1
|
Ehehalt L, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem Rev 2024; 124:13397-13569. [PMID: 39591522 PMCID: PMC11638928 DOI: 10.1021/acs.chemrev.4c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Cross-electrophile coupling (XEC), defined by us as the cross-coupling of two different σ-electrophiles that is driven by catalyst reduction, has seen rapid progression in recent years. As such, this review aims to summarize the field from its beginnings up until mid-2023 and to provide comprehensive coverage on synthetic methods and current state of mechanistic understanding. Chapters are split by type of bond formed, which include C(sp3)-C(sp3), C(sp2)-C(sp2), C(sp2)-C(sp3), and C(sp2)-C(sp) bond formation. Additional chapters include alkene difunctionalization, alkyne difunctionalization, and formation of carbon-heteroatom bonds. Each chapter is generally organized with an initial summary of mechanisms followed by detailed figures and notes on methodological developments and ending with application notes in synthesis. While XEC is becoming an increasingly utilized approach in synthesis, its early stage of development means that optimal catalysts, ligands, additives, and reductants are still in flux. This review has collected data on these and various other aspects of the reactions to capture the state of the field. Finally, the data collected on the papers in this review is offered as Supporting Information for readers.
Collapse
Affiliation(s)
| | | | - Isabella C. Priest
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Julianna M. Mouat
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alexandro R. Cruz
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kai Kang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jiang Wang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Sarkar P, Dash S, Krause JA, Sinha S, Panetier JA, Jiang JJ. Ambient Electroreductive Carboxylation of Unactivated Alkyl Chlorides and Polyvinyl Chloride (PVC) Upgrading. CHEMSUSCHEM 2024; 17:e202400517. [PMID: 38890556 DOI: 10.1002/cssc.202400517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/20/2024]
Abstract
Electrosynthesis of alkyl carboxylic acids upon activating stronger alkyl chlorides at low-energy cost is desired in producing carbon-rich feedstock. Carbon dioxide (CO2), a greenhouse gas, has been recognized as an ideal primary carbon source for those syntheses, and such events also mitigate the atmospheric CO2 level, which is already alarming. On the other hand, the promising upcycling of polyvinyl chloride to polyacrylate is a high energy-demanding carbon-chloride (C-Cl) bond activation process. Molecular catalysts that can efficiently perform such transformation under ambient reaction conditions are rarely known. Herein, we reveal a nickel (Ni)-pincer complex that catalyzes the electrochemical upgrading of polyvinyl chloride to polyacrylate in 95 % yield. The activities of such a Ni electrocatalyst bearing a redox-active ligand were also tested to convert diverse examples of unactivated alkyl chlorides to their corresponding carboxylic acid derivatives. Furthermore, electronic structure calculations revealed that CO2 binding occurs in a resting state to yield an η2-CO2 adduct and that the C-Cl bond activation step is the rate-determining transition state, which has an activation energy of 19.3 kcal/mol. A combination of electroanalytical methods, control experiments, and computational studies were also carried out to propose the mechanism of the electrochemical C-Cl activation process with the subsequent carboxylation step.
Collapse
Affiliation(s)
- Prasenjit Sarkar
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221
| | - Sandeep Dash
- Department of Chemistry, State University of New York, Binghamton, NY 13902
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221
| | - Soumalya Sinha
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221
| | - Julien A Panetier
- Department of Chemistry, State University of New York, Binghamton, NY 13902
| | | |
Collapse
|
3
|
Charboneau DJ, Huang H, Barth EL, Deziel AP, Germe CC, Hazari N, Jia X, Kim S, Nahiyan S, Birriel-Rodriguez L, Uehling MR. Homogeneous Organic Reductant Based on 4,4'- tBu 2-2,2'-Bipyridine for Cross-Electrophile Coupling. Tetrahedron Lett 2024; 145:155159. [PMID: 39036418 PMCID: PMC11258959 DOI: 10.1016/j.tetlet.2024.155159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The synthesis of a new homogeneous reductant based on 4,4'-tBu2-2,2'-bipyridine, tBu-OED4, is reported. tBu-OED4 was prepared on a multigram scale in two steps from inexpensive and commercially available starting materials, with no chromatography required for purification. tBu-OED4 has a reduction potential of -1.33 V (vs Ferrocenium/Ferrocene) and is soluble in a range of common organic solvents. We demonstrate that tBu-OED4 can facilitate Ni/Co dual-catalyzed C(sp2)-C(sp3) cross-electrophile coupling reactions and is highly functional group tolerant. tBu-OED4 is expected to be a valuable addition to the set of homogeneous reductants available for organic transformations.
Collapse
Affiliation(s)
- David J Charboneau
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Haotian Huang
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Emily L Barth
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Anthony P Deziel
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Cameron C Germe
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Nilay Hazari
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Xiaofan Jia
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Seoyeon Kim
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Sheikh Nahiyan
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | | | - Mycah R Uehling
- Merck & Co., Inc., Discovery Chemistry, HTE and Lead Discovery Capabilities, Rahway, New Jersey, 07065, USA
| |
Collapse
|
4
|
Li B, Zhang HH, Luo Y, Yu S, Goddard Iii WA, Dang Y. Interception of Transient Allyl Radicals with Low-Valent Allylpalladium Chemistry: Tandem Pd(0/II/I)-Pd(0/II/I/II) Cycles in Photoredox/Pd Dual-Catalytic Enantioselective C(sp 3)-C(sp 3) Homocoupling. J Am Chem Soc 2024; 146:6377-6387. [PMID: 38385755 DOI: 10.1021/jacs.4c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
We present comprehensive computational and experimental studies on the mechanism of an asymmetric photoredox/Pd dual-catalytic reductive C(sp3)-C(sp3) homocoupling of allylic electrophiles. In stark contrast to the canonical assumption that photoredox promotes bond formation via facile reductive elimination from high-valent metal-organic species, our computational analysis revealed an intriguing low-valent allylpalladium pathway that features tandem operation of Pd(0/II/I)-Pd(0/II/I/II) cycles. Specifically, we propose that (i) the photoredox/Pd system enables the in situ generation of allyl radicals from low-valent Pd(I)-allyl species, and (ii) effective interception of the fleeting allyl radical by the chiral Pd(I)-allyl species results in the formation of an enantioenriched product. Notably, the cooperation of the two pathways highlights the bifunctional role of Pd(I)-allyl species in the generation and interception of transient allyl radicals. Moreover, the mechanism implies divergent substrate-activation modes in this homocoupling reaction, suggesting a theoretical possibility for cross-coupling. Combined, the current study offers a novel mechanistic hypothesis for photoredox/Pd dual catalysis and highlights the use of low-valent allylpalladium as a means to efficiently intercept radicals for selective asymmetric bond constructions.
Collapse
Affiliation(s)
- Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Materials and Process Simulation Center, Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong-Hao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yongrui Luo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - William A Goddard Iii
- Materials and Process Simulation Center, Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Mouat JM, Widness JK, Enny DG, Meidenbauer MT, Awan F, Krauss TD, Weix DJ. CdS Quantum Dots for Metallaphotoredox-Enabled Cross-Electrophile Coupling of Aryl Halides with Alkyl Halides. ACS Catal 2023; 13:9018-9024. [PMID: 38283073 PMCID: PMC10812861 DOI: 10.1021/acscatal.3c01984] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Semiconductor quantum dots (QDs) offer many advantages as photocatalysts for synthetic photoredox catalysis, but no reports have explored the use of QDs with nickel catalysts for C-C bond formation. We show here that 5.7 nm CdS QDs are robust photocatalysts for photoredox-promoted cross-electrophile coupling (40 000 TON). These conditions can be utilized on small scale (96-well plate) or adapted to flow. NMR studies show that triethanolamine (TEOA) capped QDs are the active catalyst and that TEOA can displace native phosphonate and carboxylate ligands, demonstrating the importance of QD surface chemistry.
Collapse
Affiliation(s)
- Julianna M. Mouat
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706 USA
| | - Jonas K. Widness
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706 USA
| | - Daniel G. Enny
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706 USA
| | | | - Farwa Awan
- Department of Chemistry, University of Rochester, Rochester, NY 14627 USA
| | - Todd D. Krauss
- Department of Chemistry, University of Rochester, Rochester, NY 14627 USA
- Institute of Optics, University of Rochester, Rochester, NY 14627 USA
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706 USA
| |
Collapse
|
6
|
Li K, Long X, Zhu S. Photoredox/Nickel Dual Catalysis-Enabled Modular Synthesis of Arylallyl Alcohols with Acetylene as the Two-Carbon Synthon. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kangkui Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xianyang Long
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
7
|
Li R, Wang Z, Zhang Y, Tan Z, Xu D. Iodine‐Catalyzed Oxidative Coupling of Indolin‐2‐ones with Indoles: Synthesis of 3,3‐Disubstituted Oxindole Compounds. ChemistrySelect 2022. [DOI: 10.1002/slct.202200558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ruo‐Pu Li
- National Engineering Research Center of Pesticide (Tianjin) College of Chemistry Nankai University Tianjin 300071 China
| | - Zheng‐Lin Wang
- National Engineering Research Center of Pesticide (Tianjin) College of Chemistry Nankai University Tianjin 300071 China
| | - Yun‐Hao Zhang
- National Engineering Research Center of Pesticide (Tianjin) College of Chemistry Nankai University Tianjin 300071 China
| | - Zhi‐Yu Tan
- National Engineering Research Center of Pesticide (Tianjin) College of Chemistry Nankai University Tianjin 300071 China
| | - Da‐Zhen Xu
- National Engineering Research Center of Pesticide (Tianjin) College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
8
|
Xiang J, Patureau FW. Cross Dehydrogenative Coupling of Chloro‐ and Fluoroalkanes with Methylarenes. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jia‐Xiang Xiang
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Frederic W. Patureau
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
9
|
Zhang X, Fang WY, Qin HL. Regio- and Stereoselective Installation of Bromide onto Vinyl Sulfonyl Fluorides: Construction of a Class of Versatile Sulfur Fluoride Exchange Hubs. Org Lett 2022; 24:4046-4051. [PMID: 35622119 DOI: 10.1021/acs.orglett.2c01509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A convenient protocol for the exclusively regio- and stereoselective installation of a bromine atom on the 2-arylvinylsulfonyl fluorides using lithium bromide (LiBr) as the bromine source was described, providing (Z)-1-bromo-2-arylethene-1-sulfonyl fluorides (Z-BASF) with versatile reactive handles (bromide, vinyl, and sulfonyl fluoride) in ≤88% yield. Meanwhile, Z-BASF molecules displayed various reactivities in a series of chemical transformations.
Collapse
Affiliation(s)
- Xu Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Wan-Yin Fang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
10
|
Zhan YZ, Meng H, Shu W. Rapid access to t-butylalkylated olefins enabled by Ni-catalyzed intermolecular regio- and trans-selective cross-electrophile t-butylalkylation of alkynes. Chem Sci 2022; 13:4930-4935. [PMID: 35655892 PMCID: PMC9068203 DOI: 10.1039/d2sc00487a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Among the carbo-difunctionalization of alkynes, the stereoselective dialkylation of alkynes is the most challenging transformation due to associated competitive side reactions and thus remains underdeveloped. Herein, we report the first Ni-catalyzed regio- and trans-selective cross-dialkylation of alkynes with two distinct alkyl bromides to afford olefins with two aliphatic substituents. The reductive conditions circumvent the use of organometallic reagents, enabling the cross-dialkylation process to occur at room temperature from two different alkyl bromides. This operationally simple protocol provides a straightforward and practical access to a wide range of stereodefined dialkylated olefins with broad functional group tolerance from easily available starting materials. A direct reductive cross-dialkylation of alkynes is achieved to afford trans-dialkylated olefins using two distinct alkyl bromides. The reaction undergoes with exclusive chemo-, regio- and stereoselectivity without the use of organometallic reagents.![]()
Collapse
Affiliation(s)
- Yi-Zhou Zhan
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Huan Meng
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| |
Collapse
|
11
|
Guo S, Yan W, Zhang Z, Huang Z, Guo Y, Liang Z, Li S, Fu Z, Cai H. Nickel-Catalyzed 1,1-Dihydrophosphinylation of Nitriles with Phosphine Oxides. J Org Chem 2022; 87:5522-5529. [PMID: 35468296 DOI: 10.1021/acs.joc.1c02815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Treatment of phosphine oxides with nitriles usually furnishes 1,2-dihydrophosphinylation products. Herein, we developed a nickel-catalyzed 1,1-dihydrophosphinylation of nitriles with phosphine oxides to access primary amines. This reaction proceeded smoothly under very mild conditions. A series of nitriles and phosphine oxides were compatible with this conversion, and the desired products were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Shengmei Guo
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Wenjie Yan
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Zhebin Zhang
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Zhenjun Huang
- The Second Clinical Medical College, Nanchang University, Nanchang 330031, P. R. China
| | - Yuyang Guo
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Zhibin Liang
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Sen Li
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Zhengjiang Fu
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Hu Cai
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| |
Collapse
|
12
|
Xi X, Luo Y, Li W, Xu M, Zhao H, Chen Y, Zheng S, Qi X, Yuan W. From Esters to Ketones via a Photoredox‐Assisted Reductive Acyl Cross‐Coupling Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoxiang Xi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Yixin Luo
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Weirong Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Minghao Xu
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Hongping Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Yukun Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Songlin Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Weiming Yuan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| |
Collapse
|
13
|
Xie H, Wang S, Wang Y, Guo P, Shu XZ. Ti-Catalyzed Reductive Dehydroxylative Vinylation of Tertiary Alcohols. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Hao Xie
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Sheng Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Yuquan Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Peng Guo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
14
|
Charboneau DJ, Huang H, Barth EL, Germe CC, Hazari N, Mercado BQ, Uehling MR, Zultanski SL. Tunable and Practical Homogeneous Organic Reductants for Cross-Electrophile Coupling. J Am Chem Soc 2021; 143:21024-21036. [PMID: 34846142 DOI: 10.1021/jacs.1c10932] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The syntheses of four new tunable homogeneous organic reductants based on a tetraaminoethylene scaffold are reported. The new reductants have enhanced air stability compared to current homogeneous reductants for metal-mediated reductive transformations, such as cross-electrophile coupling (XEC), and are solids at room temperature. In particular, the weakest reductant is indefinitely stable in air and has a reduction potential of -0.85 V versus ferrocene, which is significantly milder than conventional reductants used in XEC. All of the new reductants can facilitate C(sp2)-C(sp3) Ni-catalyzed XEC reactions and are compatible with complex substrates that are relevant to medicinal chemistry. The reductants span a range of nearly 0.5 V in reduction potential, which allows for control over the rate of electron transfer events in XEC. Specifically, we report a new strategy for controlled alkyl radical generation in Ni-catalyzed C(sp2)-C(sp3) XEC. The key to our approach is to tune the rate of alkyl radical generation from Katritzky salts, which liberate alkyl radicals upon single electron reduction, by varying the redox potentials of the reductant and Katritzky salt utilized in catalysis. Using our method, we perform XEC reactions between benzylic Katritzky salts and aryl halides. The method tolerates a variety of functional groups, some of which are particularly challenging for most XEC transformations. Overall, we expect that our new reductants will both replace conventional homogeneous reductants in current reductive transformations due to their stability and relatively facile synthesis and lead to the development of novel synthetic methods due to their tunability.
Collapse
Affiliation(s)
- David J Charboneau
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Haotian Huang
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Emily L Barth
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Cameron C Germe
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Mycah R Uehling
- Discovery Chemistry, HTE and Lead Discovery Capabilities, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Susan L Zultanski
- Department of Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
15
|
Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DWC. Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chem Rev 2021; 122:1485-1542. [PMID: 34793128 DOI: 10.1021/acs.chemrev.1c00383] [Citation(s) in RCA: 665] [Impact Index Per Article: 166.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The merger of photoredox catalysis with transition metal catalysis, termed metallaphotoredox catalysis, has become a mainstay in synthetic methodology over the past decade. Metallaphotoredox catalysis has combined the unparalleled capacity of transition metal catalysis for bond formation with the broad utility of photoinduced electron- and energy-transfer processes. Photocatalytic substrate activation has allowed the engagement of simple starting materials in metal-mediated bond-forming processes. Moreover, electron or energy transfer directly with key organometallic intermediates has provided novel activation modes entirely complementary to traditional catalytic platforms. This Review details and contextualizes the advancements in molecule construction brought forth by metallaphotocatalysis.
Collapse
Affiliation(s)
- Amy Y Chan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ian B Perry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Noah B Bissonnette
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Grant A Edwards
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Lucas I Frye
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Olivia L Garry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Marissa N Lavagnino
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Beryl X Li
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Yufan Liang
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Agustin Millet
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Nicholas L Reed
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Holt A Sakai
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ciaran P Seath
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
16
|
Xi X, Luo Y, Li W, Xu M, Zhao H, Chen Y, Zheng S, Qi X, Yuan W. From Esters to Ketones via a Photoredox-Assisted Reductive Acyl Cross-Coupling Strategy. Angew Chem Int Ed Engl 2021; 61:e202114731. [PMID: 34783143 DOI: 10.1002/anie.202114731] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 12/14/2022]
Abstract
A method was developed for ketone synthesis via a photoredox-assisted reductive acyl cross-coupling (PARAC) using a nickel/photoredox dual-catalyzed cross-electrophile coupling of two different carboxylic acid esters. A variety of aryl, 1°, 2°, 3°-alkyl 2-pyridyl esters can act as acyl electrophiles while N-(acyloxy)phthalimides (NHPI esters) act as 1°, 2°, 3°-radical precursors. Our PARAC strategy provides an alternative and reliable way to synthesize various sterically congested 3°-3°, 3°-2°, and aryl-3° ketones under mild and highly unified conditions, which have been otherwise difficult to access. The combined experimental and computational studies identified a Ni0 /NiI /NiIII pathway for ketone formation.
Collapse
Affiliation(s)
- Xiaoxiang Xi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Yixin Luo
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Weirong Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Minghao Xu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Hongping Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Yukun Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Songlin Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Weiming Yuan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| |
Collapse
|
17
|
Garbacz M, Stecko S. Synthesis of chiral branched allylamines through dual photoredox/nickel catalysis. Org Biomol Chem 2021; 19:8578-8585. [PMID: 34553201 DOI: 10.1039/d1ob01624e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Allylamines are versatile building blocks in the synthesis of various naturally occurring products and pharmaceuticals. In contrast to terminal allylamines, the methods of synthesis of their branched congeners with internal, stereodefined double bonds are less explored. This work describes a new approach for the preparation of allylamines via cross-coupling of alkyl bromides with simple 3-bromoallylamines by merging the photoredox approach and Ni catalysis. The reaction proceeds under mild conditions, under blue light irradiation, and in the presence of an organic dye, 4CzIPN, as a photocatalyst. The scope of suitable reaction partners is broad, including alkyl bromides bearing reactive functionalities (e.g., esters, nitriles, aldehydes, ketones, epoxides) and N-protected allylamines, as well as N-allylated secondary and tertiary amines and heterocycles. The employment of non-racemic starting materials allows for rapid and easy construction of complex multifunctional allylamine derivatives without the loss of enantiomeric purity.
Collapse
Affiliation(s)
- Mateusz Garbacz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Sebastian Stecko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
18
|
Zhang HH, Tang M, Zhao JJ, Song C, Yu S. Enantioselective Reductive Homocoupling of Allylic Acetates Enabled by Dual Photoredox/Palladium Catalysis: Access to C2-Symmetrical 1,5-Dienes. J Am Chem Soc 2021; 143:12836-12846. [PMID: 34351745 DOI: 10.1021/jacs.1c06271] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transition-metal-catalyzed reductive coupling reactions have emerged as powerful protocols to construct C-C bonds. However, the development of enantioselective C(sp3)-C(sp3) reductive coupling remains challenging. Herein, we report a highly regio-, diastereo-, and enantioselective reductive homocoupling of allylic acetates through cooperative palladium and photoredox catalysis using diisopropylethylamine or Hantzsch ester as a homogeneous organic reductant. This straightforward protocol enables the stereoselective construction of C(sp3)-C(sp3) bonds under mild reaction conditions. A series of C2-symmetrical chiral 1,5-dienes were easily prepared with excellent enantioselectivities (up to >99% ee), diastereoselectivities (up to >95:5 dr), and regioselectivities (up to >95:5 rr). The resultant chiral 1,5-dienes can be directly used as chiral ligands in asymmetric synthesis, and they can be also transformed into other valuable chiral ligands.
Collapse
Affiliation(s)
- Hong-Hao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Menghan Tang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jia-Jia Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Changhua Song
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
19
|
Liu F, Ye ZP, Hu YZ, Gao J, Zheng L, Chen K, Xiang HY, Chen XQ, Yang H. N, N, N', N'-Tetramethylethylenediamine-Enabled Photoredox-Catalyzed C-H Methylation of N-Heteroarenes. J Org Chem 2021; 86:11905-11914. [PMID: 34344150 DOI: 10.1021/acs.joc.1c01325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Aiming at the valuable methylation process, readily available and inexpensive N,N,N',N'-tetramethylethylenediamine (TMEDA) was first identified as a new methyl source in photoredox-catalyzed transformation in this work. By virtue of this simple methylating reagent, a facile and practical protocol for the direct C-H methylation of N-heteroarenes was developed, featuring mild reaction conditions, broad substrate scope, and scalability. Mechanistic studies disclosed that a sequential photoredox, base-assisted proton shift, fragmentation, and tautomerization process was essentially involved.
Collapse
Affiliation(s)
- Fang Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yuan-Zhuo Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Lan Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
20
|
Talukdar R, Singh V, Mourya H, Nasibullah M, Tiwari B. Stitching Triazoles to Arenes via a Transition Metal-Free Aryne Diels-Alder/1,3-Prototropic Shift/Dehydrobromination Cascade. J Org Chem 2021; 86:12277-12284. [PMID: 34328329 DOI: 10.1021/acs.joc.1c00562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The 1,2,3-triazole-fused polyaromatic frameworks are traditionally obtained through transition metal-catalyzed C-H/C-X arylation of the preinstalled triazoles at a very high temperature. Herein, a transition metal-free direct synthesis via an aryne Diels-Alder/1,3-prototropic shift/dehydrobromination cascade is reported. This method gives access to triazole-fused aromatics as well as the corresponding dihydrocarbocycles under mild reaction conditions.
Collapse
Affiliation(s)
- Ranadeep Talukdar
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
| | - Vikram Singh
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
| | - Hemlata Mourya
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
| | - Malik Nasibullah
- Department of Chemistry, Integral University, Dasauli, Bas-ha Kursi Road, Lucknow 226026, India
| | - Bhoopendra Tiwari
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India
| |
Collapse
|
21
|
Patel S, Badir SO, Molander GA. Developments in Photoredox-Mediated Alkylation for DNA-Encoded Libraries. TRENDS IN CHEMISTRY 2021; 3:161-175. [PMID: 33987530 PMCID: PMC8112611 DOI: 10.1016/j.trechm.2020.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, DNA-encoded library (DEL) technology has emerged as an innovative screening modality for the rapid discovery of therapeutic candidates in pharmaceutical settings. This platform enables a cost-effective, time-efficient, and large-scale assembly and interrogation of billions of small organic ligands against a biological target in a single experiment. An outstanding challenge in DEL synthesis is the necessity for water-compatible transformations under ambient conditions. To access uncharted chemical space, the adoption of photoredox catalysis in DELs, including Ni-catalyzed manifolds and radical/polar crossover reactions, has enabled the construction of novel structural scaffolds through regulated odd-electron intermediates. Herein, a critical discussion of the validation of photoredox-mediated alkylation in DEL environments is presented. Current synthetic gaps are highlighted and opportunities for further development are speculated upon.
Collapse
Affiliation(s)
- Shivani Patel
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Shorouk O. Badir
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| |
Collapse
|
22
|
Qin J, Zhu S, Chu L. Dual Photoredox-/Palladium-Catalyzed Cross-Electrophile Couplings of Polyfluoroarenes with Aryl Halides and Triflates. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00813] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jian Qin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| |
Collapse
|
23
|
Zhang P, Zou C, Zhao Q, Zhang C. Nickel-catalyzed alkenylboration of alkenylarenes to access homoallylic boronic esters. Org Chem Front 2021. [DOI: 10.1039/d1qo00100k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A practical nickel-catalyzed alkenylboration of alkenylarenes with excellent chemo- and regio-selectivity has been developed.
Collapse
Affiliation(s)
- Penglin Zhang
- Institute of Molecular Plus
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Sciences
- Tianjin University
| | - Chenchen Zou
- Institute of Molecular Plus
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Sciences
- Tianjin University
| | - Qian Zhao
- Institute of Molecular Plus
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Sciences
- Tianjin University
| | - Chun Zhang
- Institute of Molecular Plus
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Sciences
- Tianjin University
| |
Collapse
|
24
|
Suga T, Takahashi Y, Ukaji Y. One‐Shot Radical Cross Coupling Between Benzyl Alcohols and Alkenyl Halides Using Ni/Ti/Mn System. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Takuya Suga
- Division of Material Chemistry Graduate School of Natural Science and Technology Kanazawa University, Kakuma Kanazawa Ishikawa 920-1192 Japan
| | - Yuuki Takahashi
- Division of Material Chemistry Graduate School of Natural Science and Technology Kanazawa University, Kakuma Kanazawa Ishikawa 920-1192 Japan
| | - Yutaka Ukaji
- Division of Material Chemistry Graduate School of Natural Science and Technology Kanazawa University, Kakuma Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
25
|
Yin Z, Pang H, Guo X, Lin H, Muzzio M, Shen M, Wei K, Yu C, Williard P, Sun S. CuPd Nanoparticles as a Robust Catalyst for Electrochemical Allylic Alkylation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Zhouyang Yin
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Huan Pang
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Xuefeng Guo
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Honghong Lin
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Michelle Muzzio
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Mengqi Shen
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Kecheng Wei
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Chao Yu
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Paul Williard
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Shouheng Sun
- Department of Chemistry Brown University Providence RI 02906 USA
| |
Collapse
|
26
|
|
27
|
Yin Z, Pang H, Guo X, Lin H, Muzzio M, Shen M, Wei K, Yu C, Williard P, Sun S. CuPd Nanoparticles as a Robust Catalyst for Electrochemical Allylic Alkylation. Angew Chem Int Ed Engl 2020; 59:15933-15936. [DOI: 10.1002/anie.202006293] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Zhouyang Yin
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Huan Pang
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Xuefeng Guo
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Honghong Lin
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Michelle Muzzio
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Mengqi Shen
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Kecheng Wei
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Chao Yu
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Paul Williard
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Shouheng Sun
- Department of Chemistry Brown University Providence RI 02906 USA
| |
Collapse
|
28
|
Parasram M, Shields BJ, Ahmad O, Knauber T, Doyle AG. Regioselective Cross-Electrophile Coupling of Epoxides and (Hetero)aryl Iodides via Ni/Ti/Photoredox Catalysis. ACS Catal 2020; 10:5821-5827. [PMID: 32747870 PMCID: PMC7398156 DOI: 10.1021/acscatal.0c01199] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A cross-electrophile coupling reaction of epoxides and (hetero)aryl iodides that operates via the merger of three catalytic cycles involving a Ni-, Ti-, and organic photoredox catalyst has been developed. Three distinct classes of epoxides, styrene oxides, cyclic epoxides, and terminal aliphatic epoxides, all undergo coupling in moderate to good yield and high regioselectivity with the use of three different nitrogen-based ligands for Ni under otherwise identical reaction conditions. The mild reaction conditions accommodate a broad scope of abundant and complex coupling partners. Mechanistic studies suggest that when styrene oxides are employed radical intermediates are involved via Ti-radical ring-opening of the epoxide. Conversely, for terminal aliphatic epoxides, involvement of an iodohydrin intermediate enables the formation of the unexpected linear product.
Collapse
Affiliation(s)
- Marvin Parasram
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Benjamin J Shields
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Omar Ahmad
- Blueprint Medicines, Cambridge, Massachusetts 02139, United States
| | - Thomas Knauber
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Abigail G Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
29
|
Pagire SK, Föll T, Reiser O. Shining Visible Light on Vinyl Halides: Expanding the Horizons of Photocatalysis. Acc Chem Res 2020; 53:782-791. [PMID: 32150385 DOI: 10.1021/acs.accounts.9b00615] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ConspectusOver the past decade, photoredox catalysis has blossomed as a powerful methodology because of its wide applicability in sustainable free-radical-mediated processes, in which light is used as a cleaner energy source to alter the redox properties of organic molecules and to drive unique chemical transformations. Numerous examples of highly selective C-C and C-heteroatom bond formation processes have been achieved this way in an efficient and waste-reducing way. Therein, the activation of widely available organic halides via single-electron reduction has been broadly applied for organic synthesis. However, in comparison with alkyl and aryl halides, the analogous utilization of vinyl halides is less developed, most likely as a consequence of the highly unstable vinyl radicals generated as intermediates along with their strong tendency to abstract hydrogen atoms from a suitable source (e.g., the solvent), resulting in a synthetically less useful reduction.Nevertheless, during the last years, a number of photocatalytic processes involving vinyl halides have been developed, featuring the generation of vinyl radicals, diradicals, or radical cations as the key transient species. Moreover, photoredox processes in which a radical reacts with a vinyl halide or with an in situ-generated vinylmetal halide have been developed. Thus, identifying suitable conditions to generate and manipulate these reactive species has resulted in novel synthetic processes in a controllable manner. Moreover, in view of the great versatility of vinyl halides in palladium-catalyzed cross-coupling reactions, their activation by visible light might provide an attractive alternative to such processes, especially when non-noble metals could be used as photoinitiators in the future.In this Account, we discuss the various strategies of photoredox processes involving vinyl halides, classifying the material into four categories: (a) formation of a vinyl radical upon receipt of an electron from the photocatalyst, (b) formation of a radical cation after donation of an electron to the photocatalyst, (c) energy transfer corresponding to diradical formation upon triplet-triplet sensitization, and (d) dual transition metal and photocatalysis employing vinyl halides as precursors. While in the first three approaches the activation of vinyl halides is part of the photochemical step, the fourth one involves the interaction of a photochemically generated radical with a vinylnickel(II) halide obtained in turn by the oxidative addition of nickel(0) to the vinyl halide. Therefore, we highlight these important developments for conceptual comparison to the direct activation of vinyl halides by light, but they are not covered in depth in this Account.
Collapse
Affiliation(s)
- Santosh K. Pagire
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Thomas Föll
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Oliver Reiser
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|
30
|
Sun S, Duan Y, Mega RS, Somerville RJ, Martin R. Site‐Selective 1,2‐Dicarbofunctionalization of Vinyl Boronates through Dual Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shang‐Zheng Sun
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Universitat Rovira i VirgiliDepartament de Química Analítica i Química Orgànica c/Marcel lí Domingo, 1 43007 Tarragona Spain
| | - Yaya Duan
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Riccardo S. Mega
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Rosie J. Somerville
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Universitat Rovira i VirgiliDepartament de Química Analítica i Química Orgànica c/Marcel lí Domingo, 1 43007 Tarragona Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Passeig Lluïs Companys, 23 08010 Barcelona Spain
| |
Collapse
|
31
|
Ye Y, Chen H, Yao K, Gong H. Iron-Catalyzed Reductive Vinylation of Tertiary Alkyl Oxalates with Activated Vinyl Halides. Org Lett 2020; 22:2070-2075. [PMID: 32096641 DOI: 10.1021/acs.orglett.0c00561] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We present herein a rare and efficient method for the creation of vinylated all carbon quaternary centers via Fe-catalyzed cross-electrophile coupling of vinyl halides with tertiary alkyl methyl oxalates. The reaction displays excellent functional group tolerance and broad substrate scope, which allows cascade radical cyclization and vinylation to afford complex bicyclic and spiral structural motifs. The reaction proceeds via tertiary alkyl radicals, and the putative vinyl-Br/Fe complexation appears to be crucial for activating the alkene and enabling a possibly concerted radical addition/C-Fe forming process.
Collapse
Affiliation(s)
- Yang Ye
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai, China
| | - Haifeng Chen
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai, China
| | - Ken Yao
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai, China
| | - Hegui Gong
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai, China
| |
Collapse
|
32
|
Sun SZ, Duan Y, Mega RS, Somerville RJ, Martin R. Site-Selective 1,2-Dicarbofunctionalization of Vinyl Boronates through Dual Catalysis. Angew Chem Int Ed Engl 2020; 59:4370-4374. [PMID: 31910307 DOI: 10.1002/anie.201916279] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/07/2020] [Indexed: 01/05/2023]
Abstract
A modular, site-selective 1,2-dicarbofunctionalization of vinyl boronates with organic halides through dual catalysis is described. This reaction proceeds under mild conditions and is characterized by excellent chemo- and regioselectivity. It thus represents a complementary new technique for preparing densely functionalized alkyl boron architectures from simple and accessible precursors.
Collapse
Affiliation(s)
- Shang-Zheng Sun
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel lí Domingo, 1, 43007, Tarragona, Spain
| | - Yaya Duan
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Riccardo S Mega
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Rosie J Somerville
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel lí Domingo, 1, 43007, Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
33
|
Zhou P, XU T. Nickel-catalyzed intramolecular desymmetrization addition of aryl halides to 1,3-diketones. Chem Commun (Camb) 2020; 56:8194-8197. [DOI: 10.1039/d0cc00457j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A nickel-catalyzed intramolecular addition of aryl halides to 1,3-diketones was first developed to afford a polycyclic framework with two tetrasubstituted carbons in excellent diastereoselectivity. Moderate enantioselectivities were also achieved.
Collapse
Affiliation(s)
- Pan Zhou
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Shanghai
- P. R. China
| | - Tao XU
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Shanghai
- P. R. China
| |
Collapse
|
34
|
Song F, Wang F, Guo L, Feng X, Zhang Y, Chu L. Visible-Light-Enabled Stereodivergent Synthesis of E- and Z-Configured 1,4-Dienes by Photoredox/Nickel Dual Catalysis. Angew Chem Int Ed Engl 2019; 59:177-181. [PMID: 31654458 DOI: 10.1002/anie.201909543] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/16/2019] [Indexed: 12/11/2022]
Abstract
A stereodivergent reductive coupling reaction between allylic carbonates and vinyl triflates to furnish both E- and Z-configured 1,4-dienes has been achieved by visible-light-induced photoredox/nickel dual catalysis. The mild reaction conditions allow good compatibility of both vinyl triflates and allylic carbonates. Notably, the stereoselectivity of this synergistic cross-electrophile coupling can be tuned by an appropriate photocatalyst with a suitable triplet-state energy, providing a practical and stereodivergent means to alkene synthesis. Preliminary mechanistic studies shed some light on the coupling step as well as the control of the stereoselectivity step.
Collapse
Affiliation(s)
- Fan Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Fang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Lei Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Xiaoliang Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Yanyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
35
|
Song F, Wang F, Guo L, Feng X, Zhang Y, Chu L. Visible‐Light‐Enabled Stereodivergent Synthesis of
E
‐ and
Z
‐Configured 1,4‐Dienes by Photoredox/Nickel Dual Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fan Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Fang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Lei Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Xiaoliang Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Yanyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| |
Collapse
|
36
|
De Abreu M, Belmont P, Brachet E. Synergistic Photoredox/Transition-Metal Catalysis for Carbon-Carbon Bond Formation Reactions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901146] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Maxime De Abreu
- Faculté de Pharmacie de Paris; Université de Paris; Team P.N.A.S, UMR-CNRS 8038 CiTCoM; 4 avenue de l'Observatoire 75006 Paris France
| | - Philippe Belmont
- Faculté de Pharmacie de Paris; Université de Paris; Team P.N.A.S, UMR-CNRS 8038 CiTCoM; 4 avenue de l'Observatoire 75006 Paris France
| | - Etienne Brachet
- Faculté de Pharmacie de Paris; Université de Paris; Team P.N.A.S, UMR-CNRS 8038 CiTCoM; 4 avenue de l'Observatoire 75006 Paris France
| |
Collapse
|
37
|
Visible-light-mediated external-reductant-free reductive cross coupling of benzylammonium salts with (hetero)aryl nitriles. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9597-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|