1
|
Feng R, Tian F, Zhou J, Ping Y, Han W, Shi X, Bai X, Sun Y, Zhao J, Wu X, Li B. A preliminary study on the promotion of wound healing by paeoniflorin carbon dots loaded in chitosan hydrogel. Biomed Mater 2025; 20:035032. [PMID: 40306299 DOI: 10.1088/1748-605x/add2ba] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/30/2025] [Indexed: 05/02/2025]
Abstract
Due to poor angiogenesis under the wound bed, wound treatment remains a clinical challenge. Therefore, there is an urgent need for new dressings to combat bacterial infections, accelerate angiogenesis, and accelerate wound healing. In this study, we prepared carbon dots nanomaterial (PF-CDs) derived from traditional Chinese medicine paeoniflorin using a simple green one pot hydrothermal method. The average particle size of the CSs we prepared was 4 nm, and a concentration of 200 μg ml-1was ultimately selected for experiments. Subsequently, PF-CDs were loaded into the chitosan hydrogel to form a new type of wound dressing CSMA@PF-CDs hydrogel. CSMA@PF-CDs demonstrated positive biocompatibility by promoting a 20% increase in cell proliferation and strong antibacterial activity. In comparison to the control group, CSMA@PF-CDs enhanced the expression level of anti-inflammatory factors by at least 2.5 times and reduces the expression level of pro-inflammatory factors by at least 3 times. Furthermore, CSMA@PF-CDs promoted the migration of Human umbilical vein endothelial cells and increased vascular endothelial growth factor expression by 5 times. The results ofin vivoexperiments indicate that CSMA@PF-CDs significantly promoted the healing of back wounds in rats. These characteristics make it a promising material for repairing infected wounds and a potential candidate for clinical skin regeneration applications.
Collapse
Affiliation(s)
- Ruiming Feng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, People's Republic of China
| | - Feng Tian
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, People's Republic of China
| | - Jian Zhou
- Laboratory for Oral and General Health Integration and Translation, Beijing Tian tan Hospital, Capital Medical University, Beijing 100069, People's Republic of China
| | - Yilin Ping
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, People's Republic of China
| | - Wenze Han
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, People's Republic of China
| | - Xuexue Shi
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, People's Republic of China
| | - Xue Bai
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, People's Republic of China
| | - Yufeng Sun
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, People's Republic of China
| | - Jiali Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, People's Republic of China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, People's Republic of China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, People's Republic of China
| |
Collapse
|
2
|
Chandrasekaran K, Lee CE, Yun S, Jangid AK, Kim S, Kim K. CD44 Receptor-Mediated Ferroptosis Induction by Hyaluronic Acid Carbon Quantum Dots in Triple-Negative Breast Cancer Cells Through Downregulation of SLC7A11 Pathway. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2139. [PMID: 40363642 PMCID: PMC12073876 DOI: 10.3390/ma18092139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
The field of cancer therapy is actively pursuing highly effective self-targeted drug delivery materials endowed with exceptional properties. Recently, hyaluronic acid (HA), a naturally occurring polysaccharide, has been recognized as a potential target ligand for CD44 receptors, which are frequently expressed on various solid tumor cells targeted in cancer therapy. HA carbon quantum dots (CQDs) exhibit several advantageous properties, including a high surface area-to-volume ratio, small particle size, biocompatibility, and low cytotoxicity, making them ideal for biomedical applications, such as CD44-targeted drug delivery in ferroptosis-based cancer therapy. In this study, we synthesized HA-CQDs to enhance CD44-mediated ligand-receptor interactions targeting triple-negative breast cancer (TNBC). CQDs facilitate the intracellular generation of reactive oxygen species (ROS), leading to glutathione depletion. These processes result in crucial actions such as the downregulation of glutathione peroxidase 4, downregulation of solute carrier family 7 member 11, and inhibition of cystine intake. The subsequent intracellular ROS, originating from lipid peroxidation, induces ferroptosis. Our HA-CQDs engage CD44 receptors, selectively targeting TNBCs and enhancing cancer recognition. This interaction potentially enhances the nanoplatform-based CD44 targeted therapeutic effects in inducing ferroptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea; (K.C.); (C.E.L.); (S.Y.); (A.K.J.); (S.K.)
| |
Collapse
|
3
|
Wang Y, Du M, Wang J, Bai Z, Cui C, Tong J, Liu Y, Guo S, Zhang W, Wu X, Li B. Carbon dots-cisplatin nano drug delivery system induces the death of oral tongue squamous cell under self-targeting chemical/photodynamic combined therapy. Colloids Surf A Physicochem Eng Asp 2025; 704:135511. [DOI: 10.1016/j.colsurfa.2024.135511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Zaman A, Ghosh A, Ghosh AK, Das PK. DON encapsulated carbon dot-vesicle conjugate in therapeutic intervention of lung adenocarcinoma by dual targeting of CD44 and SLC1A5. NANOSCALE 2024; 16:21817-21836. [PMID: 39513401 DOI: 10.1039/d4nr00426d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Lung adenocarcinoma, recognized as one of the most formidable malignancies with a dismal prognosis and low survival rates, poses a significant challenge in its treatment. This article delineates the design and development of a carbon dot-vesicle conjugate (HACD-TMAV) for efficient cytotoxicity towards lung cancer cells by target selective delivery of the glutamine inhibitor 6-diazo-5-oxo-L-norleucine (DON) within CD44-enriched A549 cancer cells. HACD-TMAV is composed of hyaluronic acid-based carbon dots (HACDs) and trimesic acid-based vesicles (TMAV), which are bound via electrostatic interactions. TMAVs are formed by positively charged trimesic acid-based amphiphiles through H-type aggregation in water. HACDs were synthesized through a one-step hydrothermal route. The blue-emitting HACD-TMAV conjugate demonstrated selective bioimaging in CD44-overexpressed A549 lung cancer cells due to specific ligand-receptor interactions between HA and CD44. HACD-TMAV exhibited notably improved DON loading efficiency compared to individual nano-vehicles. HACD-TMAV-DON exhibited remarkable (∼6.0-fold higher) cytotoxicity against CD44-overexpressing A549 cells compared to CD44- HepG2 cells and HEK 293 normal cells. Also, DON-loaded HACD-TMAV showed ∼2.0-fold higher cytotoxicity against A549 cells compared to individual carriers and ∼4.5-fold higher cytotoxicity than by DON. Furthermore, HACD-TMAV-DON induced a ∼3.5-fold reduction in the size of 3D tumor spheroids of A549 cells. The enhanced anticancer effectiveness was attributed to starvation of the A549 cells of glutamine by dual targeting of glutamine metabolism and solute linked carrier family 1 member A5 (SLC1A5) through HA-linked CD44-mediated targeted delivery of DON. This led to over-production of reactive oxygen species (ROS) that induced apoptosis of cancer cells through downregulation of the PI3K/AKT/mTOR signaling cascade.
Collapse
Affiliation(s)
- Afreen Zaman
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| | - Aparajita Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| | - Anup Kumar Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| |
Collapse
|
5
|
Wang Z, Pang S, Liu X, Dong Z, Tian Y, Ashrafizadeh M, Rabiee N, Ertas YN, Mao Y. Chitosan- and hyaluronic acid-based nanoarchitectures in phototherapy: Combination cancer chemotherapy, immunotherapy and gene therapy. Int J Biol Macromol 2024; 273:132579. [PMID: 38795895 DOI: 10.1016/j.ijbiomac.2024.132579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Cancer phototherapy has been introduced as a new potential modality for tumor suppression. However, the efficacy of phototherapy has been limited due to a lack of targeted delivery of photosensitizers. Therefore, the application of biocompatible and multifunctional nanoparticles in phototherapy is appreciated. Chitosan (CS) as a cationic polymer and hyaluronic acid (HA) as a CD44-targeting agent are two widely utilized polymers in nanoparticle synthesis and functionalization. The current review focuses on the application of HA and CS nanostructures in cancer phototherapy. These nanocarriers can be used in phototherapy to induce hyperthermia and singlet oxygen generation for tumor ablation. CS and HA can be used for the synthesis of nanostructures, or they can functionalize other kinds of nanostructures used for phototherapy, such as gold nanorods. The HA and CS nanostructures can combine chemotherapy or immunotherapy with phototherapy to augment tumor suppression. Moreover, the CS nanostructures can be functionalized with HA for specific cancer phototherapy. The CS and HA nanostructures promote the cellular uptake of genes and photosensitizers to facilitate gene therapy and phototherapy. Such nanostructures specifically stimulate phototherapy at the tumor site, with particle toxic impacts on normal cells. Moreover, CS and HA nanostructures demonstrate high biocompatibility for further clinical applications.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng 252000, Shandong, PR China
| | - Shuo Pang
- Department of Urinary Surgery, Jinan Third People's Hospital, Jinan, Shandong 250101, PR China
| | - Xiaoli Liu
- Department of Dermatology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zi Dong
- Department of Gastroenterology, Lincang People's Hospital, Lincang, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, United States
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077 India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Türkiye; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Türkiye; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Türkiye.
| | - Ying Mao
- Department of Oncology, Suining Central Hospital, Suining City, Sichuan, China.
| |
Collapse
|
6
|
Parvin N, Kumar V, Joo SW, Mandal TK. Emerging Trends in Nanomedicine: Carbon-Based Nanomaterials for Healthcare. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1085. [PMID: 38998691 PMCID: PMC11243447 DOI: 10.3390/nano14131085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
Carbon-based nanomaterials, such as carbon quantum dots (CQDs) and carbon 2D nanosheets (graphene, graphene oxide, and graphdiyne), have shown remarkable potential in various biological applications. CQDs offer tunable photoluminescence and excellent biocompatibility, making them suitable for bioimaging, drug delivery, biosensing, and photodynamic therapy. Additionally, CQDs' unique properties enable bioimaging-guided therapy and targeted imaging of biomolecules. On the other hand, carbon 2D nanosheets exhibit exceptional physicochemical attributes, with graphene excelling in biosensing and bioimaging, also in drug delivery and antimicrobial applications, and graphdiyne in tissue engineering. Their properties, such as tunable porosity and high surface area, contribute to controlled drug release and enhanced tissue regeneration. However, challenges, including long-term biocompatibility and large-scale synthesis, necessitate further research. Potential future directions encompass theranostics, immunomodulation, neural interfaces, bioelectronic medicine, and expanding bioimaging capabilities. In summary, both CQDs and carbon 2D nanosheets hold promise to revolutionize biomedical sciences, offering innovative solutions and improved therapies in diverse biological contexts. Addressing current challenges will unlock their full potential and can shape the future of medicine and biotechnology.
Collapse
Affiliation(s)
| | | | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| | - Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| |
Collapse
|
7
|
Sun L, Zhao Y, Peng H, Zhou J, Zhang Q, Yan J, Liu Y, Guo S, Wu X, Li B. Carbon dots as a novel photosensitizer for photodynamic therapy of cancer and bacterial infectious diseases: recent advances. J Nanobiotechnology 2024; 22:210. [PMID: 38671474 PMCID: PMC11055261 DOI: 10.1186/s12951-024-02479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Carbon dots (CDs) are novel carbon-based nanomaterials that have been used as photosensitizer-mediated photodynamic therapy (PDT) in recent years due to their good photosensitizing activity. Photosensitizers (PSs) are main components of PDT that can produce large amounts of reactive oxygen species (ROS) when stimulated by light source, which have the advantages of low drug resistance and high therapeutic efficiency. CDs can generate ROS efficiently under irradiation and therefore have been extensively studied in disease local phototherapy. In tumor therapy, CDs can be used as PSs or PS carriers to participate in PDT and play an extremely important role. In bacterial infectious diseases, CDs exhibit high bactericidal activity as CDs are effective in disrupting bacterial cell membranes leading to bacterial death upon photoactivation. We focus on recent advances in the therapy of cancer and bacteria with CDs, and also briefly summarize the mechanisms and requirements for PSs in PDT of cancer, bacteria and other diseases. We also discuss the role CDs play in combination therapy and the potential for future applications against other pathogens.
Collapse
Affiliation(s)
- Lingxiang Sun
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Yifan Zhao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Hongyi Peng
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Jian Zhou
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100069, China
| | - Qingmei Zhang
- Taiyuan University of Science and Technology, Taiyuan, China
| | - Jingyu Yan
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Yingyu Liu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Susu Guo
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Xiuping Wu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China.
| | - Bing Li
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China.
| |
Collapse
|
8
|
Wang H, Yang S, Chen L, Li Y, He P, Wang G, Dong H, Ma P, Ding G. Tumor diagnosis using carbon-based quantum dots: Detection based on the hallmarks of cancer. Bioact Mater 2024; 33:174-222. [PMID: 38034499 PMCID: PMC10684566 DOI: 10.1016/j.bioactmat.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Carbon-based quantum dots (CQDs) have been shown to have promising application value in tumor diagnosis. Their use, however, is severely hindered by the complicated nature of the nanostructures in the CQDs. Furthermore, it seems impossible to formulate the mechanisms involved using the inadequate theoretical frameworks that are currently available for CQDs. In this review, we re-consider the structure-property relationships of CQDs and summarize the current state of development of CQDs-based tumor diagnosis based on biological theories that are fully developed. The advantages and deficiencies of recent research on CQDs-based tumor diagnosis are thus explained in terms of the manifestation of nine essential changes in cell physiology. This review makes significant progress in addressing related problems encountered with other nanomaterials.
Collapse
Affiliation(s)
- Hang Wang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Liangfeng Chen
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peng He
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, PR China
| | - Hui Dong
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| |
Collapse
|
9
|
Ghosh A, Ghosh AK, Zaman A, Das PK. Metformin-Loaded Hyaluronic Acid-Derived Carbon Dots for Targeted Therapy against Hepatocellular Carcinoma by Glutamine Metabolic Reprogramming. Mol Pharm 2023; 20:6391-6406. [PMID: 37933877 DOI: 10.1021/acs.molpharmaceut.3c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Metabolic reprogramming is a significant hallmark of cancer that promotes chemoresistance by allowing tumor tissues to adapt to changes in the tumor microenvironment caused by anticancer therapies. Hepatocellular carcinoma (HCC), one of the most common types of primary tumors, is associated with recurrent metabolic reprogramming that maximizes cancer cell growth and proliferation. Herein, we developed metformin (MET)-loaded hyaluronic acid (HA)-derived carbon dots (HA-CD-MET) by a simple and green method with no involvement of any additives. HA-CD-MET was utilized for specifically binding the CD44 receptor overexpressed in HCC and induced glutamine metabolic rewiring to inhibit HCC cell proliferation. Exposure to HA-CD-MET resulted in ∼6.5-fold better anticancer efficacy against CD44+ Hep3B cells in comparison to CD44-, HepG2, and noncancerous HEK293 cells at a very low dose of 80 μg/mL. Moreover, treatment of three-dimensional (3D) tumor spheroid model of HCC (Hep3B) with HA-CD-MET resulted in ∼4.9-fold reduction in tumor size. This improved anticancer efficacy of HA-CD-MET was attributed to the inhibition of glutaminase-1 (GLS-1), a mitochondrial enzyme that hydrolyzes glutamine into glutamate as confirmed from immunofluorescence and immunoblotting experiments. Furthermore, treatment with HA-CD-MET resulted in downregulation of glucose transporter-1 (GLUT-1) in Hep3B cells. Consequently, cancer cells were starved from essential nutrients, glutamine, and glucose, leading to the enhancement in intracellular ROS generation. This increase in intracellular ROS accumulation activated AMP-activated protein kinase (AMPK) and inhibited AKT phosphorylation, leading to cancer cell apoptosis. Thus, this study offers the targeting of metabolic reprogramming by HA-CD-MET that opens up a promising strategy for therapeutic intervention in hepatocarcinoma.
Collapse
Affiliation(s)
- Aparajita Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| | - Anup Kumar Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| | - Afreen Zaman
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| |
Collapse
|
10
|
Zhou SH, Wang RD, Wu TT, Deng SH, Guo JC, Zhou SM, Zhou X, Du J, Zhao QH, Ren X, Xie MJ. Long rod-shaped gallium composite material: Self-separating material aggregation induced enhancement of ROS for photothermal/photodynamic therapy of HCT116 cells. Eur J Med Chem 2023; 262:115892. [PMID: 39491428 DOI: 10.1016/j.ejmech.2023.115892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
As many of the disadvantages of traditional single therapy can be avoided with combination therapy, combination therapy has become a new treatment method. Herein, a long rod-shaped gallium composite multifunctional material (CP-Au-PEG-FA@BSA@IR780) based on chemotherapy therapy (CT), photothermal therapy (PTT) and photodynamic therapy (PDT) is constructed to increase reactive oxygen species (ROS) levels and Au NP release. CP-Au-PEG-FA@BSA@IR780 has fluorescence localization characteristics and can combine with CT-DNA to cause cancer cell apoptosis. The in vitro cytotoxicity experiments showed the excellent biocompatibility and great therapeutic efficacy of the designed nanoplatform compared to those of the IR780 group, which had weak red fluorescence. The in vivo experiments also showed that the designed micro/nano platform can effectively eliminate HCT116 tumors by allowing the temperature of the tumor site to exceed 55 °C (thermal ablation) under light irradiation. The main mechanism of chemotherapy indicated that the presence of Fe2+/Fe3+ can disrupt the rod-shaped structure of the original material and increase the content of Ga3+. Overall, CP-Au-PEG-FA@BSA@IR780 is a promising cancer therapy strategy that combines CT, PTT, and PDT and provides new insights into the synthesis method of enhancing composite materials with photothermal properties.
Collapse
Affiliation(s)
- Si-Han Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China; International Institute of Rivers and Ecological Security, Yunnan University, Kunming, 650091, Yunnan, China
| | - Rui-Dong Wang
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Tian-Tian Wu
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Shi-Hui Deng
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Ji-Chao Guo
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Shu-Min Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Xuan Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Jiajia Du
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Qi-Hua Zhao
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Xiaoxia Ren
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Ming-Jin Xie
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China.
| |
Collapse
|
11
|
Benner D, Yadav P, Bhatia D. Red emitting carbon dots: surface modifications and bioapplications. NANOSCALE ADVANCES 2023; 5:4337-4353. [PMID: 37638168 PMCID: PMC10448348 DOI: 10.1039/d3na00469d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023]
Abstract
Quantum dots (QDs), and carbon quantum dots (CDs) in particular, have received significant attention for their special characteristics. These particles, on the scale of several nanometers, are often produced using simple and green methods, with naturally occurring organic precursors. In addition to facile production methods, CDs present advantageous applications in the field of medicine, primarily for bioimaging, antibacterial and therapeutics. Also, CDs present great potential for surface modification through methods like doping or material mixing during synthesis. However, the bulk of current literature focuses on CDs emitting in the blue wavelengths which are not very suitable for biological applications. Red emitting CDs are therefore of additional interest due to their brightness, photostability, novelty and deeper tissue penetration. In this review article, red CDs, their methods of production, and their biological applications for translational research are explored in depth, with emphasis on the effects of surface modifications and doping.
Collapse
Affiliation(s)
- Dawson Benner
- Department of Engineering, Texas A&M University College Station 77843 Texas USA
| | - Pankaj Yadav
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar Palaj 382355 Gujarat India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar Palaj 382355 Gujarat India
| |
Collapse
|
12
|
Dong J, Li P, Ji X, Kang Y, Yuan X, Tang J, Shen B, Dong H, Lyu H. Electrons of d-orbital (Mn) and p-orbital (N) enhance the photocatalytic degradation of antibiotics by biochar while maintaining biocompatibility: A combined chemical and biological analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131083. [PMID: 36878031 DOI: 10.1016/j.jhazmat.2023.131083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Photocatalytic oxidation technology holds promise for ideal advanced treatment of antibiotic wastewater. Single-atom catalysts (SACs) are a new hotspot in catalytic science, but the photochemical studies on the removal of antibiotics from water and biocompatibility after entering the environment are scarce. In this work, we prepared a single Mn atom immobilized on N-doped biochar (Mn@N-Biochar) by impregnation calcination method for enhancing photocatalytic degradation of sulfanilamide (SNM) in different types of various water systems. Compared with the original biochar, Mn@N-Biochar showed enhanced SNM degradation and TOC removal capacity. DFT calculation concluded that the electrons of d-orbital (Mn) and p-orbital (N) altered the electronic structure of biochar and enhanced the photoelectric performance. It was shown that Mn@N-Biochar caused negligible systemic inflammation and tissue damage when given orally in mice, and also did not alter cell death and ROS production in human lung, kidney, and liver cells, as compared with biochar. We are convinced that Mn@N-Biochar could enhance the photocatalytic degradation of antibiotics while maintaining biocompatibility, which could be a promising strategy for wastewater treatment.
Collapse
Affiliation(s)
- Jinrui Dong
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Pin Li
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xue Yuan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Huajiang Dong
- Logistics University of the Chinese People's Armed Police Force, Tianjin 300189, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
13
|
Kashyap BK, Singh VV, Solanki MK, Kumar A, Ruokolainen J, Kesari KK. Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities. ACS OMEGA 2023; 8:14290-14320. [PMID: 37125102 PMCID: PMC10134471 DOI: 10.1021/acsomega.2c07840] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Cancer is ranked as the second leading cause of death globally. Traditional cancer therapies including chemotherapy are flawed, with off-target and on-target toxicities on the normal cells, requiring newer strategies to improve cell selective targeting. The application of nanomaterial has been extensively studied and explored as chemical biology tools in cancer theranostics. It shows greater applications toward stability, biocompatibility, and increased cell permeability, resulting in precise targeting, and mitigating the shortcomings of traditional cancer therapies. The nanoplatform offers an exciting opportunity to gain targeting strategies and multifunctionality. The advent of nanotechnology, in particular the development of smart nanomaterials, has transformed cancer diagnosis and treatment. The large surface area of nanoparticles is enough to encapsulate many molecules and the ability to functionalize with various biosubstrates such as DNA, RNA, aptamers, and antibodies, which helps in theranostic action. Comparatively, biologically derived nanomaterials perceive advantages over the nanomaterials produced by conventional methods in terms of economy, ease of production, and reduced toxicity. The present review summarizes various techniques in cancer theranostics and emphasizes the applications of smart nanomaterials (such as organic nanoparticles (NPs), inorganic NPs, and carbon-based NPs). We also critically discussed the advantages and challenges impeding their translation in cancer treatment and diagnostic applications. This review concludes that the use of smart nanomaterials could significantly improve cancer theranostics and will facilitate new dimensions for tumor detection and therapy.
Collapse
Affiliation(s)
- Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India
| | - Virendra Vikram Singh
- Defence Research and Development Establishment, DRDO, Gwalior 474002, Madhya Pradesh, India
| | - Manoj Kumar Solanki
- Faculty of Natural Sciences, Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Anil Kumar
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Karmre, Kanke 835222, Ranchi, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Vikkinkaari 1, 00100 Helsinki, Finland
| |
Collapse
|
14
|
Zou H, Liao X, Lu X, Hu X, Xiong Y, Cao J, Pan J, Li C, Zheng Y. Fluorescence studies of double-emitting carbon dots and application in detection of H2O in ethanol and differentiation of cancer cell and normal cell. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
15
|
Hui S. Carbon dots (CDs): basics, recent potential biomedical applications, challenges, and future perspectives. JOURNAL OF NANOPARTICLE RESEARCH 2023; 25:68. [DOI: 10.1007/s11051-023-05701-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/24/2023] [Indexed: 01/06/2025]
|
16
|
Bhattacharya T, Shin GH, Kim JT. Carbon Dots: Opportunities and Challenges in Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15031019. [PMID: 36986879 PMCID: PMC10059251 DOI: 10.3390/pharmaceutics15031019] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Recently, carbon dots (CDs) have been actively studied and reported for their various properties. In particular, the specific characteristics of carbon dots have been considered as a possible technique for cancer diagnosis and therapy. This is also a cutting-edge technology that offers fresh ideas for treating various disorders. Though carbon dots are still in their infancy and have not yet shown their value to society, their discovery has already resulted in some noteworthy advancements. The application of CDs indicates conversion in natural imaging. Photography using CDs has demonstrated extraordinary appropriateness in bio-imaging, the discovery of novel drugs, the delivery of targeted genes, bio-sensing, photodynamic therapy, and diagnosis. This review seeks to provide a comprehensive understanding of CDs, including their benefits, characteristics, applications, and mode of action. In this overview, many CD design strategies will be highlighted. In addition, we will discuss numerous studies on cytotoxic testing to demonstrate the safety of CDs. The current study will address the production method, mechanism, ongoing research, and application of CDs in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
- Correspondence: (G.H.S.); (J.T.K.)
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (G.H.S.); (J.T.K.)
| |
Collapse
|
17
|
Song J, Gao X, Yang M, Hao W, Ji DK. Recent Advances of Photoactive Near-Infrared Carbon Dots in Cancer Photodynamic Therapy. Pharmaceutics 2023; 15:pharmaceutics15030760. [PMID: 36986621 PMCID: PMC10051950 DOI: 10.3390/pharmaceutics15030760] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Photodynamic therapy (PDT) is a treatment that employs exogenously produced reactive oxygen species (ROS) to kill cancer cells. ROS are generated from the interaction of excited-state photosensitizers (PSs) or photosensitizing agents with molecular oxygen. Novel PSs with high ROS generation efficiency is essential and highly required for cancer photodynamic therapy. Carbon dots (CDs), the rising star of carbon-based nanomaterial family, have shown great potential in cancer PDT benefiting from their excellent photoactivity, luminescence properties, low price, and biocompatibility. In recent years, photoactive near-infrared CDs (PNCDs) have attracted increasing interest in this field due to their deep therapeutic tissue penetration, superior imaging performance, excellent photoactivity, and photostability. In this review, we review recent progress in the designs, fabrication, and applications of PNCDs in cancer PDT. We also provide insights of future directions in accelerating the clinical progress of PNCDs.
Collapse
Affiliation(s)
- Jinxing Song
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xiaobo Gao
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Mei Yang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Weiju Hao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ding-Kun Ji
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Correspondence:
| |
Collapse
|
18
|
Bazazi S, Hosseini SP, Hashemi E, Rashidzadeh B, Liu Y, Saeb MR, Xiao H, Seidi F. Polysaccharide-based C-dots and polysaccharide/C-dot nanocomposites: fabrication strategies and applications. NANOSCALE 2023; 15:3630-3650. [PMID: 36728615 DOI: 10.1039/d2nr07065k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
C-dots are a new class of materials with vast applications. The synthesis of bio-based C-dots has attracted increasing attention in recent years. Polysaccharides being the most abundant natural materials with high biodegradability and no toxicity have been the focus of researchers for the synthesis of C-dots. C-dots obtained from polysaccharides are generally fabricated via thermal procedures, carbonization, and microwave pyrolysis. Small size, photo-induced electron transfer (PET), and highly adjustable luminosity behavior are the most important physical and chemical properties of C-dots. However, C-dot/polysaccharide composites can be introduced as a new generation of composites that combine the features of both C-dots and polysaccharides having a wide range of applications in biomedicines, biosensors, drug delivery systems, etc. This review demonstrates the features, raw materials, and methods used for the fabrication of C-dots derived from different polysaccharides. Furthermore, the properties, applications, and synthesis conditions of various C-dot/polysaccharide composites are discussed in detail.
Collapse
Affiliation(s)
- Sina Bazazi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Seyedeh Parisa Hosseini
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Esmaeil Hashemi
- Department of Chemistry, Faculty of Science, University of Guilan, PO Box 41335-1914, Rasht, Iran
| | | | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3 Canada.
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
19
|
Zhang L, Yang A, Ruan C, Jiang BP, Guo X, Liang H, Kuo WS, Shen XC. Copper-Nitrogen-Coordinated Carbon Dots: Transformable Phototheranostics from Precise PTT/PDT to Post-Treatment Imaging-Guided PDT for Residual Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3253-3265. [PMID: 36598330 DOI: 10.1021/acsami.2c17525] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Phototheranostics has attracted considerable attention in the fields of cancer diagnosis and treatment. However, the complete eradication of solid tumors using traditional phototheranostics is difficult because of the limited depth and range of laser irradiation. New phototheranostics enabling precise phototherapy and post-treatment imaging-guided programmed therapy for residual tumors is urgently required. Accordingly, this study developed a novel transformable phototheranostics by assembling hyaluronic acid (HA) with copper-nitrogen-coordinated carbon dots (CDs). In this transformable nanoplatform, named copper-nitrogen-CDs@HA, the HA component enables the specific targeting of cluster determinant (CD) 44-overexpressing tumor cells. In the tumor cells, redox glutathione converts Cu(II) (cupric ions) into Cu(I) (cuprous ions), which confers the novel transformable functionality to phototheranostics. Both in vitro and in vivo results reveal that the near-infrared-light-photoactivated CuII-N-CDs@HA could target CD44-overexpressing tumor cells for precise synergistic photothermal therapy and photodynamic therapy. This study is the first to observe that CuII-N-CDs@HA could escape from lysosomes and be transformed in situ into CuI-N-CDs@HA in tumor cells, with the d9 electronic configuration of Cu(II) changing to the d10 electronic configuration of Cu(I), which turns on their fluorescence and turns off their photothermal properties. This transformable phototheranostics could be used for post-treatment imaging-guided photodynamic therapy on residual tumor cells. Thus, the rationally designed copper-nitrogen-coordinated CDs offer a simple in situ transformation strategy for using multiple-stimulus-responsive precise phototheranostics in post-treatment monitoring of residual tumor cells and imaging-guided programmed therapy.
Collapse
Affiliation(s)
- Lizhen Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Aijia Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Changping Ruan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Xiaolu Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Wen-Shuo Kuo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, People's Republic of China
- Center for Allergy Immunology and Microbiome (AIM), China Medical University Children's Hospital/China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
20
|
Aptamer-modified carbon dots for enhancement of photodynamic therapy of cancer cells. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
21
|
Wang X, Zhu L, Gu Z, Dai L. Carbon nanomaterials for phototherapy. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4955-4976. [PMID: 39634304 PMCID: PMC11501915 DOI: 10.1515/nanoph-2022-0574] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 12/07/2024]
Abstract
Phototherapy attracts increasing interest for broad bio-applications due to its noninvasive and highly selective nature. Owing to their good biocompatibility, unique optoelectronic properties and size/surface effects, carbon nanomaterials show great promise for phototherapy. Various carbon nanomaterials have been demonstrated as efficient phototherapy agents for a large variety of phototherapeutic applications, including cancer treatment, anti-bacteria, and Alzheimer's disease. This review summarizes the recent progress of carbon nanomaterials for phototherapy. Current challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Xichu Wang
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, New South Wales2052, Australia
| | - Lin Zhu
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, New South Wales2052, Australia
| | - Zi Gu
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, New South Wales2052, Australia
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, New South Wales2052, Australia
| |
Collapse
|
22
|
Wang L, Gu D, Su Y, Ji D, Yang Y, Chen K, Pan H, Pan W. Easy Synthesis and Characterization of Novel Carbon Dots Using the One-Pot Green Method for Cancer Therapy. Pharmaceutics 2022; 14:2423. [PMID: 36365242 PMCID: PMC9696114 DOI: 10.3390/pharmaceutics14112423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 08/27/2023] Open
Abstract
In this study, hyaluronic acid (HA) and carboxymethyl chitosan (CMCS) were used for the synthesis of novel targeted nanocarrier carbon dots (CDC-H) with photo-luminescence using a one-step hydrothermal method. Doxorubicin (DOX), a common chemotherapeutic agent, was loaded with the CDC-H through electrostatic interactions to form DOX-CDC-H complexes as a targeted antitumor drug delivery system. The synthesized CDC-H show a particle size of approximately 6 nm and a high fluorescence quantum yield of 11.64%. The physical and chemical character properties of CDC-H and DOX-CDC-H complexes were investigated using various techniques. The results show that CDC-H have stable luminescent properties and exhibit excellent water solubility. The in vitro release study showed that DOX-CDC-H exhibited pH-dependent release for 24 h. Confocal laser scanning microscopy was applied to investigate the potential of CDC-H for cell imaging and the cellular uptake of DOX-CDC-H in different cells (NIH-3T3 and 4T1 cells), and the results confirmed the target cell imaging and cellular uptake of DOX-CDC-H by specifically binding the CD44 receptors on the surface of tumor cells. The r MTT results suggest that the DOX-CDC-H complex may induce apoptosis in 4T1 cells, reducing the cytotoxicity of free DOX-induced apoptosis. In vivo antitumor experiments of DOX-CDC-H exhibited enhanced tumor cancer therapy. CDC-H have potential applications in bioimaging and antitumor drug delivery.
Collapse
Affiliation(s)
- Lijie Wang
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Donghao Gu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yupei Su
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongxu Ji
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yue Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kai Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Pan
- School of Pharmacy, Liaoning University, Shenyang 110036, China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
23
|
Preparation of curcumin loaded hyaluronic acid-poly (lactic-co-glycolic acid) micelles with pH response and tumor targeting. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Wang B, Cai H, Waterhouse GIN, Qu X, Yang B, Lu S. Carbon Dots in Bioimaging, Biosensing and Therapeutics: A Comprehensive Review. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200012] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Boyang Wang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Huijuan Cai
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | | | - Xiaoli Qu
- Erythrocyte Biology Laboratory School of Life Sciences Zhengzhou University Zhengzhou 450001 China
| | - Bai Yang
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Siyu Lu
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| |
Collapse
|
25
|
Ðorđević L, Arcudi F, Cacioppo M, Prato M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. NATURE NANOTECHNOLOGY 2022; 17:112-130. [PMID: 35173327 DOI: 10.1038/s41565-021-01051-7] [Citation(s) in RCA: 356] [Impact Index Per Article: 118.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Photoluminescent carbon nanoparticles, or carbon dots, are an emerging class of materials that has recently attracted considerable attention for biomedical and energy applications. They are defined by characteristic sizes of <10 nm, a carbon-based core and the possibility to add various functional groups at their surface for targeted applications. These nanomaterials possess many interesting physicochemical and optical properties, which include tunable light emission, dispersibility and low toxicity. In this Review, we categorize how chemical tools impact the properties of carbon dots. We look for pre- and postsynthetic approaches for the preparation of carbon dots and their derivatives or composites. We then showcase examples to correlate structure, composition and function and use them to discuss the future development of this class of nanomaterials.
Collapse
Affiliation(s)
- Luka Ðorđević
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Trieste, Italy.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Francesca Arcudi
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Trieste, Italy.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Michele Cacioppo
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Trieste, Italy
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia San Sebastián, Spain
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Trieste, Italy.
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia San Sebastián, Spain.
- Basque Foundation for Science, Ikerbasque, Bilbao, Spain.
| |
Collapse
|
26
|
Li D, Ushakova EV, Rogach AL, Qu S. Optical Properties of Carbon Dots in the Deep-Red to Near-Infrared Region Are Attractive for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102325. [PMID: 34365728 DOI: 10.1002/smll.202102325] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/07/2021] [Indexed: 05/02/2023]
Abstract
Carbon dots (CDs) represent a recently emerged class of luminescent materials with a great potential for biomedical theranostics, and there are a lot of efforts to shift their absorption and emission toward deep-red (DR) to near-infrared (NIR) region falling in the biological transparency window. This review offers comprehensive insights into the synthesis strategies aimed to achieve this goal, and the current approaches of modulating the optical properties of CDs over the DR to NIR region. The underlying mechanisms of their absorption, photoluminescence, and chemiluminescence, as well as the related photophysical processes of photothermal conversion and formation of reactive oxygen species are considered. The already available biomedical applications of CDs, such as in the photoacoustic imaging and photothermal therapy, photodynamic therapy, and their use as bioimaging agents and drug carriers are then shortly summarized.
Collapse
Affiliation(s)
- Di Li
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Elena V Ushakova
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101, Russia
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Songnan Qu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, P. R. China
| |
Collapse
|
27
|
Wang L, Pan H, Gu D, Sun H, Chen K, Tan G, Pan W. A Novel Carbon Dots/Thermo-Sensitive In Situ Gel for a Composite Ocular Drug Delivery System: Characterization, Ex-Vivo Imaging, and In Vivo Evaluation. Int J Mol Sci 2021; 22:ijms22189934. [PMID: 34576093 PMCID: PMC8464813 DOI: 10.3390/ijms22189934] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 11/24/2022] Open
Abstract
We developed a potential composite ocular drug delivery system for the topical administration of diclofenac sodium (DS). The novel carbon dot CDC-HP was synthesized by the pyrolysis of hyaluronic acid and carboxymethyl chitosan through a one-step hydrothermal method and then embedded in a thermosensitive in situ gel of poloxamer 407 and poloxamer 188 through swelling loading. The physicochemical characteristics of these carbon dots were investigated. The results of the in vitro release test showed that this composite ocular drug delivery system (DS-CDC-HP-Gel) exhibited sustained release for 12 h. The study of the ex vivo fluorescence distribution in ocular tissues showed that it could be used for bioimaging and tracing in ocular tissues and prolong precorneal retention. Elimination profiles in tears corresponded to the study of ex vivo fluorescence imaging. The area under the curve of DS in the aqueous humor in the DS-CDC-HP-Gel group was 3.45-fold that in the DS eye drops group, indicating a longer precorneal retention time. DS-CDC-HP with a positive charge and combined with a thermosensitive in situ gel might strengthen adherence to the corneal surface and prolong the ocular surface retention time to improve the bioavailability. This composite ocular delivery system possesses potential applications in ocular imaging and drug delivery.
Collapse
Affiliation(s)
- Lijie Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (L.W.); (D.G.); (H.S.); (K.C.); (G.T.)
| | - Hao Pan
- College of Pharmacy, Liaoning University, Shenyang 110036, China;
| | - Donghao Gu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (L.W.); (D.G.); (H.S.); (K.C.); (G.T.)
| | - Haowei Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (L.W.); (D.G.); (H.S.); (K.C.); (G.T.)
| | - Kai Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (L.W.); (D.G.); (H.S.); (K.C.); (G.T.)
| | - Guoxin Tan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (L.W.); (D.G.); (H.S.); (K.C.); (G.T.)
| | - Weisan Pan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (L.W.); (D.G.); (H.S.); (K.C.); (G.T.)
- Correspondence: or
| |
Collapse
|
28
|
Wang B, Song H, Qu X, Chang J, Yang B, Lu S. Carbon dots as a new class of nanomedicines: Opportunities and challenges. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214010] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Gao C, Guo W, Guo X, Ding Z, Ding Y, Shen XC. Black SnO 2-x based nanotheranostic for imaging-guided photodynamic/photothermal synergistic therapy in the second near-infrared window. Acta Biomater 2021; 129:220-234. [PMID: 34082106 DOI: 10.1016/j.actbio.2021.05.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 01/10/2023]
Abstract
The shallow penetration depth of photothermal agents in the first near-infrared (NIR-I) window significantly limits their therapeutic efficiency. Multifunctional nanotheranostic agents in the second near-infrared (NIR-II) window have drawn extensive attention for their combined treatment of tumors. Here, for the first time, we created oxygen-deficient black SnO2-x with strong NIR (700-1200 nm) light absorption with NaBH4 reduction from white SnO2. Hyaluronic acid (HA) could selectively target cancer cells overexpressed CD44 protein. After modification with HA, the obtained nanotheranostic SnO2-x@SiO2-HA showed high dispersity in aqueous solution and good biocompatibility. SnO2-x@SiO2-HA was confirmed to simultaneously generate enough hyperthermia and reactive oxygen species with single NIR-II (1064 nm) light irradiation. Because HA is highly affined to CD44 protein, SnO2-x@SiO2-HA has specific uptake by overexpressed CD44 cells and can be accurately transferred to the tumor site. Furthermore, tumor growth was significantly inhibited following synergistic photodynamic therapy (PDT) and photothermal therapy (PTT) with targeted specificity under the guidance of photoacoustic (PA) imaging using 1064 nm laser irradiation in vivo. Moreover, SnO2-x@SiO2-HA accelerated wound healing. This work prominently extends the therapeutic utilization of semiconductor nanomaterials by changing their nanostructures and demonstrates for the first time that SnO2-x based therapeutic agents can accelerate wound healing. STATEMENT OF SIGNIFICANCE: The phototherapeutic efficacy of nanotheranostics by NIR-I lightirradiation was restricted owing to the limitation of tissue penetration and maximum permissible exposure. To overcome these limitations, we hereby fabricated a NIR-IIlight-mediated multifunctional nanotheranostic based on SnO2-x. The introduction of oxygen vacancy strategy was employed to construct full spectrum responsive oxygen-deficient SnO2-x, endowing outstanding photothermal conversion, and remarkable production activity of reactive oxygen species under NIR-II light activation. Tumor growth was significantly inhibited following synergistic PDT/PTT with targeted specificity under the guidance of photoacoustic imaging using 1064 nm laser irradiation in vivo. Our strategy not only expands the biomedical application of SnO2, but also providea method to develop other inorganic metal oxide-based nanosystems for NIR-II light-activated phototheranostic of cancers.
Collapse
|
30
|
Aung YY, Wibrianto A, Sianturi JS, Ulfa DK, Sakti SCW, Irzaman I, Yuliarto B, Chang JY, Kwee Y, Fahmi MZ. Comparison Direct Synthesis of Hyaluronic Acid-Based Carbon Nanodots as Dual Active Targeting and Imaging of HeLa Cancer Cells. ACS OMEGA 2021; 6:13300-13309. [PMID: 34056478 PMCID: PMC8158841 DOI: 10.1021/acsomega.1c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
The present study explores the potential of carbon nanodots (CDs) synthesized from hyaluronic acid using microwave-assisted and furnace-assisted methods as bioimaging agents for cancer cells. The investigation on the effect of microwave-assisted and furnace-assisted times (2 min and 2 h) on determining CD character is dominantly discussed. Various CDs, such as HA-P1 and HA-P2 were, respectively, synthesized through the furnace-assisted method at 270 °C for 2 min and 2 h, whereas HA-M1 and HA-M2 were synthesized with the microwave-assisted method for 2 min and 2 h, respectively. Overall, various CDs were produced with an average diameter, with the maximum absorption of HA-P1, HA-P2, HA-M1, and HA-M2 at 234, 238, 221, and 217 nm, respectively. The photoluminescence spectra of these CDs showed particular emissions at 320 nm and excitation wavelengths from 340 to 400 nm. Several characterizations such as X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and Raman spectroscopy reveal the CD properties such as amorphous structures, existence of D bands and G bands, and hydrophilic property supported with hydroxyl and carboxyl groups. The quantum yields of HA-M1, HA-M2, HA-P1, and HA-P2 were 12, 7, 9, and 23%, respectively. The cytotoxicity and in vitro activity were verified by a cell counting kit-8 assay and confocal laser scanning microscopy, which show a low toxicity with the percentage of living cells above 80%.
Collapse
Affiliation(s)
- Yu-Yu Aung
- Department
of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Aswandi Wibrianto
- Department
of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Jefry S. Sianturi
- Department
of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Desita K. Ulfa
- Department
of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Satya. C. W. Sakti
- Department
of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
- Supra
Modification Nano-Micro Engineering Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Irzaman Irzaman
- Department
of Physics, IPB University, Bogor 16680, Indonesia
| | - Brian Yuliarto
- Department
of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40116, Indonesia
| | - Jia-yaw Chang
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei, Taiwan 10607, Republic of China
| | - Yaung Kwee
- Department
of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Mochamad Z. Fahmi
- Department
of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
- Supra
Modification Nano-Micro Engineering Group, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
31
|
Zhang L, Zhu C, Huang R, Ding Y, Ruan C, Shen XC. Mechanisms of Reactive Oxygen Species Generated by Inorganic Nanomaterials for Cancer Therapeutics. Front Chem 2021; 9:630969. [PMID: 33816437 PMCID: PMC8012804 DOI: 10.3389/fchem.2021.630969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/25/2021] [Indexed: 01/19/2023] Open
Abstract
Recently, inorganic nanomaterials have received considerable attention for use in biomedical applications owing to their unique physicochemical properties based on their shapes, sizes, and surface characteristics. Photodynamic therapy (PDT), sonodynamic therapy (SDT), and chemical dynamic therapy (CDT), which are cancer therapeutics mediated by reactive oxygen species (ROS), have the potential to significantly enhance the therapeutic precision and efficacy for cancer. To facilitate cancer therapeutics, numerous inorganic nanomaterials have been developed to generate ROS. This mini review provides an overview of the generation mechanisms of ROS by representative inorganic nanomaterials for cancer therapeutics, including the structures of engineered inorganic nanomaterials, ROS production conditions, ROS types, and the applications of the inorganic nanomaterials in cancer PDT, SDT, and CDT.
Collapse
Affiliation(s)
- Lizhen Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
- Guilin Normal College, Guilin, China
| | - Chengyuan Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Rongtao Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Yanwen Ding
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Changping Ruan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| |
Collapse
|
32
|
Wei F, Cui X, Wang Z, Dong C, Li J, Han X. Recoverable peroxidase-like Fe 3O 4@MoS 2-Ag nanozyme with enhanced antibacterial ability. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021. [PMID: 33052192 DOI: 10.1016/j.cej.2020.127245] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Antibacterial agents with enzyme-like properties and bacteria-binding ability have provided an alternative method to efficiently disinfect drug-resistance microorganism. Herein, a Fe3O4@MoS2-Ag nanozyme with defect-rich rough surface was constructed by a simple hydrothermal method and in-situ photodeposition of Ag nanoparticles. The nanozyme exhibited good antibacterial performance against E. coli (~69.4%) by the generated ROS and released Ag+, while the nanozyme could further achieve an excellent synergistic disinfection (~100%) by combining with the near-infrared photothermal property of Fe3O4@MoS2-Ag. The antibacterial mechanism study showed that the antibacterial process was determined by the collaborative work of peroxidase-like activity, photothermal effect and leakage of Ag+. The defect-rich rough surface of MoS2 layers facilitated the capture of bacteria, which enhanced the accurate and rapid attack of •OH and Ag+ to the membrane of E. coli with the assistance of local hyperthermia. This method showed broad-spectrum antibacterial performance against Gram-negative bacteria, Gram-positive bacteria, drug-resistant bacteria and fungal bacteria. Meanwhile, the magnetism of Fe3O4 was used to recycle the nanozyme. This work showed great potential of engineered nanozymes for efficient disinfection treatment.
Collapse
Affiliation(s)
- Feng Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyu Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Changchang Dong
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiadong Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
33
|
Hyaluronic acid as a material for the synthesis of fluorescent carbon dots and its application for selective detection of Fe3+ ion and folic acid. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105364] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
34
|
Nanotheranostic Carbon Dots as an Emerging Platform for Cancer Therapy. JOURNAL OF NANOTHERANOSTICS 2020. [DOI: 10.3390/jnt1010006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cancer remains one of the most deadly diseases globally, but carbon-based nanomaterials have the potential to revolutionize cancer diagnosis and therapy. Advances in nanotechnology and a better understanding of tumor microenvironments have contributed to novel nanotargeting routes that may bring new hope to cancer patients. Several low-dimensional carbon-based nanomaterials have shown promising preclinical results; as such, low-dimensional carbon dots (CDs) and their derivatives are considered up-and-coming candidates for cancer treatment. The unique properties of carbon-based nanomaterials are high surface area to volume ratio, chemical inertness, biocompatibility, and low cytotoxicity. It makes them well suited for delivering chemotherapeutics in cancer treatment and diagnosis. Recent studies have shown that the CDs are potential applicants in biomedical sciences, both as nanocarriers and nanotransducers. This review covers the most commonly used CD nanoparticles in nanomedicines intended for the early diagnosis and therapy of cancer.
Collapse
|
35
|
Keerthiga R, Zhao Z, Pei D, Fu A. Photodynamic Nanophotosensitizers: Promising Materials for Tumor Theranostics. ACS Biomater Sci Eng 2020; 6:5474-5485. [PMID: 33320544 DOI: 10.1021/acsbiomaterials.0c01058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photodynamic theranostics/therapy (PDT) is a potential strategy for selectively imaging malignant sites and treating cancer via a non-invasive therapeutic method. Photosensitizers, the crucial components of PDT, enable colocalization of photons and light, and photon/light therapy in the therapeutic window of 400-900 nm exhibits photocytotoxicity to tumor cells. Due to their high biostability and photocytotoxicity, nanophotosensitizers (NPSs) are of much interest for malignant tumor theranostics at present. NPS-activated photons transfer energy through the absorption of a photon and convert molecular oxygen to the singlet reactive oxygen species, which leads to apoptosis and necrosis. Moreover, NPSs modified by polymers, including PLGA, PEG-PLA, PDLLA, PVCL-g-PLA, and P(VCL-co-VIM)-g-PLA, exhibit excellent biocompatibility, and a tumor-targeting molecule linked on the nanoparticle surface can precisely deliver NPSs into the tumor region. The development of NPSs will accelerate the progress in tumor theranostics through the photon/light pathway.
Collapse
Affiliation(s)
- Rajendiran Keerthiga
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zizhen Zhao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Desheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
36
|
Zhao X, Li J, Liu D, Yang M, Wang W, Zhu S, Yang B. Self-Enhanced Carbonized Polymer Dots for Selective Visualization of Lysosomes and Real-Time Apoptosis Monitoring. iScience 2020; 23:100982. [PMID: 32234664 PMCID: PMC7113624 DOI: 10.1016/j.isci.2020.100982] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/23/2020] [Accepted: 03/07/2020] [Indexed: 11/29/2022] Open
Abstract
Protons are highly related to cell viability during physiological and pathological processes. Developing new probes to monitor the pH variation could be extremely helpful to understand the viability of cells and the cell death study. Carbonized polymer dots (CPDs) are superior biocompatible and have been widely applied in bioimaging field. Herein, a new type of extreme-pH suitable CPDs was prepared from citric acid and o-phenylenediamine (CA/oPD-CPDs). Due to the co-existence of hydrophilic and hydrophobic groups, CA/oPD-CPDs tend to aggregate in neutral condition with a dramatic decrease of fluorescence, but disperse well in both acidic and alkaline conditions with brighter emission. This specialty enables them to selectively illuminate lysosomes in cells. Moreover, CA/oPD-CPDs in the cytoplasm could serve as a sustained probe to record intracellular pH variation during apoptosis. Furthermore, CA/oPD-CPDs present a continuous fluorescence increase upon 2-h laser irradiation in living cells, underscoring this imaging system for long-term biological recording.
Collapse
Affiliation(s)
- Xiaohuan Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Jing Li
- The Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P. R. China
| | - Dongning Liu
- Department of Periodontology, Stomatology Hospital, Jilin University, Changchun, Jilin 130021, P. R. China
| | - Mingxi Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Wenjing Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China; Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China.
| |
Collapse
|
37
|
Li Z, Wang D, Xu M, Wang J, Hu X, Anwar S, Tedesco AC, Morais PC, Bi H. Fluorine-containing graphene quantum dots with a high singlet oxygen generation applied for photodynamic therapy. J Mater Chem B 2020; 8:2598-2606. [DOI: 10.1039/c9tb02529d] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compared with graphene quantum dots (GQDs), fluorine-containing GQDs (F-GQDs) present higher 1O2 generation under light irradiation and thus cause obvious toxicity to HepG2 cells. F-GQDs can be used as a photosensitizer for photodynamic therapy.
Collapse
Affiliation(s)
- Zhenzhen Li
- School of Chemistry and Chemical Engineering
- Anhui Key Laboratory of Modern Biomanufacturing
- Anhui University
- Hefei 230601
- China
| | - Dong Wang
- School of Chemistry and Chemical Engineering
- Anhui Key Laboratory of Modern Biomanufacturing
- Anhui University
- Hefei 230601
- China
| | - Mingsheng Xu
- School of Chemistry and Chemical Engineering
- Anhui Key Laboratory of Modern Biomanufacturing
- Anhui University
- Hefei 230601
- China
| | - Jingmin Wang
- School of Life Sciences
- Anhui University
- Hefei 230601
- P. R. China
| | - Xiaolong Hu
- School of Chemistry and Chemical Engineering
- Anhui Key Laboratory of Modern Biomanufacturing
- Anhui University
- Hefei 230601
- China
| | - Sadat Anwar
- School of Chemistry and Chemical Engineering
- Anhui Key Laboratory of Modern Biomanufacturing
- Anhui University
- Hefei 230601
- China
| | - Antonio Claudio Tedesco
- School of Chemistry and Chemical Engineering
- Anhui Key Laboratory of Modern Biomanufacturing
- Anhui University
- Hefei 230601
- China
| | - Paulo Cesar Morais
- Genomic Sciences and Biotechnology
- Catholic University of Brasília
- Brasília
- Brazil
- Institute of Physics
| | - Hong Bi
- School of Chemistry and Chemical Engineering
- Anhui Key Laboratory of Modern Biomanufacturing
- Anhui University
- Hefei 230601
- China
| |
Collapse
|
38
|
Wu F, Sun B, Chu X, Zhang Q, She Z, Song S, Zhou N, Zhang J, Yi X, Wu D, Wang J. Hyaluronic Acid-Modified Porous Carbon-Coated Fe 3O 4 Nanoparticles for Magnetic Resonance Imaging-Guided Photothermal/Chemotherapy of Tumors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13135-13144. [PMID: 31510746 DOI: 10.1021/acs.langmuir.9b02300] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chemotherapy is an effective method for treating cancer, clinically. However, side effects of drug and multidrug resistance restrict its application. In recent years, the combined treatment of chemotherapy and photothermal therapy (PTT) is becoming a promising method for treating cancer. PTT utilizes nanomaterials absorbing near-infrared light and producing heat to acquire advanced hyperthermia strategy for cancer treatment. Carbon nanomaterials with good biocompatibility, high surface area, and excellent photothermal properties are an excellent nanoplatform for drug delivery and PTT. Herein, porous carbon-coated magnetite nanoparticles (PCCMNs) were successfully synthesized by a one-pot solvothermal method. Magnetite, a contrast agent, can be used for magnetic resonance imaging. Hyaluronic acid was used to modify the PCCMNs to achieve targeted therapy. The obtained nanohybrid with a good photothermal effect can realize combined PTT/chemotherapy and will be a promising nanoplatform for high efficacy theranostics.
Collapse
Affiliation(s)
- Fan Wu
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Baohong Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Xiaohong Chu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Qicheng Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Zhangcai She
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Saijie Song
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Jun Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Daohong Wu
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Jianxiu Wang
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| |
Collapse
|
39
|
Wang J, Xu M, Wang D, Li Z, Primo FL, Tedesco AC, Bi H. Copper-Doped Carbon Dots for Optical Bioimaging and Photodynamic Therapy. Inorg Chem 2019; 58:13394-13402. [PMID: 31556604 DOI: 10.1021/acs.inorgchem.9b02283] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Carbon dots (CDs), as an effective bioimaging agent, have aroused widespread interest. With the increasing number of CDs used in photodynamic therapy (PDT), developing efficient CDs with multiple functions such as imaging and phototherapy has become a new challenge. Herein, a new type of copper-doped CDs (Cu-CDs) with a high fluorescence quantum yield of 24.4% was synthesized from a copper complex of poly(acrylic acid) through coordination between the carboxyl group and copper ions. Owing to their good solubility, bright fluorescence, and low cytotoxicity, the Cu-CDs can be used for fluorescence imaging in both the HeLa (human cervical cancer) cell line and SH-SY5Y (human neuroblastoma cells) multicellular spheroids (3D MCs). More importantly, the Cu-CDs show a high quantum yield of singlet oxygen (1O2; 36%), good photoinduced cytotoxicity, and effective inhibition of 3D MC growth. Therefore, the Cu-CDs can be used as a promising imaging-guided PDT agent. This study provides a new carbon-based nanomaterial for multifunctional photodiagnostic and therapeutic agents for biological applications.
Collapse
Affiliation(s)
- Jingmin Wang
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing , Anhui University , Hefei 230601 , China
| | - Mingsheng Xu
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing , Anhui University , Hefei 230601 , China
| | - Dong Wang
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing , Anhui University , Hefei 230601 , China
| | - Zhenzhen Li
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing , Anhui University , Hefei 230601 , China
| | - Fernando Lucas Primo
- Department of Bioprocess and Biotechnology, Faculty of Pharmaceutical Sciences of Araraquara , FCF/UNESP , Araraquara , São Paulo 14800-903 , Brazil
| | - Antonio Claudio Tedesco
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing , Anhui University , Hefei 230601 , China.,Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto , University of São Paulo , Ribeirão Preto , São Paulo 14040-901 , Brazil
| | - Hong Bi
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing , Anhui University , Hefei 230601 , China
| |
Collapse
|
40
|
Lu W, Du F, Zhao X, Shi L, Shuang S, Cui XT, Dong C. Sulforaphane-Conjugated Carbon Dots: A Versatile Nanosystem for Targeted Imaging and Inhibition of EGFR-Overexpressing Cancer Cells. ACS Biomater Sci Eng 2019; 5:4692-4699. [PMID: 33448841 DOI: 10.1021/acsbiomaterials.9b00690] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Because of the demand for precision medicine, the investigatation on the application of carbon-dots-based nanosystems in the field of biomedicine is attracting more and more attention. Therefore, we have built a multifunctional nanosystem based on sulforaphane-conjugated carbon dots (SFN-CDs) with thiourea skeleton and applied for EGFR-overexpressing cancer cells targeted imaging and inhibiting. The SFN-CDs are formed by grafting sulforaphane on the amino-rich yellow fluorescent carbon dots, which have excellent optical stability and can be distinguished from normal cells for targeted imaging of cancer cells. The vitro toxicity experiments demonstrated that the SFN-CDs can effectively inhibit EGFR-overexpressing cancer cell proliferation at concentrations below 100 μg mL-1. All these results validated that SFN-CDs nanoparticles with integration of diagnostic and therapeutic functions can be used as a potential nanodurg in early stage of cancer control. Moreover, this work provides useful insight into targeted nanoparticle design in the biological nanomedicine field.
Collapse
Affiliation(s)
- Wenjing Lu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Fangfang Du
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xuewei Zhao
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Lihong Shi
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15260 United States
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
41
|
Zhou B, Guo Z, Lin Z, Zhang L, Jiang BP, Shen XC. Recent insights into near-infrared light-responsive carbon dots for bioimaging and cancer phototherapy. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00201d] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The current developments of NIR-responsive CDs and their applications in bioimaging and phototherapy are highlighted in this review.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- China
| | - Zhengxi Guo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- China
| | - Zhaoxing Lin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- China
| | - Lizheng Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- China
| | - Bang-Ping Jiang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- China
| | - Xing-Can Shen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- China
| |
Collapse
|
42
|
Zhang S, Zhang D, Ding Y, Hua J, Tang B, Ji X, Zhang Q, Wei Y, Qin K, Li B. Bacteria-derived fluorescent carbon dots for highly selective detection ofp-nitrophenol and bioimaging. Analyst 2019; 144:5497-5503. [DOI: 10.1039/c9an01103j] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Schematic of the synthetic route for fluorescent CDs-BC and their applications in the detection ofp-NP and bioimaging.
Collapse
Affiliation(s)
- Shengting Zhang
- Faculty of Environmental Science and Engineering
- Kunming University of Science and Technology
- Kunming 650500
- China
| | - Dongfang Zhang
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- China
| | - Yafang Ding
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- China
| | - Jianhao Hua
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- China
| | - Bing Tang
- College of Life Sciences
- Wuhan University
- Wuhan
- China
| | - Xiuling Ji
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- China
| | - Qi Zhang
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- China
| | - Yunlin Wei
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- China
| | - Kunhao Qin
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- China
- Post-doctoral Research Station in Geological Resources and Geological Engineering
| | - Bo Li
- Faculty of Land Resource Engineering
- Kunming University of Science and Technology
- Kunming 650500
- China
| |
Collapse
|
43
|
Ryplida B, Lee G, In I, Park SY. Zwitterionic carbon dot-encapsulating pH-responsive mesoporous silica nanoparticles for NIR light-triggered photothermal therapy through pH-controllable release. Biomater Sci 2019; 7:2600-2610. [DOI: 10.1039/c9bm00160c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here, we designed a pH-responsive Indocyanine Green (ICG)-loaded zwitterionic fluorescent carbon dot (CD)-encapsulating mesoporous silica nanoparticle (MSN) for pH-tunable image-guided photothermal therapy.
Collapse
Affiliation(s)
- Benny Ryplida
- Department of IT Convergence
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Gibaek Lee
- Department of Chemical and Biological Engineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Insik In
- Department of IT Convergence
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
- Department of Polymer Science and Engineering
| | - Sung Young Park
- Department of IT Convergence
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
- Department of Chemical and Biological Engineering
| |
Collapse
|