategies for use of these methods in synthetic applications.
Collapse
Affiliation(s)
- Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
44
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 209] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
45
|
Mondal S, Dumur F, Gigmes D, Sibi MP, Bertrand MP, Nechab M. Enantioselective Radical Reactions Using Chiral Catalysts. Chem Rev 2022; 122:5842-5976. [DOI: 10.1021/acs.chemrev.1c00582] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shovan Mondal
- Department of Chemistry, Syamsundar College, Shyamsundar 713424, West Bengal, India
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Mukund P. Sibi
- Department of Chemistry and Biochemistry North Dakota State University, Fargo, North Dakota 58108, United States
| | - Michèle P. Bertrand
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Malek Nechab
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| |
Collapse
|
46
|
Calogero F, Potenti S, Bassan E, Fermi A, Gualandi A, Monaldi J, Dereli B, Maity B, Cavallo L, Ceroni P, Giorgio Cozzi P. Nickel‐Mediated Enantioselective Photoredox Allylation of Aldehydes with Visible Light. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Francesco Calogero
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Simone Potenti
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
- Laboratorio SMART Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa Italy
| | - Elena Bassan
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Andrea Fermi
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Andrea Gualandi
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Jacopo Monaldi
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Busra Dereli
- KAUST Catalysis Center (KCC) Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Bholanath Maity
- KAUST Catalysis Center (KCC) Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC) Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Paola Ceroni
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
47
|
Liu J, Lu LQ, Luo Y, Zhao W, Sun PC, Jin W, Qi X, Cheng Y, Xiao WJ. Photoredox-Enabled Chromium-Catalyzed Alkene Diacylations. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jing Liu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yixin Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Wei Zhao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Peng-Chao Sun
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ying Cheng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| |
Collapse
|
48
|
Wang H, Xu Y, Zhang F, Liu Y, Feng X. Bimetallic Palladium/Cobalt Catalysis for Enantioselective Allylic C−H Alkylation via Transient Chiral Nucleophile Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hongkai Wang
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Yang Xu
- Shenzhen Bay Laboratory Chemical Biology CHINA
| | - Fangqing Zhang
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Yangbin Liu
- Shenzhen Bay Laboratory Chemical Biology CHINA
| | - Xiaoming Feng
- Sichuan University College of Chemistry 29 Wangjiang Road, Jiuyan Bridge 610064 Chengdu CHINA
| |
Collapse
|
49
|
Zhang S, Dong S, Cheng X, Ye Z, Lin L, Zhu J, Gong L. Chiral polycyclic benzosultams from photocatalytic diastereo- and enantioselective benzylic C–H functionalization. Org Chem Front 2022. [DOI: 10.1039/d2qo01491b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photocatalytic diastereo- and enantioselective C(sp3)–H functionalization/intramolecular cyclization reactions have been achieved, delivering optically active polycyclic benzosultams and fused tetrahydroisoquinolines.
Collapse
Affiliation(s)
- Shaonan Zhang
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shicheng Dong
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiuliang Cheng
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ziqi Ye
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lu Lin
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Zhu
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
50
|
Ramani A, Desai B, Dholakiya BZ, Naveen T. Recent advances in visible-light mediated functionalization of olefins and alkynes using copper catalysts. Chem Commun (Camb) 2022; 58:7850-7873. [DOI: 10.1039/d2cc01611g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past decade, visible-light photoredox catalysis has blossomed as a powerful strategy and offers a discrete activation mode complementary to thermal controlled reactions. Visible-light-mediated photoredox catalysis also offers exciting...
Collapse
|