1
|
Delrue C, De Bruyne S, Speeckaert MM. The Promise of Infrared Spectroscopy in Liquid Biopsies for Solid Cancer Detection. Diagnostics (Basel) 2025; 15:368. [PMID: 39941298 PMCID: PMC11818004 DOI: 10.3390/diagnostics15030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/15/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy has shown significant promise in the context of liquid biopsy, offering a potential tool for cancer diagnostics. Unlike traditional tissue biopsies, which may not fully capture the clonal heterogeneity of tumors, liquid biopsy reflects the dynamic state of the disease and its progression more comprehensively. Biofluids such as serum and plasma are low-cost, minimally invasive diagnostic media with well-established clinical uses. This review assesses the use of ATR-FTIR spectroscopy to detect biochemical changes in biofluids linked to various malignancies, including breast, ovarian, endometrial, prostate, bladder, kidney, pancreatic, colorectal, hepatic, esophageal, gastric, lung, and brain cancers. While ATR-FTIR offers the advantages of rapid, minimally invasive detection and real-time disease monitoring, its integration into clinical practice faces challenges, particularly in terms of reproducibility due to variability in sample preparation, spectral acquisition, and data processing. The translation of ATR-FTIR into routine diagnostics will require validation through large-scale cohort studies and multicenter trials to ensure its clinical reliability and effectiveness.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Sander De Bruyne
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium;
- Department of Laboratory Medicine, AZ Sint-Blasius, 9200 Dendermonde, Belgium
| | - Marijn M. Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium;
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
2
|
Korte B, Mathios D. Innovation in Non-Invasive Diagnosis and Disease Monitoring for Meningiomas. Int J Mol Sci 2024; 25:4195. [PMID: 38673779 PMCID: PMC11050588 DOI: 10.3390/ijms25084195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Meningiomas are tumors of the central nervous system that vary in their presentation, ranging from benign and slow-growing to highly aggressive. The standard method for diagnosing and classifying meningiomas involves invasive surgery and can fail to provide accurate prognostic information. Liquid biopsy methods, which exploit circulating tumor biomarkers such as DNA, extracellular vesicles, micro-RNA, proteins, and more, offer a non-invasive and dynamic approach for tumor classification, prognostication, and evaluating treatment response. Currently, a clinically approved liquid biopsy test for meningiomas does not exist. This review provides a discussion of current research and the challenges of implementing liquid biopsy techniques for advancing meningioma patient care.
Collapse
Affiliation(s)
- Brianna Korte
- Department of Neurosurgery, Washington University Medical Campus, St. Louis, MO 63110, USA
| | - Dimitrios Mathios
- Department of Neurosurgery, Washington University Medical Campus, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Kino S, Kanamori M, Shimoda Y, Niizuma K, Endo H, Matsuura Y. Distinguishing IDH mutation status in gliomas using FTIR-ATR spectra of peripheral blood plasma indicating clear traces of protein amyloid aggregation. BMC Cancer 2024; 24:222. [PMID: 38365669 PMCID: PMC10870484 DOI: 10.1186/s12885-024-11970-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Glioma is a primary brain tumor and the assessment of its molecular profile in a minimally invasive manner is important in determining treatment strategies. Among the molecular abnormalities of gliomas, mutations in the isocitrate dehydrogenase (IDH) gene are strong predictors of treatment sensitivity and prognosis. In this study, we attempted to non-invasively diagnose glioma development and the presence of IDH mutations using multivariate analysis of the plasma mid-infrared absorption spectra for a comprehensive and sensitive view of changes in blood components associated with the disease and genetic mutations. These component changes are discussed in terms of absorption wavenumbers that contribute to differentiation. METHODS Plasma samples were collected at our institutes from 84 patients with glioma (13 oligodendrogliomas, 17 IDH-mutant astrocytoma, 7 IDH wild-type diffuse glioma, and 47 glioblastomas) before treatment initiation and 72 healthy participants. FTIR-ATR spectra were obtained for each plasma sample, and PLS discriminant analysis was performed using the absorbance of each wavenumber in the fingerprint region of biomolecules as the explanatory variable. This data was used to distinguish patients with glioma from healthy participants and diagnose the presence of IDH mutations. RESULTS The derived classification algorithm distinguished the patients with glioma from healthy participants with 83% accuracy (area under the curve (AUC) in receiver operating characteristic (ROC) = 0.908) and diagnosed the presence of IDH mutation with 75% accuracy (AUC = 0.752 in ROC) in cross-validation using 30% of the total test data. The characteristic changes in the absorption spectra suggest an increase in the ratio of β-sheet structures in the conformational composition of blood proteins of patients with glioma. Furthermore, these changes were more pronounced in patients with IDH-mutant gliomas. CONCLUSIONS The plasma infrared absorption spectra could be used to diagnose gliomas and the presence of IDH mutations in gliomas with a high degree of accuracy. The spectral shape of the protein absorption band showed that the ratio of β-sheet structures in blood proteins was significantly higher in patients with glioma than in healthy participants, and protein aggregation was a distinct feature in patients with glioma with IDH mutations.
Collapse
Affiliation(s)
- Saiko Kino
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-05, Aza-Aoba, Aramaki, Aoba, Sendai City, 980-8579, Miyagi Prefecture, Japan
| | - Masayuki Kanamori
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, 980-8574 Seiryo 1-1, Aoba, Sendai City, Miyagi Prefecture, Japan
| | - Yoshiteru Shimoda
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, 980-8574 Seiryo 1-1, Aoba, Sendai City, Miyagi Prefecture, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Seiryo 2-1, Aoba, Sendai City, 980-8575, Miyagi Prefecture, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, 980-8575 Seiryo 2-1, Aoba, Sendai City, Miyagi Prefecture, Japan
| | - Hidenori Endo
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, 980-8574 Seiryo 1-1, Aoba, Sendai City, Miyagi Prefecture, Japan
| | - Yuji Matsuura
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-05, Aza-Aoba, Aramaki, Aoba, Sendai City, 980-8579, Miyagi Prefecture, Japan.
| |
Collapse
|
4
|
das Chagas E Silva de Carvalho LF, de Lima Morais TM, Nogueira MS. Providing potential solutions by using FT-IR spectroscopy for biofluid analysis: Clinical impact of optical screening and diagnostic tests. Photodiagnosis Photodyn Ther 2023; 44:103753. [PMID: 37597683 DOI: 10.1016/j.pdpdt.2023.103753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Currently, the potential of FT-IR spectroscopy for rapid diagnosis of many pathologies has been demonstrated by numerous research studies including those targeting COVID-19 detection. However, the number of clinicians aware of this potential and who are willing to use spectroscopy in their clinics and hospitals is still negligible. In addition, lack of awareness creates a huge gap between clinicians and researchers involved in clinical translation of current FT-IR technology hence hindering initiatives to bring basic and applied research together for the direct benefit of patients. METHODS Knowledge and medical training on FT-IR on the side of clinicians should be one of the first steps to be able to integrate it into the list of complementary exams which may be requested by health professionals. Countless FT-IR applications could have a life-changing impact on patients' lives, especially screening and diagnostic tests involving biofluids such as blood, saliva and urine which are routinely non-invasively or minimally-invasively. RESULTS Blood may be the most difficult to obtain by the invasive method of collection, but much can be evaluated in its components, and areas such as hematology, infectiology, oncology and endocrinology can be directly benefited. Urine with a relatively simple collection method can provide pertinent information from the entire urinary system, including the actual condition of the kidneys. Saliva collection can be simpler for the patient and can provide information on diseases affecting the mouth and digestive system and can be used to diagnose diseases such as oral cancer in its early-stages. An unavoidable second step is the active involvement of industries to design robust and portable instruments for specific purposes, as the medical community requires user-friendly instruments of advanced computational algorithms. A third step resides in the legal situation involving the global use of the technique as a new diagnostic modality. CONCLUSIONS It is important to note that decentralized funds for variety of technologies hinders the training of clinical and medical professionals for the use of newly arising technologies and affect the engagement of these professionals with technology developers. As a result of decentralized funding, research efforts are spread out over a range of technologies which take a long time to get validated and translated to the clinic. Partnership over similar groups of technologies and efforts to test the same technologies while overcoming barriers posed to technology validation in different areas around the globe may benefit the clinical/medical, research and industry community globally.
Collapse
Affiliation(s)
| | | | - Marcelo Saito Nogueira
- Tyndall National Institute, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland; Department of Physics, University College Cork, College Road, Cork T12 K8AF, Ireland.
| |
Collapse
|
5
|
Delrue C, Speeckaert R, Oyaert M, Kerre T, Rottey S, Coopman R, Huvenne W, De Bruyne S, Speeckaert MM. Infrared Spectroscopy: A New Frontier in Hematological Disease Diagnosis. Int J Mol Sci 2023; 24:17007. [PMID: 38069330 PMCID: PMC10707114 DOI: 10.3390/ijms242317007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Hematological diseases, due to their complex nature and diverse manifestations, pose significant diagnostic challenges in healthcare. The pressing need for early and accurate diagnosis has driven the exploration of novel diagnostic techniques. Infrared (IR) spectroscopy, renowned for its noninvasive, rapid, and cost-effective characteristics, has emerged as a promising adjunct in hematological diagnostics. This review delves into the transformative role of IR spectroscopy and highlights its applications in detecting and diagnosing various blood-related ailments. We discuss groundbreaking research findings and real-world applications while providing a balanced view of the potential and limitations of the technique. By integrating advanced technology with clinical needs, we offer insights into how IR spectroscopy may herald a new era of hematological disease diagnosis.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium;
| | | | - Matthijs Oyaert
- Department of Clinical Biology, Ghent University Hospital, 9000 Ghent, Belgium; (M.O.); (S.D.B.)
| | - Tessa Kerre
- Department of Hematology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Sylvie Rottey
- Department of Medical Oncology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Renaat Coopman
- Department of Oral, Maxillofacial and Plastic Surgery, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Wouter Huvenne
- Department of Head and Neck Surgery, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Sander De Bruyne
- Department of Clinical Biology, Ghent University Hospital, 9000 Ghent, Belgium; (M.O.); (S.D.B.)
| | - Marijn M. Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium;
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
6
|
Theakstone AG, Brennan PM, Jenkinson MD, Goodacre R, Baker MJ. Investigating centrifugal filtration of serum-based FTIR spectroscopy for the stratification of brain tumours. PLoS One 2023; 18:e0279669. [PMID: 36800340 PMCID: PMC9937474 DOI: 10.1371/journal.pone.0279669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Discrimination of brain cancer versus non-cancer patients using serum-based attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy diagnostics was first developed by Hands et al with a reported sensitivity of 92.8% and specificity of 91.5%. Cameron et al. then went on to stratifying between specific brain tumour types: glioblastoma multiforme (GBM) vs. primary cerebral lymphoma with a sensitivity of 90.1% and specificity of 86.3%. Expanding on these studies, 30 GBM, 30 lymphoma and 30 non-cancer patients were selected to investigate the influence on test performance by focusing on specific molecular weight regions of the patient serum. Membrane filters with molecular weight cut offs of 100 kDa, 50 kDa, 30 kDa, 10 kDa and 3 kDa were purchased in order to remove the most abundant high molecular weight components. Three groups were classified using both partial least squares-discriminate analysis (PLS-DA) and random forest (RF) machine learning algorithms; GBM versus non-cancer, lymphoma versus non-cancer and GBM versus lymphoma. For all groups, once the serum was filtered the sensitivity, specificity and overall balanced accuracies decreased. This illustrates that the high molecular weight components are required for discrimination between cancer and non-cancer as well as between tumour types. From a clinical application point of view, this is preferable as less sample preparation is required.
Collapse
Affiliation(s)
- Ashton G. Theakstone
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Paul M. Brennan
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael D. Jenkinson
- The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Royston Goodacre
- Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool, United Kingdom
| | - Matthew J. Baker
- Dxcover Limited, Glasgow, United Kingdom
- Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
- * E-mail: ,
| |
Collapse
|
7
|
Discovering Glioma Tissue through Its Biomarkers' Detection in Blood by Raman Spectroscopy and Machine Learning. Pharmaceutics 2023; 15:pharmaceutics15010203. [PMID: 36678833 PMCID: PMC9862809 DOI: 10.3390/pharmaceutics15010203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
The most commonly occurring malignant brain tumors are gliomas, and among them is glioblastoma multiforme. The main idea of the paper is to estimate dependency between glioma tissue and blood serum biomarkers using Raman spectroscopy. We used the most common model of human glioma when continuous cell lines, such as U87, derived from primary human tumor cells, are transplanted intracranially into the mouse brain. We studied the separability of the experimental and control groups by machine learning methods and discovered the most informative Raman spectral bands. During the glioblastoma development, an increase in the contribution of lactate, tryptophan, fatty acids, and lipids in dried blood serum Raman spectra were observed. This overlaps with analogous results of glioma tissues from direct Raman spectroscopy studies. A non-linear relationship between specific Raman spectral lines and tumor size was discovered. Therefore, the analysis of blood serum can track the change in the state of brain tissues during the glioma development.
Collapse
|
8
|
Fast and Deep Diagnosis Using Blood-Based ATR-FTIR Spectroscopy for Digestive Tract Cancers. Biomolecules 2022; 12:biom12121815. [PMID: 36551243 PMCID: PMC9775374 DOI: 10.3390/biom12121815] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) of liquid biofluids enables the probing of biomolecular markers for disease diagnosis, characterized as a time and cost-effective approach. It remains poorly understood for fast and deep diagnosis of digestive tract cancers (DTC) to detect abundant changes and select specific markers in a broad spectrum of molecular species. Here, we present a diagnostic protocol of DTC in which the in-situ blood-based ATR-FTIR spectroscopic data mining pathway was designed for the identification of DTC triages in 252 blood serum samples, divided into the following groups: liver cancer (LC), gastric cancer (GC), colorectal cancer (CC), and their different three stages respectively. The infrared molecular fingerprints (IMFs) of DTC were measured and used to build a 2-dimensional second derivative spectrum (2D-SD-IR) feature dataset for classification, including absorbance and wavenumber shifts of FTIR vibration peaks. By comparison, the Partial Least-Squares Discriminant Analysis (PLS-DA) and backpropagation (BP) neural networks are suitable to differentiate DTCs and pathological stages with a high sensitivity and specificity of 100% and averaged more than 95%. Furthermore, the measured IMF data was mutually validated via clinical blood biochemistry testing, which indicated that the proposed 2D-SD-IR-based machine learning protocol greatly improved DTC classification performance.
Collapse
|
9
|
Brennan PM. The future of brain tumor liquid biopsies in the clinic. Neurooncol Adv 2022; 4:ii4-ii5. [PMID: 36380870 PMCID: PMC9650473 DOI: 10.1093/noajnl/vdac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Paul M Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh , Midlothian, Edinburgh , UK
| |
Collapse
|
10
|
Banerjee A, Halder A, Jadhav P, Bankar R, Pattarkine J, Hole A, Shah A, Goel A, Murali Krishna C, Srivastava S. Metabolomics Profiling of Pituitary Adenomas by Raman Spectroscopy, Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy, and Mass Spectrometry of Serum Samples. Anal Chem 2022; 94:11898-11907. [PMID: 35980087 DOI: 10.1021/acs.analchem.2c02487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To date, no studies are available in which pituitary adenomas (PAs) have been studied using techniques like confocal Raman spectroscopy, attenuated total reflection-Fourier transform infrared (FT-IR), and liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the same serum samples. To understand the metabolomics fingerprint, Raman spectra of 16 acromegaly, 19 Cushing's, and 33 nonfunctional PA (NFPA) and ATR-FTIR spectral acquisition of 16 acromegaly, 18 Cushing's, and 22 NFPA patient's serum samples were acquired. Next, Principal component-based linear discriminant analysis (PC-LDA) models were developed, Raman spectral analysis classified acromegaly with an accuracy of 79.17%, sensitivity of 75%, and specificity of 81.25%, Cushing's with an accuracy of 66.67%, sensitivity of 100%, and specificity of 52.63%, and NFPA with an accuracy of 73.17%, sensitivity of 75%, and specificity of 72.73%. ATR-FTIR spectral analysis classified acromegaly with an accuracy of 95.83%, sensitivity of 100%, and specificity of 93.75%, Cushing's with an accuracy of 65.38%, sensitivity of 87.5%, and specificity of 55.56%, and NFPA with an accuracy of 70%, sensitivity of 87.5%, and specificity of 43.75%. In either of the cases, healthy individual cohorts were clearly segregated from the disease cohort, which identified differential regulated regions of nucleic acids, lipids, amides, phosphates, and polysaccharide/C-C residue α helix regions. Furthermore, LC-MS/MS-based analysis of sera samples resulted in the identification of various sphingosine, lipids, acylcarnitines, amino acids, ethanolamine, choline, and their derivatives that differentially regulated in each tumor cohort. We believe cues obtained from the study may be used to generate the metabolite-based test to diagnose PAs from serum in addition to conventional techniques and also to understand disease biology for better disease management, point of care, and improving quality of life in PA patients.
Collapse
Affiliation(s)
- Arghya Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ankit Halder
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Priyanka Jadhav
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC). Sector-22, Kharghar, Navi Mumbai 410210, India
| | - Renuka Bankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Janhavi Pattarkine
- Department of Biotechnology, Dr. D.Y. Patil Arts, Commerce and Science College, Pimpri, Pune 411018, India
| | - Arti Hole
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC). Sector-22, Kharghar, Navi Mumbai 410210, India
| | - Abhidha Shah
- Department of Neurosurgery, King Edward Memorial Hospital and Seth G. S. Medical College, Dr E Borges Road, Acharya Donde Marg, Parel, Opposite Tata & Wadia Hospital, Mumbai 400012, India
| | - Atul Goel
- Department of Neurosurgery, King Edward Memorial Hospital and Seth G. S. Medical College, Dr E Borges Road, Acharya Donde Marg, Parel, Opposite Tata & Wadia Hospital, Mumbai 400012, India
| | - C Murali Krishna
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC). Sector-22, Kharghar, Navi Mumbai 410210, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
11
|
Xu J, Meng Y, Qiu K, Topatana W, Li S, Wei C, Chen T, Chen M, Ding Z, Niu G. Applications of Artificial Intelligence Based on Medical Imaging in Glioma: Current State and Future Challenges. Front Oncol 2022; 12:892056. [PMID: 35965542 PMCID: PMC9363668 DOI: 10.3389/fonc.2022.892056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
Glioma is one of the most fatal primary brain tumors, and it is well-known for its difficulty in diagnosis and management. Medical imaging techniques such as magnetic resonance imaging (MRI), positron emission tomography (PET), and spectral imaging can efficiently aid physicians in diagnosing, treating, and evaluating patients with gliomas. With the increasing clinical records and digital images, the application of artificial intelligence (AI) based on medical imaging has reduced the burden on physicians treating gliomas even further. This review will classify AI technologies and procedures used in medical imaging analysis. Additionally, we will discuss the applications of AI in glioma, including tumor segmentation and classification, prediction of genetic markers, and prediction of treatment response and prognosis, using MRI, PET, and spectral imaging. Despite the benefits of AI in clinical applications, several issues such as data management, incomprehension, safety, clinical efficacy evaluation, and ethical or legal considerations, remain to be solved. In the future, doctors and researchers should collaborate to solve these issues, with a particular emphasis on interdisciplinary teamwork.
Collapse
Affiliation(s)
- Jiaona Xu
- Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuting Meng
- Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kefan Qiu
- Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Wei
- Department of Neurology, Affiliated Ningbo First Hospital, Ningbo, China
| | - Tianwen Chen
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Mingyu Chen, ; Zhongxiang Ding, ; Guozhong Niu,
| | - Zhongxiang Ding
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Mingyu Chen, ; Zhongxiang Ding, ; Guozhong Niu,
| | - Guozhong Niu
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Mingyu Chen, ; Zhongxiang Ding, ; Guozhong Niu,
| |
Collapse
|
12
|
Sala A, Cameron JM, Jenkins CA, Barr H, Christie L, Conn JJA, Evans TRJ, Harris DA, Palmer DS, Rinaldi C, Theakstone AG, Baker MJ. Liquid Biopsy for Pancreatic Cancer Detection Using Infrared Spectroscopy. Cancers (Basel) 2022; 14:3048. [PMID: 35804820 PMCID: PMC9264892 DOI: 10.3390/cancers14133048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatic cancer claims over 460,000 victims per year. The carbohydrate antigen (CA) 19-9 test is the blood test used for pancreatic cancer's detection; however, its levels can be raised in symptomatic patients with other non-malignant diseases, or with other tumors in the surrounding area. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy has demonstrated exceptional potential in cancer diagnostics, and its clinical implementation could represent a significant step towards early detection. This proof-of-concept study, investigating the use of ATR-FTIR spectroscopy on dried blood serum, focused on the discrimination of both cancer versus healthy control samples, and cancer versus symptomatic non-malignant control samples, as a novel liquid biopsy approach for pancreatic cancer diagnosis. Machine learning algorithms were applied, achieving results of up to 92% sensitivity and 88% specificity when discriminating between cancers (n = 100) and healthy controls (n = 100). An area under the curve (AUC) of 0.95 was obtained through receiver operating characteristic (ROC) analysis. Balanced sensitivity and specificity over 75%, with an AUC of 0.83, were achieved with cancers (n = 35) versus symptomatic controls (n = 35). Herein, we present these results as demonstration that our liquid biopsy approach could become a simple, minimally invasive, and reliable diagnostic test for pancreatic cancer detection.
Collapse
Affiliation(s)
- Alexandra Sala
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, Glasgow G1 1XL, UK; (A.S.); (L.C.); (D.S.P.)
- Dxcover Limited, Royal College Building, Glasgow G1 1XW, UK; (J.M.C.); (J.J.A.C.)
| | - James M. Cameron
- Dxcover Limited, Royal College Building, Glasgow G1 1XW, UK; (J.M.C.); (J.J.A.C.)
| | - Cerys A. Jenkins
- Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK;
| | - Hugh Barr
- Gloucestershire Hospitals NHS Foundation Trust, Gloucester GL1 2EL, UK;
| | - Loren Christie
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, Glasgow G1 1XL, UK; (A.S.); (L.C.); (D.S.P.)
- Dxcover Limited, Royal College Building, Glasgow G1 1XW, UK; (J.M.C.); (J.J.A.C.)
| | - Justin J. A. Conn
- Dxcover Limited, Royal College Building, Glasgow G1 1XW, UK; (J.M.C.); (J.J.A.C.)
| | | | - Dean A. Harris
- Singleton Hospital, Swansea Bay University Local Health Board, Swansea SA2 8QA, UK;
| | - David S. Palmer
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, Glasgow G1 1XL, UK; (A.S.); (L.C.); (D.S.P.)
- Dxcover Limited, Royal College Building, Glasgow G1 1XW, UK; (J.M.C.); (J.J.A.C.)
| | - Christopher Rinaldi
- Department of Pure and Applied Chemistry, University of Strathclyde, The Technology and Innovation Centre, Glasgow G1 1RD, UK; (C.R.); (A.G.T.)
| | - Ashton G. Theakstone
- Department of Pure and Applied Chemistry, University of Strathclyde, The Technology and Innovation Centre, Glasgow G1 1RD, UK; (C.R.); (A.G.T.)
| | - Matthew J. Baker
- Dxcover Limited, Royal College Building, Glasgow G1 1XW, UK; (J.M.C.); (J.J.A.C.)
| |
Collapse
|
13
|
Schiemer R, Furniss D, Phang S, Seddon AB, Atiomo W, Gajjar KB. Vibrational Biospectroscopy: An Alternative Approach to Endometrial Cancer Diagnosis and Screening. Int J Mol Sci 2022; 23:ijms23094859. [PMID: 35563249 PMCID: PMC9102412 DOI: 10.3390/ijms23094859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Endometrial cancer (EC) is the sixth most common cancer and the fourth leading cause of death among women worldwide. Early detection and treatment are associated with a favourable prognosis and reduction in mortality. Unlike other common cancers, however, screening strategies lack the required sensitivity, specificity and accuracy to be successfully implemented in clinical practice and current diagnostic approaches are invasive, costly and time consuming. Such limitations highlight the unmet need to develop diagnostic and screening alternatives for EC, which should be accurate, rapid, minimally invasive and cost-effective. Vibrational spectroscopic techniques, Mid-Infrared Absorption Spectroscopy and Raman, exploit the atomic vibrational absorption induced by interaction of light and a biological sample, to generate a unique spectral response: a “biochemical fingerprint”. These are non-destructive techniques and, combined with multivariate statistical analysis, have been shown over the last decade to provide discrimination between cancerous and healthy samples, demonstrating a promising role in both cancer screening and diagnosis. The aim of this review is to collate available evidence, in order to provide insight into the present status of the application of vibrational biospectroscopy in endometrial cancer diagnosis and screening, and to assess future prospects.
Collapse
Affiliation(s)
- Roberta Schiemer
- Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham NG5 1PB, UK;
- Correspondence:
| | - David Furniss
- Mid-Infrared Photonics Group, George Green Institute for Electromagnetics Research, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; (D.F.); (S.P.); (A.B.S.)
| | - Sendy Phang
- Mid-Infrared Photonics Group, George Green Institute for Electromagnetics Research, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; (D.F.); (S.P.); (A.B.S.)
| | - Angela B. Seddon
- Mid-Infrared Photonics Group, George Green Institute for Electromagnetics Research, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; (D.F.); (S.P.); (A.B.S.)
| | - William Atiomo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai P.O. Box 505055, United Arab Emirates;
| | - Ketankumar B. Gajjar
- Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham NG5 1PB, UK;
| |
Collapse
|
14
|
Cameron JM, Rinaldi C, Rutherford SH, Sala A, G Theakstone A, Baker MJ. Clinical Spectroscopy: Lost in Translation? APPLIED SPECTROSCOPY 2022; 76:393-415. [PMID: 34041957 DOI: 10.1177/00037028211021846] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This Focal Point Review paper discusses the developments of biomedical Raman and infrared spectroscopy, and the recent strive towards these technologies being regarded as reliable clinical tools. The promise of vibrational spectroscopy in the field of biomedical science, alongside the development of computational methods for spectral analysis, has driven a plethora of proof-of-concept studies which convey the potential of various spectroscopic approaches. Here we report a brief review of the literature published over the past few decades, with a focus on the current technical, clinical, and economic barriers to translation, namely the limitations of many of the early studies, and the lack of understanding of clinical pathways, health technology assessments, regulatory approval, clinical feasibility, and funding applications. The field of biomedical vibrational spectroscopy must acknowledge and overcome these hurdles in order to achieve clinical efficacy. Current prospects have been overviewed with comment on the advised future direction of spectroscopic technologies, with the aspiration that many of these innovative approaches can ultimately reach the frontier of medical diagnostics and many clinical applications.
Collapse
Affiliation(s)
| | - Christopher Rinaldi
- WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, Glasgow, UK
| | - Samantha H Rutherford
- WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, Glasgow, UK
| | - Alexandra Sala
- WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, Glasgow, UK
| | - Ashton G Theakstone
- WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, Glasgow, UK
| | | |
Collapse
|
15
|
Bandeira CCS, Madureira KCR, Rossi MB, Gallo JF, da Silva APMA, Torres VL, de Lima VA, Júnior NK, Almeida JD, Zerbinati RM, Braz-Silva PH, Lindoso JAL, da Silva Martinho H. Micro-Fourier-transform infrared reflectance spectroscopy as tool for probing IgG glycosylation in COVID-19 patients. Sci Rep 2022; 12:4269. [PMID: 35277543 PMCID: PMC8914452 DOI: 10.1038/s41598-022-08156-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
It has been reported that patients diagnosed with COVID-19 become critically ill primarily around the time of activation of the adaptive immune response. However the role of antibodies in the worsening of disease is not obvious. Higher titers of anti-spike immunoglobulin IgG1 associated with low fucosylation of the antibody Fc tail have been associated to excessive inflammatory response. In contrast it has been also reported that NP-, S-, RBD- specific IgA, IgG, and IgM are not associated with SARS-CoV-2 viral load, indicating that there is no obvious correlation between antibody response and viral antigen detection. In the present work the micro-Fourier-transform infrared reflectance spectroscopy (micro-FTIR) was employed to investigate blood serum samples of healthy and COVID-19-ill (mild or oligosymptomatic) individuals (82 healthcare workers volunteers in “Instituto de Infectologia Emilio Ribas”, São Paulo, Brazil). The molecular-level-sensitive, multiplexing quantitative and qualitative FTIR data probed on 1 µL of dried biofluid was compared to signal-to-cutoff index of chemiluminescent immunoassays CLIA and ELISA (IgG antibodies against SARS-CoV-2). Our main result indicated that 1702–1785 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {cm}^{-1}$$\end{document}cm-1 spectral window (carbonyl C=O vibration) is a spectral marker of the degree of IgG glycosylation, allowing to probe distinctive sub-populations of COVID-19 patients, depending on their degree of severity. The specificity was 87.5 % while the detection rate of true positive was 100%. The computed area under the receiver operating curve was equivalent to CLIA, ELISA and other ATR-FTIR methods (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$>0.85$$\end{document}>0.85). In summary, overall discrimination of healthy and COVID-19 individuals and severity prediction as well could be potentially implemented using micro-FTIR reflectance spectroscopy on blood serum samples. Considering the minimal and reagent-free sample preparation procedures combined to fast (few minutes) outcome of FTIR we can state that this technology is suitable for fast screening of immune response of individuals with COVID-19. It would be an important tool in prospective studies, helping investigate the physiology of the asymptomatic, oligosymptomatic, or severe individuals and measure the extension of infection dissemination in patients.
Collapse
Affiliation(s)
| | | | - Meire Bocoli Rossi
- Instituto de Infectologia Emilio Ribas, São Paulo, Sp, 01246-900, Brazil
| | | | | | | | - Vinicius Alves de Lima
- Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Norival Kesper Júnior
- Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Janete Dias Almeida
- Departamento de Biociências e Diagnêstico, Instituto de Ciência e Tecnologia, Universidade Estadual Paulista, São José dos Campos, SP, 12245-000, Brazil
| | - Rodrigo Melim Zerbinati
- Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Paulo Henrique Braz-Silva
- Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil.,Faculdade de Odontologia Departamento de Estomatologia, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - José Angelo Lauletta Lindoso
- Instituto de Infectologia Emilio Ribas, São Paulo, Sp, 01246-900, Brazil.,Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil.,Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 01255-090, Brazil
| | | |
Collapse
|
16
|
Theakstone A, Brennan PM, Ashton K, Czeiter E, Jenkinson M, Syed K, Reed M, Baker M. Vibrational spectroscopy for the triage of traumatic brain injury CT priority and hospital admissions. J Neurotrauma 2022; 39:773-783. [PMID: 35236121 PMCID: PMC9225408 DOI: 10.1089/neu.2021.0410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Computed Tomogram (CT) brain imaging is routinely used to support clinical decision-making in patients with traumatic brain injury (TBI). However, only 7% of scans demonstrate evidence of TBI. The other 93% of scans contribute a significant cost to the healthcare system and a radiation risk to patients. There may be better strategies to identify which patients, particularly those with mild TBI, are at risk of deterioration and require hospital admission. We introduce a blood serum liquid biopsy that utilises attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy with machine learning algorithms as a decision-making tool to identify which mild TBI patients will most benefit from CT brain imaging. Serum samples were obtained from (n=298) patients who had acquired a TBI and were enrolled in CENTER-TBI, and from asymptomatic control patients (n=87). Injury patients (all severities) were stratified against non-injury controls. The mild TBI cohort was further examined by stratifying those who had at least one CT abnormality against those who had no CT abnormalities. The test performed exceptionally well in classifications of mild injury patients versus non-injury controls (sensitivity = 96.4% and specificity = 98.0%) and also provided a sensitivity of 80.2% when stratifying mild patients with at least one CT abnormality against those without. The results provided illustrate the test ability to identify 4 out of every 5 CT abnormalities and shows great promise to be introduced as a triage tool for CT priority in mild TBI patients.
Collapse
Affiliation(s)
- Ashton Theakstone
- University of Strathclyde, 3527, 99 George Street, Glasgow, United Kingdom of Great Britain and Northern Ireland, G1 1RD;
| | - Paul M Brennan
- The University of Edinburgh Centre for Clinical Brain Sciences, 439257, Translational Neurosurgery, Edinburgh, Edinburgh, United Kingdom of Great Britain and Northern Ireland;
| | - Katherine Ashton
- Lancashire Teaching Hospitals NHS Foundation Trust, 6724, Neuropathology, Preston, Lancashire, United Kingdom of Great Britain and Northern Ireland;
| | - Endre Czeiter
- University of Pecs Medical School, 37657, Department of Neurosurgery, Pecs, Hungary.,University of Pecs, 37656, Neurotrauma Research Group, Szentágothai Research Centre, Pecs, Hungary.,University of Pecs, 37656, MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary;
| | - Michael Jenkinson
- The Walton Centre NHS Foundation Trust, 195157, Liverpool, Liverpool, United Kingdom of Great Britain and Northern Ireland.,University of Liverpool, 4591, Department of Pharmacology & Therapeutics, Liverpool, Merseyside, United Kingdom of Great Britain and Northern Ireland;
| | - Khaja Syed
- The Walton Centre NHS Foundation Trust, 195157, Liverpool, Liverpool, United Kingdom of Great Britain and Northern Ireland;
| | - Matthew Reed
- Royal Infirmary of Edinburgh, 59843, Department of Emergency Medicine, Edinburgh, Edinburgh, United Kingdom of Great Britain and Northern Ireland;
| | - Matthew Baker
- Dxcover Limited, Glasgow, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
17
|
Cameron JM, Brennan PM, Antoniou G, Butler HJ, Christie L, Conn JJA, Curran T, Gray E, Hegarty MG, Jenkinson MD, Orringer D, Palmer DS, Sala A, Smith BR, Baker MJ. Clinical validation of a spectroscopic liquid biopsy for earlier detection of brain cancer. Neurooncol Adv 2022; 4:vdac024. [PMID: 35316978 PMCID: PMC8934542 DOI: 10.1093/noajnl/vdac024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Background
Diagnostic delays impact the quality of life and survival of patients with brain tumors. Earlier and expeditious diagnoses in these patients are crucial to reducing the morbidities and mortalities associated with brain tumors. A simple, rapid blood test that can be administered easily in a primary care setting to efficiently identify symptomatic patients who are most likely to have a brain tumor would enable quicker referral to brain imaging for those who need it most.
Methods
Blood serum samples from 603 patients were prospectively collected and analyzed. Patients either had non-specific symptoms that could be indicative of a brain tumor on presentation to the Emergency Department, or a new brain tumor diagnosis and referral to the neurosurgical unit, NHS Lothian, Scotland. Patient blood serum samples were analyzed using the Dxcover®Brain Cancer liquid biopsy. This technology utilizes infrared spectroscopy combined with a diagnostic algorithm to predict the presence of intracranial disease.
Results
Our liquid biopsy approach reported an area under the receiver operating characteristic curve of 0.8. The sensitivity-tuned model achieves a 96% sensitivity with 45% specificity (NPV 99.3%) and identified 100% of glioblastoma multiforme patients. When tuned for a higher specificity, the model yields sensitivity of 47% with 90% specificity (PPV 28.4%).
Conclusions
This simple, non-invasive blood test facilitates the triage and radiographic diagnosis of brain tumor patients, while providing reassurance to healthy patients. Minimizing time to diagnosis would facilitate identification of brain tumor patients at an earlier stage, enabling more effective, less morbid surgical and adjuvant care.
Collapse
Affiliation(s)
- James M Cameron
- Dxcover Ltd , Suite RC534, Royal College Building, 204 George Street, Glasgow, G1 1XW, UK
| | - Paul M Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Georgios Antoniou
- Dxcover Ltd , Suite RC534, Royal College Building, 204 George Street, Glasgow, G1 1XW, UK
| | - Holly J Butler
- Dxcover Ltd , Suite RC534, Royal College Building, 204 George Street, Glasgow, G1 1XW, UK
| | - Loren Christie
- Dxcover Ltd , Suite RC534, Royal College Building, 204 George Street, Glasgow, G1 1XW, UK
| | - Justin J A Conn
- Dxcover Ltd , Suite RC534, Royal College Building, 204 George Street, Glasgow, G1 1XW, UK
| | - Tom Curran
- Children’s Mercy Research Institute at the Children’s Mercy Hospital, Kansas City, KS, USA
| | - Ewan Gray
- Independent Health Economics Consultant, Edinburgh, UK
| | - Mark G Hegarty
- Dxcover Ltd , Suite RC534, Royal College Building, 204 George Street, Glasgow, G1 1XW, UK
| | - Michael D Jenkinson
- Institute of Translational Medicine, University of Liverpool & The Walton Centre NHS Foundation Trust, Lower Lane, Liverpool, L9 7LJ, UK
| | - Daniel Orringer
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10018, USA
| | - David S Palmer
- Dxcover Ltd , Suite RC534, Royal College Building, 204 George Street, Glasgow, G1 1XW, UK
| | - Alexandra Sala
- Dxcover Ltd , Suite RC534, Royal College Building, 204 George Street, Glasgow, G1 1XW, UK
- Department of Pure and Applied Chemistry, Thomas Graham Building, 295 Cathedral Street, University of Strathclyde, Glasgow G11XL, UK
| | - Benjamin R Smith
- Dxcover Ltd , Suite RC534, Royal College Building, 204 George Street, Glasgow, G1 1XW, UK
| | - Matthew J Baker
- Dxcover Ltd , Suite RC534, Royal College Building, 204 George Street, Glasgow, G1 1XW, UK
| |
Collapse
|
18
|
Lilo T, Morais CL, Shenton C, Ray A, Gurusinghe N. Revising Fourier-transform infrared (FT-IR) and Raman spectroscopy towards brain cancer detection. Photodiagnosis Photodyn Ther 2022; 38:102785. [DOI: 10.1016/j.pdpdt.2022.102785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/15/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022]
|
19
|
Detection of Human Cholangiocarcinoma Markers in Serum Using Infrared Spectroscopy. Cancers (Basel) 2021; 13:cancers13205109. [PMID: 34680259 PMCID: PMC8534168 DOI: 10.3390/cancers13205109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Cholangiocarcinoma is a form of liver cancer that is found, predominantly, in Thailand. Due to the non-specific symptoms and laboratory investigation, it is difficult to rule out cholangiocarcinoma from other liver conditions. Here, we demonstrate the development of a diagnostic tool for cholangiocarcinoma, based on the ATR-FTIR analyses of sera, coupled with multivariate analyses and machine learning tools to obtain a better specificity. The innovative approach that shows highly promising results for this otherwise difficult to diagnose cancer. Abstract Cholangiocarcinoma (CCA) is a malignancy of the bile duct epithelium. Opisthorchis viverrini infection is a known high-risk factor for CCA and in found, predominantly, in Northeast Thailand. The silent disease development and ineffective diagnosis have led to late-stage detection and reduction in the survival rate. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) is currently being explored as a diagnostic tool in medicine. In this study, we apply ATR-FTIR to discriminate CCA sera from hepatocellular carcinoma (HCC), biliary disease (BD) and healthy donors using a multivariate analysis. Spectral markers differing from healthy ones are observed in the collagen band at 1284, 1339 and 1035 cm−1, the phosphate band (vsPO2−) at 1073 cm−1, the polysaccharides band at 1152 cm−1 and 1747 cm−1 of lipid ester carbonyl. A Principal Component Analysis (PCA) shows discrimination between CCA and healthy sera using the 1400–1000 cm−1 region and the combined 1800—1700 + 1400–1000 cm−1 region. Partial Least Square-Discriminant Analysis (PLS-DA) scores plots in four of five regions investigated, namely, the 1400–1000 cm−1, 1800–1000 cm−1, 3000–2800 + 1800–1000 cm−1 and 1800–1700 + 1400–1000 cm−1 regions, show discrimination between sera from CCA and healthy volunteers. It was not possible to separate CCA from HCC and BD by PCA and PLS-DA. CCA spectral modelling is established using the PLS-DA, Support Vector Machine (SVM), Random Forest (RF) and Neural Network (NN). The best model is the NN, which achieved a sensitivity of 80–100% and a specificity between 83 and 100% for CCA, depending on the spectral window used to model the spectra. This study demonstrates the potential of ATR-FTIR spectroscopy and spectral modelling as an additional tool to discriminate CCA from other conditions.
Collapse
|
20
|
Durlik-Popińska K, Żarnowiec P, Konieczna-Kwinkowska I, Lechowicz Ł, Gawęda J, Kaca W. Correlations between autoantibodies and the ATR-FTIR spectra of sera from rheumatoid arthritis patients. Sci Rep 2021; 11:17886. [PMID: 34504137 PMCID: PMC8429563 DOI: 10.1038/s41598-021-96848-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases worldwide. Due to high heterogeneity in disease manifestation, accurate and fast diagnosis of RA is difficult. This study analyzed the potential relationship between the infrared (IR) spectra obtained by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and the presence of autoantibodies and antibodies against urease in sera. Additionally, the wave number of the IR spectrum that enabled the best differentiation between patients and healthy blood donors was investigated. Using a mathematical model involving principal component analysis and discriminant analysis, it was shown that the presence of anti-citrullinated protein antibody, rheumatoid factor, anti-neutrophil cytoplasmic antibodies, and anti-nuclear antibodies correlated significantly with the wave numbers in the IR spectra of the tested sera. The most interesting findings derived from determination of the best predictors for distinguishing RA. Characteristic features included an increased reaction with urease mimicking peptides and a correspondence with particular nucleic acid bands. Taken together, the results demonstrated the potential application of ATR-FTIR in the study of RA and identified potential novel markers of the disease.
Collapse
Affiliation(s)
- Katarzyna Durlik-Popińska
- Department of Microbiology and Parasitology, Institute of Biology, Jan Kochanowski University in Kielce, Kielce, Poland.
| | - Paulina Żarnowiec
- Department of Microbiology and Parasitology, Institute of Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| | | | - Łukasz Lechowicz
- Department of Microbiology and Parasitology, Institute of Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| | | | - Wiesław Kaca
- Department of Microbiology and Parasitology, Institute of Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| |
Collapse
|
21
|
Lovergne L, Ghosh D, Schuck R, Polyzos AA, Chen AD, Martin MC, Barnard ES, Brown JB, McMurray CT. An infrared spectral biomarker accurately predicts neurodegenerative disease class in the absence of overt symptoms. Sci Rep 2021; 11:15598. [PMID: 34341363 PMCID: PMC8329289 DOI: 10.1038/s41598-021-93686-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/24/2021] [Indexed: 12/29/2022] Open
Abstract
Although some neurodegenerative diseases can be identified by behavioral characteristics relatively late in disease progression, we currently lack methods to predict who has developed disease before the onset of symptoms, when onset will occur, or the outcome of therapeutics. New biomarkers are needed. Here we describe spectral phenotyping, a new kind of biomarker that makes disease predictions based on chemical rather than biological endpoints in cells. Spectral phenotyping uses Fourier Transform Infrared (FTIR) spectromicroscopy to produce an absorbance signature as a rapid physiological indicator of disease state. FTIR spectromicroscopy has over the past been used in differential diagnoses of manifest disease. Here, we report that the unique FTIR chemical signature accurately predicts disease class in mouse with high probability in the absence of brain pathology. In human cells, the FTIR biomarker accurately predicts neurodegenerative disease class using fibroblasts as surrogate cells.
Collapse
Affiliation(s)
- Lila Lovergne
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Dhruba Ghosh
- Department of Statistics, University of California, Berkeley, CA, 94720, USA
| | - Renaud Schuck
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Aris A Polyzos
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Andrew D Chen
- Department of Statistics, University of California, Berkeley, CA, 94720, USA
| | - Michael C Martin
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Edward S Barnard
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - James B Brown
- Department of Statistics, University of California, Berkeley, CA, 94720, USA
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Cynthia T McMurray
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
22
|
Theakstone AG, Brennan PM, Jenkinson MD, Mills SJ, Syed K, Rinaldi C, Xu Y, Goodacre R, Butler HJ, Palmer DS, Smith BR, Baker MJ. Rapid Spectroscopic Liquid Biopsy for the Universal Detection of Brain Tumours. Cancers (Basel) 2021; 13:cancers13153851. [PMID: 34359751 PMCID: PMC8345395 DOI: 10.3390/cancers13153851] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Due to the non-specific symptoms of brain cancer (e.g., headaches or memory changes), gliomas will often remain undetected until they are larger or at a higher grade, reducing the patient’s likelihood of a good clinical outcome. Earlier detection and diagnosis of brain tumours is vital to improve patient outcomes, leading to safer surgeries and earlier treatments. A liquid biopsy for brain tumour would prove revolutionary however in order to detect disease earlier the liquid biopsy needs to be able to detect smaller tumours; and current liquid biopsies perform worse when detecting smaller or earlier stage tumours. Here, for the first time, we confirm the applicability of a validated spectroscopic liquid biopsy approach to detect both small and low-grade gliomas proving that the spectroscopic liquid biopsy approach is insensitive to tumour volume unlike other liquid biopsies. Abstract Background: To support the early detection and diagnosis of brain tumours we have developed a rapid, cost-effective and easy to use spectroscopic liquid biopsy based on the absorbance of infrared radiation. We have previously reported highly sensitive results of our approach which can discriminate patients with a recent brain tumour diagnosis and asymptomatic controls. Other liquid biopsy approaches (e.g., based on tumour genetic material) report a lower classification accuracy for early-stage tumours. In this manuscript we present an investigation into the link between brain tumour volume and liquid biopsy test performance. Methods: In a cohort of 177 patients (90 patients with high-grade glioma (glioblastoma (GBM) or anaplastic astrocytoma), or low-grade glioma (astrocytoma, oligoastrocytoma and oligodendroglioma)) tumour volumes were calculated from magnetic resonance imaging (MRI) investigations and patients were split into two groups depending on MRI parameters (T1 with contrast enhancement or T2/FLAIR (fluid-attenuated inversion recovery)). Using attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy coupled with supervised learning methods and machine learning algorithms, 90 tumour patients were stratified against 87 control patients who displayed no symptomatic indications of cancer, and were classified as either glioma or non-glioma. Results: Sensitivities, specificities and balanced accuracies were all greater than 88%, the area under the curve (AUC) was 0.98, and cancer patients with tumour volumes as small as 0.2 cm3 were correctly identified. Conclusions: Our spectroscopic liquid biopsy approach can identify gliomas that are both small and low-grade showing great promise for deployment of this technique for early detection and diagnosis.
Collapse
Affiliation(s)
- Ashton G. Theakstone
- Technology and Innovation Centre, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK;
- Correspondence: (A.G.T.); (M.J.B.); Tel.: +44-141-444-7343 (A.G.T.); +44-141-548-4700 (M.J.B.)
| | - Paul M. Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK;
| | - Michael D. Jenkinson
- The Walton Centre NHS Foundation Trust, Lower Lane, Liverpool L9 7LJ, UK; (M.D.J.); (S.J.M.); (K.S.)
- Department of Pharmacology & Therapeutics, Institute of System, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Samantha J. Mills
- The Walton Centre NHS Foundation Trust, Lower Lane, Liverpool L9 7LJ, UK; (M.D.J.); (S.J.M.); (K.S.)
| | - Khaja Syed
- The Walton Centre NHS Foundation Trust, Lower Lane, Liverpool L9 7LJ, UK; (M.D.J.); (S.J.M.); (K.S.)
| | - Christopher Rinaldi
- Technology and Innovation Centre, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK;
| | - Yun Xu
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (Y.X.); (R.G.)
| | - Royston Goodacre
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (Y.X.); (R.G.)
| | - Holly J. Butler
- Dxcover Limited, 204 George Street, Glasgow G1 1XW, UK; (H.J.B.); (D.S.P.); (B.R.S.)
| | - David S. Palmer
- Dxcover Limited, 204 George Street, Glasgow G1 1XW, UK; (H.J.B.); (D.S.P.); (B.R.S.)
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, Glasgow G1 1XL, UK
| | - Benjamin R. Smith
- Dxcover Limited, 204 George Street, Glasgow G1 1XW, UK; (H.J.B.); (D.S.P.); (B.R.S.)
| | - Matthew J. Baker
- Dxcover Limited, 204 George Street, Glasgow G1 1XW, UK; (H.J.B.); (D.S.P.); (B.R.S.)
- Correspondence: (A.G.T.); (M.J.B.); Tel.: +44-141-444-7343 (A.G.T.); +44-141-548-4700 (M.J.B.)
| |
Collapse
|
23
|
Ma M, Tian X, Chen F, Ma X, Guo W, Lv X. The application of feature engineering in establishing a rapid and robust model for identifying patients with glioma. Lasers Med Sci 2021; 37:1007-1015. [PMID: 34241708 DOI: 10.1007/s10103-021-03346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/07/2021] [Indexed: 11/27/2022]
Abstract
The aim of the study is to evaluate the efficacy of the combination of Raman spectroscopy with feature engineering and machine learning algorithms for detecting glioma patients. In this study, we used Raman spectroscopy technology to collect serum spectra of glioma patients and healthy people and used feature engineering-based classification models for prediction. First, to reduce the dimensionality of the data, we used two feature extraction algorithms which are partial least squares (PLS) and principal component analysis (PCA). Then, the principal components were selected using the feature selection methods of four correlation indexes, namely, Relief-F (RF), the Pearson correlation coefficient (PCC), the F-score (FS) and term variance (TV). Finally, back-propagation neural network (BP), linear discriminant analysis (LDA) and support vector machine (SVM) classification models were established. To improve the reliability of the model, we used a fivefold cross validation to measure the prediction performance between different models. In this experiment, 33 classification models were established. Integrating 4 classification criteria, PLS-Relief-F-BP, PLS-F-Score-BP, PLS-LDA and PLS-Relief-F-SVM had better effects, and their accuracy rates reached 97.58%, 96.33%, 97.87% and 96.19%, respectively. The experimental results show that feature engineering can select more representative features, reduce computational time complexity and simplify the model. The classification model established in this experiment can not only increase the robustness of the model and shorten the discrimination time but also realize the rapid, stable and accurate diagnosis of glioma patients, which has high clinical application value.
Collapse
Affiliation(s)
- Mingrui Ma
- Department of Information Management, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Xuecong Tian
- College of Software, Xinjiang University, Urumqi, 830046, China
| | - Fangfang Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
- Key Laboratory of Signal Detection and Processing, Xinjiang University, Urumqi, 830046, China
| | - Xiaojian Ma
- Department of Information Management, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Wenjia Guo
- Institute of Cancer, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| | - Xiaoyi Lv
- College of Software, Xinjiang University, Urumqi, 830046, China.
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China.
- Key Laboratory of Signal Detection and Processing, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
24
|
Early economic evaluation to guide the development of a spectroscopic liquid biopsy for the detection of brain cancer. Int J Technol Assess Health Care 2021; 37:e41. [PMID: 33622443 DOI: 10.1017/s0266462321000143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES An early economic evaluation to inform the translation into clinical practice of a spectroscopic liquid biopsy for the detection of brain cancer. Two specific aims are (1) to update an existing economic model with results from a prospective study of diagnostic accuracy and (2) to explore the potential of brain tumor-type predictions to affect patient outcomes and healthcare costs. METHODS A cost-effectiveness analysis from a UK NHS perspective of the use of spectroscopic liquid biopsy in primary and secondary care settings, as well as a cost-consequence analysis of the addition of tumor-type predictions was conducted. Decision tree models were constructed to represent simplified diagnostic pathways. Test diagnostic accuracy parameters were based on a prospective validation study. Four price points (GBP 50-200, EUR 57-228) for the test were considered. RESULTS In both settings, the use of liquid biopsy produced QALY gains. In primary care, at test costs below GBP 100 (EUR 114), testing was cost saving. At GBP 100 (EUR 114) per test, the ICER was GBP 13,279 (EUR 15,145), whereas at GBP 200 (EUR 228), the ICER was GBP 78,300 (EUR 89,301). In secondary care, the ICER ranged from GBP 11,360 (EUR 12,956) to GBP 43,870 (EUR 50,034) across the range of test costs. CONCLUSIONS The results demonstrate the potential for the technology to be cost-effective in both primary and secondary care settings. Additional studies of test use in routine primary care practice are needed to resolve the remaining issues of uncertainty-prevalence in this patient population and referral behavior.
Collapse
|
25
|
Theakstone AG, Rinaldi C, Butler HJ, Cameron JM, Confield LR, Rutherford SH, Sala A, Sangamnerkar S, Baker MJ. Fourier‐transform infrared spectroscopy of biofluids: A practical approach. TRANSLATIONAL BIOPHOTONICS 2021. [DOI: 10.1002/tbio.202000025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Ashton G. Theakstone
- WestCHEM, Department of Pure and Applied Chemistry Technology and Innovation Centre Glasgow UK
| | - Christopher Rinaldi
- WestCHEM, Department of Pure and Applied Chemistry Technology and Innovation Centre Glasgow UK
| | | | | | - Lily Rose Confield
- WestCHEM, Department of Pure and Applied Chemistry Technology and Innovation Centre Glasgow UK
- CDT Medical Devices, Department of Biomedical Engineering Wolfson Centre Glasgow UK
| | - Samantha H. Rutherford
- WestCHEM, Department of Pure and Applied Chemistry Technology and Innovation Centre Glasgow UK
| | - Alexandra Sala
- WestCHEM, Department of Pure and Applied Chemistry Technology and Innovation Centre Glasgow UK
- ClinSpec Diagnostics Ltd, Royal College Building Glasgow UK
| | - Sayali Sangamnerkar
- WestCHEM, Department of Pure and Applied Chemistry Technology and Innovation Centre Glasgow UK
| | - Matthew J. Baker
- WestCHEM, Department of Pure and Applied Chemistry Technology and Innovation Centre Glasgow UK
- ClinSpec Diagnostics Ltd, Royal College Building Glasgow UK
| |
Collapse
|
26
|
Rutherford SH, Greetham GM, Donaldson PM, Towrie M, Parker AW, Baker MJ, Hunt NT. Detection of Glycine as a Model Protein in Blood Serum Using 2D-IR Spectroscopy. Anal Chem 2021; 93:920-927. [PMID: 33295755 DOI: 10.1021/acs.analchem.0c03567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycine (Gly) is used as a model system to evaluate the ability of ultrafast two-dimensional infrared (2D-IR) spectroscopy to detect and quantify the low-molecular-weight proteinaceous components of blood serum. Combining data acquisition schemes to suppress absorption bands of H2O that overlap with the protein amide I band with analysis of peak patterns appearing in the off-diagonal region of the 2D-IR spectrum allows separation of the Gly spectral signature from that of the dominant protein fraction of serum in a transmission-mode 2D-IR measurement without any sample manipulation, e.g., filtration or drying. 2D-IR spectra of blood serum samples supplemented with varying concentrations of Gly were obtained, and a range of data analysis methods compared, leading to a detection limit of ∼3 mg/mL for Gly. The reported methodology provides a platform for a critical assessment of the sensitivity of 2D-IR for measuring the concentrations of amino acids, peptides, and low-molecular-weight proteins present in serum samples. We conclude that, in the case of several clinically relevant diagnostic molecules and their combinations, the potential exists for 2D-IR to complement IR absorption methods as the benefits of the second frequency dimension offered by 2D-IR spectroscopy outweigh the added technical complexity of the measurement.
Collapse
Affiliation(s)
- Samantha H Rutherford
- Department of Physics, University of Strathclyde, SUPA, 107 Rottenrow East, Glasgow G4 0NG, U.K
| | - Gregory M Greetham
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Paul M Donaldson
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Michael Towrie
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Anthony W Parker
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Matthew J Baker
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
27
|
Cameron JM, Conn JJA, Rinaldi C, Sala A, Brennan PM, Jenkinson MD, Caldwell H, Cinque G, Syed K, Butler HJ, Hegarty MG, Palmer DS, Baker MJ. Interrogation of IDH1 Status in Gliomas by Fourier Transform Infrared Spectroscopy. Cancers (Basel) 2020; 12:E3682. [PMID: 33302429 PMCID: PMC7762605 DOI: 10.3390/cancers12123682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in the isocitrate dehydrogenase 1 (IDH1) gene are found in a high proportion of diffuse gliomas. The presence of the IDH1 mutation is a valuable diagnostic, prognostic and predictive biomarker for the management of patients with glial tumours. Techniques involving vibrational spectroscopy, e.g., Fourier transform infrared (FTIR) spectroscopy, have previously demonstrated analytical capabilities for cancer detection, and have the potential to contribute to diagnostics. The implementation of FTIR microspectroscopy during surgical biopsy could present a fast, label-free method for molecular genetic classification. For example, the rapid determination of IDH1 status in a patient with a glioma diagnosis could inform intra-operative decision-making between alternative surgical strategies. In this study, we utilized synchrotron-based FTIR microanalysis to probe tissue microarray sections from 79 glioma patients, and distinguished the positive class (IDH1-mutated) from the IDH1-wildtype glioma, with a sensitivity and specificity of 82.4% and 83.4%, respectively. We also examined the ability of attenuated total reflection (ATR)-FTIR spectroscopy in detecting the biomolecular events and global epigenetic and metabolic changes associated with mutations in the IDH1 enzyme, in blood serum samples collected from an additional 72 brain tumour patients. Centrifugal filtration enhanced the diagnostic ability of the classification models, with balanced accuracies up to ~69%. Identification of the molecular status from blood serum prior to biopsy could further direct some patients to alternative treatment strategies.
Collapse
Affiliation(s)
- James M. Cameron
- WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George St., Glasgow G1 1RD, UK; (J.M.C.); (C.R.); (A.S.)
- ClinSpec Diagnostics, Technology and Innovation Centre, University of Strathclyde, 99 George St., Glasgow G1 1RD, UK; (J.J.A.C.); (H.J.B.); (M.G.H.); (D.S.P.)
| | - Justin J. A. Conn
- ClinSpec Diagnostics, Technology and Innovation Centre, University of Strathclyde, 99 George St., Glasgow G1 1RD, UK; (J.J.A.C.); (H.J.B.); (M.G.H.); (D.S.P.)
| | - Christopher Rinaldi
- WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George St., Glasgow G1 1RD, UK; (J.M.C.); (C.R.); (A.S.)
| | - Alexandra Sala
- WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George St., Glasgow G1 1RD, UK; (J.M.C.); (C.R.); (A.S.)
| | - Paul M. Brennan
- Department of Clinical Neurosciences, Translational Neurosurgery, Western General Hospital, Edinburgh EH4 2XU, UK;
| | - Michael D. Jenkinson
- Institute of Systems, Molecular and Integrated Biology, University of Liverpool & The Walton Centre NHS Foundation Trust, Lower Lane, Fazakerley, Liverpool L9 7LJ, UK;
| | - Helen Caldwell
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Division of Pathology, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK;
| | - Gianfelice Cinque
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Oxfordshire OX11 0DE, UK;
| | - Khaja Syed
- Walton Research Tissue Bank, Neurosciences Laboratories, The Walton Centre NHS Foundation Trust, Lower Lane, Fazakerley, Liverpool L9 7LJ, UK;
| | - Holly J. Butler
- ClinSpec Diagnostics, Technology and Innovation Centre, University of Strathclyde, 99 George St., Glasgow G1 1RD, UK; (J.J.A.C.); (H.J.B.); (M.G.H.); (D.S.P.)
| | - Mark G. Hegarty
- ClinSpec Diagnostics, Technology and Innovation Centre, University of Strathclyde, 99 George St., Glasgow G1 1RD, UK; (J.J.A.C.); (H.J.B.); (M.G.H.); (D.S.P.)
| | - David S. Palmer
- ClinSpec Diagnostics, Technology and Innovation Centre, University of Strathclyde, 99 George St., Glasgow G1 1RD, UK; (J.J.A.C.); (H.J.B.); (M.G.H.); (D.S.P.)
- WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Str., Glasgow G1 1XL, UK
| | - Matthew J. Baker
- WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George St., Glasgow G1 1RD, UK; (J.M.C.); (C.R.); (A.S.)
- ClinSpec Diagnostics, Technology and Innovation Centre, University of Strathclyde, 99 George St., Glasgow G1 1RD, UK; (J.J.A.C.); (H.J.B.); (M.G.H.); (D.S.P.)
| |
Collapse
|
28
|
Liu S, Wang Q, Zhang G, Du J, Hu B, Zhang Z. Using hyperspectral imaging automatic classification of gastric cancer grading with a shallow residual network. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3844-3853. [PMID: 32685943 DOI: 10.1039/d0ay01023e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The gastric cancer grading of patients determines their clinical treatment plan. We use hyperspectral imaging (HSI) gastric cancer section data to automatically classify the three different cancer grades (low grade, intermediate grade, and high grade) and healthy tissue. This paper proposed the use of HSI data combined with a shallow residual network (SR-Net) as the classifier. We collected hyperspectral data from gastric sections of 30 participants, with the wavelength range of hyperspectral data being 374 nm to 990 nm. We compared the classification results between hyperspectral data and color images. The results show that using hyperspectral data and a SR-Net an average classification accuracy of 91.44% could be achieved, which is 13.87% higher than that of the color image. In addition, we applied a modified SR-Net incorporated direct down-sampling, asymmetric filters, and global average pooling to reduce the parameters and floating-point operations. Compared with the regular residual network with the same number of blocks, the floating-point operations of a SR-Net are one order of magnitude less. The experimental results show that hyperspectral data with a SR-Net can achieve cutting-edge performance with minimum computational cost and therefore have potential in the study of gastric cancer grading.
Collapse
Affiliation(s)
- Song Liu
- Key Laboratory of Spectral Imaging Technology of CAS, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.
| | | | | | | | | | | |
Collapse
|
29
|
Stratifying Brain Tumour Histological Sub-Types: The Application of ATR-FTIR Serum Spectroscopy in Secondary Care. Cancers (Basel) 2020; 12:cancers12071710. [PMID: 32605100 PMCID: PMC7408619 DOI: 10.3390/cancers12071710] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
Patients living with brain tumours have the highest average years of life lost of any cancer, ultimately reducing average life expectancy by 20 years. Diagnosis depends on brain imaging and most often confirmatory tissue biopsy for histology. The majority of patients experience non-specific symptoms, such as headache, and may be reviewed in primary care on multiple occasions before diagnosis is made. Sixty-two per cent of patients are diagnosed on brain imaging performed when they deteriorate and present to the emergency department. Histological diagnosis from invasive surgical biopsy is necessary prior to definitive treatment, because imaging techniques alone have difficulty in distinguishing between several types of brain cancer. However, surgery itself does not necessarily control tumour growth, and risks morbidity for the patient. Due to their similar features on brain scans, glioblastoma, primary central nervous system lymphoma and brain metastases have been known to cause radiological confusion. Non-invasive tests that support stratification of tumour subtype would enhance early personalisation of treatment selection and reduce the delay and risks associated with surgery for many patients. Techniques involving vibrational spectroscopy, such as attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, have previously demonstrated analytical capabilities for cancer diagnostics. In this study, infrared spectra from 641 blood serum samples obtained from brain cancer and control patients have been collected. Firstly, we highlight the capability of ATR-FTIR to distinguish between healthy controls and brain cancer at sensitivities and specificities above 90%, before defining subtle differences in protein secondary structures between patient groups through Amide I deconvolution. We successfully differentiate several types of brain lesions (glioblastoma, meningioma, primary central nervous system lymphoma and metastasis) with balanced accuracies >80%. A reliable blood serum test capable of stratifying brain tumours in secondary care could potentially avoid surgery and speed up the time to definitive therapy, which would be of great value for both neurologists and patients.
Collapse
|
30
|
Biofluid diagnostics by FTIR spectroscopy: A platform technology for cancer detection. Cancer Lett 2020; 477:122-130. [DOI: 10.1016/j.canlet.2020.02.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/31/2020] [Accepted: 02/14/2020] [Indexed: 12/19/2022]
|