1
|
Behera H, Duncan TJ, Samineni L, Oh H, Jogdand A, Karnik A, Dhiman R, Fica A, Hsieh TY, Ganesan V, Kumar M. Lanthanide-Selective Artificial Channels. ACS NANO 2025; 19:13927-13940. [PMID: 40183770 DOI: 10.1021/acsnano.4c17675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Lanthanides serve as essential elements for modern technology, playing critical roles in batteries, wind turbines, portable electronics, and energy-efficient lighting. Purifying lanthanides from ores and recycling them from end-of-life consumer materials are costly and damaging to the environment due to inefficient separation technologies. In this study, we present a new approach for lanthanide separations using supramolecular membrane channel nanopores based on a pillar[5]arene scaffold with appended diphenylphosphine oxide (DPP) ligands. These channels show high transport selectivity (>18:1) of the middle lanthanides, europium (Eu3+) and terbium (Tb3+) ions, over monovalent K+ ions and also excluded other common mono- and divalent metal ions (Na+, Ca2+, and Mg2+) including protons. These membrane channels also have high lanthanide-lanthanide transport selectivity with Eu3+/La3+ selectivity of >40 and Eu3+/Yb3+ selectivity of ∼30. Additionally, they demonstrated significantly higher selectivities between middle lanthanides and both light and heavy lanthanides: Tb3+/La3+ (∼140), Tb3+/Yb3+ (∼72), Tb3+/Nd3+ (∼58), and Eu3+/Nd3+ (∼17), which are considerably higher than selectivities reported in studies using traditional solvent extraction methods. Molecular dynamics simulations indicate that the high selectivity observed is due to specific water-mediated interactions between the hydrated ions and the channel. Our findings could contribute to ongoing efforts to improve lanthanide separation efficiency and reduce the environmental impact associated with current methods.
Collapse
Affiliation(s)
- Harekrushna Behera
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Tyler J Duncan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Laxmicharan Samineni
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyeonji Oh
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ankit Jogdand
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Arnav Karnik
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Raman Dhiman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Aida Fica
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Tzu-Yun Hsieh
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Manish Kumar
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Jia XX, Tao SP, Wei TB, Lin Q, Shi B, Yao H, Qu WJ, Chen JF. A Pillar[5]arene-Based π-Conjugated Organic Small Molecule Emitter: Synthesis, Self-Assembly, and Selective Sensing of Cr 2O 7 2- Anion. Chem Asian J 2025; 20:e202401392. [PMID: 39688474 DOI: 10.1002/asia.202401392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/18/2024]
Abstract
A triphenylamine-containing π-conjugated pillar[5]arene luminescent small organic molecule has been synthesized via Suzuki-coupling reaction. This molecule can self-assemble to form linear supramolecular polymers in both solution and solid state. The molecule shows enhanced emission compared with parent pillar[5]arene in dilute solution. Based on the bright luminescent behavior, its sensing ability for Cr2O7 2- anion was studied.
Collapse
Affiliation(s)
- Xu-Xu Jia
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Shao-Ping Tao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Bingbing Shi
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Wen-Juan Qu
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| |
Collapse
|
3
|
Ikushima Y, Oshima T. Development of a Pillar[6]arene Carboxylic Acid Derivative for the Extraction of a Cationic Protein. Biomacromolecules 2025; 26:1571-1579. [PMID: 39960119 DOI: 10.1021/acs.biomac.4c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
Pillararenes are macrocyclic compounds that can have multiple functional groups and can provide a platform to develop multivalent ligands. Herein, a pillar[6]arene carboxylic acid derivative (OctP[6]CH2COOH) was prepared to extract the cationic protein cytochrome c (Cyt-c) into organic solvents. OctP[6]CH2COOH was synthesized by the condensation of ethyl 2-(4-octoxyphenoxy) acetate to obtain the pillar[6]arene derivative, followed by alkali hydrolysis. OctP[6]CH2COOH showed high extractability for Cyt-c, while a monomer analog and a neutral pillar[6]arene ester derivative did not. The lysine-rich protein Cyt-c was selectively extracted using OctP[6]CH2COOH over other cationic proteins because the complexation was a result of the inclusion of the NH3+ groups of the lysine residues by the macrocyclic molecule. Cyt-c complexed with OctP[6]CH2COOH partially underwent a structural change and exhibited peroxidase activity in organic solvents. This is the first report of protein extraction using pillararene derivatives that can be applied for the separation and modification of proteins.
Collapse
Affiliation(s)
- Yu Ikushima
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Tatsuya Oshima
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
4
|
Jiang Y, Qi Y, Yu C, Hu L, Li Q, Li X, Cai Y, Yuan L, Feng W. Ultrarapid and efficient sequestration of iodate and iodide with a pillar[5]arene-based cationic polymeric network. Chem Commun (Camb) 2025; 61:3167-3170. [PMID: 39873556 DOI: 10.1039/d4cc05758a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
A macrocycle-based approach to the construction of a cationic polymeric network with pillar[5]arene as the node for efficient sequestration of hazardous IO3- and I- is presented. Ultrafast kinetics (ca. 4 min) were achieved along with excellent adsorption capacities for both IO3- (456 mg g-1) and I- (370 mg g-1), good selectivity, and outstanding reusability. This work showcases the merits of pillar[5]arene as nodes in cationic adsorption materials in the removal of anionic iodine species.
Collapse
Affiliation(s)
- Yongjie Jiang
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yue Qi
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Chengkan Yu
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Liancheng Hu
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Qing Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu610061, China
| | - Xiaowei Li
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yimin Cai
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Lihua Yuan
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Wen Feng
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
5
|
Basak A, Karmakar A, Dutta S, Roy D, Paul S, Nishiyama Y, Pathak B, Kundu S, Banerjee R. Metal-Free Electrocatalytic Alkaline Water Splitting by Porous Macrocyclic Proton Sponges. Angew Chem Int Ed Engl 2025; 64:e202419377. [PMID: 39666665 DOI: 10.1002/anie.202419377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/14/2024]
Abstract
Macrocycles are unique as they encapsulate and transfer guest molecules or ions and facilitate catalytic processes. Although metalated macrocycles are pivotal in electrocatalytic processes, using metal-free analogs has been rare. Following the strategy of Kanbara et al., we synthesized an azacalixarene macrocycle-N, N', N''-tris(p-aminophenyl)azacalix[3](2,6)pyridine (CalixNH2). The macrocycle encapsulates a proton in its cavity, maintaining the protonation even in highly alkaline media. Notably, it retains almost 50 % protonated form in 1 M KOH (~pH 14)-acting as a proton sponge. As hydrogen evolution is complex in alkaline media owing to sluggish water dissociation, we implemented the proton sponge (CalixNH2) in an alkaline hydrogen evolution reaction. Conjugated Porous polymers, TpCalix and DhaCalix, have been synthesized from the triamine-CalixNH2. The most efficient catalyst, TpCalix, has shown excellent performance in alkaline HER and OER in 1 M KOH (~pH 14), with low overpotentials of only 112(±2) and 290(±2) mV at 10 mA cm-2, respectively, and durable up to 24 hours. A full-cell reaction using TpCalix in both the cathode and anode exhibited a low full-cell voltage of 1.73 V and was stable for 12 hours. DFT calculations verified the tripyridinic core, which acts as the principal site for proton abstraction and binding.
Collapse
Affiliation(s)
- Ananda Basak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Sayantani Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Diptendu Roy
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Satyadip Paul
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | | | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- College of Science, Korea University, 145 Anam-ro, 02841, Seongbuk-gu, South Korea
| |
Collapse
|
6
|
Wang L, Zhang Y, Chen J, Jongaksorn S, Lu Z, Zhang X, Li S, Zhu C, Ma D, Mao L. Ester-Bearing Calix[ n]phenoxazines: Side Chain Enhanced Recognition and Redox-Responsive Reversible Host-Guest System. J Org Chem 2025; 90:1671-1677. [PMID: 39844468 DOI: 10.1021/acs.joc.4c02864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
We report an enhanced recognition and redox-responsive reversible host-guest system based on ester-bearing calix[n]phenoxazines. The carbonyl groups, oriented toward the cavity, act as the extra binding sites to enhance the binding affinity, which is confirmed by NMR and FTIR experiments and single-crystal structure analysis. Due to the oxidizable nature of calix[n]phenoxazine, a redox-controlled reversible response is established. This research not only provides a strategy to enhance the binding affinity in calix-like macrocyclic arenes but also marks a major advance in the development of a macrocyclic arene-based reversibly responsive system.
Collapse
Affiliation(s)
- Lu Wang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang,China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Yujun Zhang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang,China
| | - Junhao Chen
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang,China
| | - Sanhanut Jongaksorn
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang,China
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330 Bangkok, Thailand
| | - Zhihao Lu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang,China
| | - Xin Zhang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang,China
| | - Shuo Li
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang,China
| | - Chenghao Zhu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang,China
| | - Da Ma
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang,China
| | - Lijun Mao
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang,China
| |
Collapse
|
7
|
Yang X, Xu L, Fang D, Zhang A, Xiao C. Progress in phenanthroline-derived extractants for trivalent actinides and lanthanides separation: where to next? Chem Commun (Camb) 2024; 60:11415-11433. [PMID: 39235311 DOI: 10.1039/d4cc03810j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Spent nuclear fuel (SNF) released from reactors possesses significant radioactivity, heat release properties, and high-value radioactive nuclides. Therefore, using chemical methods for reprocessing can enhance economic efficiency and reduce the potential environmental risks of nuclear energy. Due to the presence of relatively diffuse f-electrons, the chemical properties of trivalent lanthanides (Ln(III)) and actinides (An(III)) in SNF solutions are quite similar. Separation methods have several limitations, including poor separation efficiency and the need for multiple stripping agents. The use of novel multi-dental phenanthroline-derived extractants with nitrogen donor atoms to effectively separate An(III) over Ln(III) has been widely accepted. This review first introduces the development history of phenanthroline-derived extractants for extraction and complexation with An(III) over Ln(III). Then, based on structural differences, these extractants are classified into four categories: nitrogen-coordinated, N,O-hybrid coordinated, highly preorganized structure, and unsymmetric structure. Each category's design principles, extraction, and separation performance as well as their advantages and disadvantages are discussed. Finally, we have summarized and compared the unique characteristics of the existing extractants and provided an outlook. This work may offer a reliable reference for the precise identification and selective separation between An(III) and Ln(III), and point the way for future development and exploration.
Collapse
Affiliation(s)
- Xiaofan Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Lei Xu
- Institute of Nuclear-Agricultural Science, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Dong Fang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Anyun Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
8
|
Strassberger AF, Zengaffinen MD, Puigcerver J, Trapp N, Tiefenbacher K. Quinoacridane[4]arenes─Very Large Conformationally Restricted Macrocycles. Org Lett 2024; 26:6720-6724. [PMID: 39052766 DOI: 10.1021/acs.orglett.4c02406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Phenol-based macrocycles play a fundamental role in supramolecular chemistry, but their size has been rather limited. Here we report a novel class of very large, bowl-shaped macrocycles with a diameter of 21.8 Å. These quinoacridane[4]arenes are 150% larger than the current record holders, the acridane[4]arenes, and three times the size of resorcin[4]arene. We expect the quinoacridane[4]arenes to be a useful platform for the construction of molecular containers.
Collapse
Affiliation(s)
| | | | - Julio Puigcerver
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4058 Basel, Switzerland
| | - Nils Trapp
- Small Molecule Crystallography Center, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, 4056 Basel, Switzerland
| |
Collapse
|
9
|
Sun T, Song Y, Zhang Y, Ba M, Li W, Cai Z, Hu S, Liu X, Zhang S. High-resolution performance of pillar[6]arene functionalized with imidazolium ionic liquids for gas chromatography. Talanta 2024; 273:125877. [PMID: 38460420 DOI: 10.1016/j.talanta.2024.125877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Pillar[n]arenes (P[n]A, n = 5-10) have attracted much attention because of their highly symmetric pillar-shaped architecture with π-electron rich cavity. Nevertheless, the use of ionic liquid functionalized P[n]A in chromatography has not been reported up to data. This work reports the investigation of the imidazolium ionic liquids functionalized pillar[6]arene (P6A-C10-IM-C8[NTf2]) as the stationary phase for gas chromatography (GC). The statically coated P6A-C10-IM-C8[NTf2] column (0.25 mm i.d.) showed moderate polarity and high column efficiency of 4733 plates/m determined by n-dodecane at 120 °C (k = 2.29). Owing to its unique amphiphilic conformation, the P6A-C10-IM-C8[NTf2] showed good column inertness and resolving capability for a wide range of analytes and isomers. Particularly, the P6A-C10-IM-C8[NTf2] column exhibited distinctly advantageous performance for the challenging isomers of halogenated benzenes, benzaldehydes, phenols and anilines over the common commercial columns, namely 5% phenyl methyl polysiloxane (HP-5) and 35% phenyl methyl polysiloxane (HP-35). In addition, it exhibited good column repeatability and reproducibility with RSD values on the retention times less than 0.05% for run-to-run, 0.38% for day-to-day and 2.94% for column-to-column, respectively. This work demonstrates the promising future of ionic liquid P[n]A stationary phases for chromatographic separations.
Collapse
Affiliation(s)
- Tao Sun
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China.
| | - Yanli Song
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, China
| | - YuanYuan Zhang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, China
| | - Mengyi Ba
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, China
| | - Wen Li
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, China
| | - Zhiqiang Cai
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, China.
| | - Shaoqiang Hu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China
| | - Xianming Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
10
|
Li Q, Yu Z, Redshaw C, Xiao X, Tao Z. Double-cavity cucurbiturils: synthesis, structures, properties, and applications. Chem Soc Rev 2024; 53:3536-3560. [PMID: 38414424 DOI: 10.1039/d3cs00961k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Double-cavity Q[n]s are relatively new members of the Q[n] family and have garnered significant interest due to their distinctive structures and novel properties. While they incorporate n glycoluril units, akin to their single-cavity counterparts, their geometry can best be described as resembling a figure-of-eight or a handcuff, distinguishing them from single-cavity Q[n]s. Despite retaining the core molecular recognition traits of single-cavity Q[n]s, these double-cavity variants introduce fascinating new attributes rooted in their distinct configurations. This overview delves into the synthesis, structural attributes, properties, and intriguing applications of double-cavity Q[n]s. Some of the applications explored include their role in supramolecular polymers, molecular machinery, supra-amphiphiles, sensors, artificial light-harvesting systems, and adsorptive separation materials. Upon concluding this review, we discuss potential challenges and avenues for future development and offer valuable insights for other scholars working in this area with the aim of stimulating further exploration and interest.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Zhengwei Yu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull HU6 7RX, UK
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| |
Collapse
|
11
|
Stoikov D, Ivanov A, Shafigullina I, Gavrikova M, Padnya P, Shiabiev I, Stoikov I, Evtugyn G. Flow-Through Amperometric Biosensor System Based on Functionalized Aryl Derivative of Phenothiazine and PAMAM-Calix-Dendrimers for the Determination of Uric Acid. BIOSENSORS 2024; 14:120. [PMID: 38534227 DOI: 10.3390/bios14030120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
A flow-through biosensor system for the determination of uric acid was developed on the platform of flow-through electrochemical cell manufactured by 3D printing from poly(lactic acid) and equipped with a modified screen-printed graphite electrode (SPE). Uricase was immobilized to the inner surface of a replaceable reactor chamber. Its working volume was reduced to 10 μL against a previously reported similar cell. SPE was modified independently of the enzyme reactor with carbon black, pillar[5]arene, poly(amidoamine) dendrimers based on the p-tert-butylthiacalix[4]arene (PAMAM-calix-dendrimers) platform and electropolymerized 3,7-bis(4-aminophenylamino) phenothiazin-5-ium chloride. Introduction of the PAMAM-calix-dendrimers into the electrode coating led to a fivefold increase in the redox currents of the electroactive polymer. It was found that higher generations of the PAMAM-calix-dendrimers led to a greater increase in the currents measured. Coatings consisted of products of the electropolymerization of the phenothiazine with implemented pillar[5]arene and PAMAM-calix-dendrimers showing high efficiency in the electrochemical reduction of hydrogen peroxide that was formed in the enzymatic oxidation of uric acid. The presence of PAMAM-calix-dendrimer G2 in the coating increased the redox signal related to the uric acid assay by more than 1.5 times. The biosensor system was successfully applied for the enzymatic determination of uric acid in chronoamperometric mode. The following optimal parameters for the chronoamperometric determination of uric acid in flow-through conditions were established: pH 8.0, flow rate 0.2 mL·min-1, 5 U of uricase per reactor. Under these conditions, the biosensor system made it possible to determine from 10 nM to 20 μM of uric acid with the limit of detection (LOD) of 4 nM. Glucose (up to 1 mM), dopamine (up to 0.5 mM), and ascorbic acid (up to 50 μM) did not affect the signal of the biosensor toward uric acid. The biosensor was tested on spiked artificial urine samples, and showed 101% recovery for tenfold diluted samples. The ease of assembly of the flow cell and the low cost of the replacement parts make for a promising future application of the biosensor system in routine clinical analyses.
Collapse
Affiliation(s)
- Dmitry Stoikov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Alexey Ivanov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Insiya Shafigullina
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Milena Gavrikova
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Pavel Padnya
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Igor Shiabiev
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Ivan Stoikov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Gennady Evtugyn
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russia
| |
Collapse
|
12
|
Zhou Y, Liu Z, Yang Z, Zheng Y, Yang M, Feng W, Li X, Yuan L. Pillar[5]arene-segregated ion pairs for enhanced cycloaddition of epoxides with CO 2. Chem Commun (Camb) 2024; 60:300-303. [PMID: 38054763 DOI: 10.1039/d3cc03878e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
A supramolecular approach using a polyviologen-pillar[5]arene complex as segregated ion pairs was shown to be highly efficient for the conversion of CO2 with epoxides into cyclic carbonates without the need for metals or solvents. The enhanced catalytic performance was achieved by cooperative ion pair segregation and CO2 fixation.
Collapse
Affiliation(s)
- Yidan Zhou
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Zejiang Liu
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Zhiyao Yang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Yuexuan Zheng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Maoxia Yang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Wen Feng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Xiaowei Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Lihua Yuan
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
13
|
Wang ZQ, Wang X, Yang YW. Pillararene-Based Supramolecular Polymers for Adsorption and Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301721. [PMID: 36938788 DOI: 10.1002/adma.202301721] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Supramolecular polymers have attracted increasing attention in recent years due to their perfect combination of supramolecular chemistry and traditional polymer chemistry. The design and synthesis of macrocycles have driven the rapid development of supramolecular chemistry and polymer science. Pillar[n]arenes, a new generation of macrocyclic compounds possessing unique pillar-shaped structures, nano-sized cavities, multi-functionalized groups, and excellent host-guest complexation abilities, are promising candidates to construct supramolecular polymer materials with enhanced properties and functionalities. This review summarizes recent progress in the design and synthesis of pillararene-based supramolecular polymers (PSPs) and illustrates their diverse applications as adsorption and separation materials. All performances are evaluated and analyzed in terms of efficiency, selectivity, and recyclability. Typically, PSPs can be categorized into three typical types according to their topologies, including linear, cross-linked, and hybrid structures. The advances made in the area of functional supramolecular polymeric adsorbents formed by new pillararene derivatives are also described in detail. Finally, the remaining challenges and future perspectives of PSPs for separation-based materials science are discussed. This review will inspire researchers in different fields and stimulate creative designs of supramolecular polymeric materials based on pillararenes and other macrocycles for effective adsorption and separation of a variety of targets.
Collapse
Affiliation(s)
- Zhuo-Qin Wang
- International Joint Research Laboratory of Nano-Macro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xin Wang
- International Joint Research Laboratory of Nano-Macro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Macro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
14
|
Alon G, Ben-Haim Y, Tuvi-Arad I. Continuous symmetry and chirality measures: approximate algorithms for large molecular structures. J Cheminform 2023; 15:106. [PMID: 37946281 PMCID: PMC10636902 DOI: 10.1186/s13321-023-00777-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
Quantifying imperfect symmetry of molecules can help explore the sources, roles and extent of structural distortion. Based on the established methodology of continuous symmetry and chirality measures, we develop a set of three-dimensional molecular descriptors to estimate distortion of large structures. These three-dimensional geometrical descriptors quantify the gap between the desirable symmetry (or chirality) and the actual one. They are global parameters of the molecular geometry, intuitively defined, and have the ability to detect even minute structural changes of a given molecule across chemistry, including organic, inorganic, and biochemical systems. Application of these methods to large structures is challenging due to countless permutations that are involved in the symmetry operations and have to be accounted for. Our approach focuses on iteratively finding the approximate direction of the symmetry element in the three-dimensional space, and the relevant permutation. Major algorithmic improvements over previous versions are described, showing increased accuracy, reliability and structure preservation. The new algorithms are tested for three sets of molecular structures including pillar[5]arene complexes with Li+, C100 fullerenes, and large unit cells of metal organic frameworks. These developments complement our recent algorithms for calculating continuous symmetry and chirality measures for small molecules as well as protein homomers, and simplify the usage of the full set of measures for various research goals, in molecular modeling, QSAR and cheminformatics.
Collapse
Affiliation(s)
- Gil Alon
- Department of Mathematics and Computer Science, The Open University of Israel, Raanana, Israel.
| | - Yuval Ben-Haim
- Department of Natural Sciences, The Open University of Israel, Raanana, Israel
| | - Inbal Tuvi-Arad
- Department of Natural Sciences, The Open University of Israel, Raanana, Israel.
| |
Collapse
|
15
|
Yan M, Wang Y, Chen J, Zhou J. Potential of nonporous adaptive crystals for hydrocarbon separation. Chem Soc Rev 2023; 52:6075-6119. [PMID: 37539712 DOI: 10.1039/d2cs00856d] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Hydrocarbon separation is an important process in the field of petrochemical industry, which provides a variety of raw materials for industrial production and a strong support for the development of national economy. However, traditional separation processes involve huge energy consumption. Adsorptive separation based on nonporous adaptive crystal (NAC) materials is considered as an attractive green alternative to traditional energy-intensive separation technologies due to its advantages of low energy consumption, high chemical and thermal stability, excellent selective adsorption and separation performance, and outstanding recyclability. Considering the exceptional potential of NAC materials for hydrocarbon separation, this review comprehensively summarizes recent advances in various supramolecular host-based NACs. Moreover, the current challenges and future directions are illustrated in detail. It is expected that this review will provide useful and timely references for researchers in this area. Based on a large number of state-of-the-art studies, the review will definitely advance the development of NAC materials for hydrocarbon separation and stimulate more interesting studies in related fields.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Yuhao Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jingyu Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| |
Collapse
|
16
|
Zhu WB, Wei TB, Hu HB, Li ZJ, Zhang YQ, Li YC, Zhang L, Zhang XW. Pillar[5]arene-based supramolecular pseudorotaxane polymer material for ultra-sensitive detection of Fe 3+ and F . RSC Adv 2023; 13:12270-12275. [PMID: 37091614 PMCID: PMC10113919 DOI: 10.1039/d3ra00997a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023] Open
Abstract
Recent advancements in ultra-sensitive detection, particularly the Aggregation Induced Emission (AIE) materials, have demonstrated a promising detection method due to their low cost, real-time detection, and simplicity of operation. Here, coumarin functionalized pillar[5]arene (P5C) and bis-bromohexyl pillar[5]arene (DP5) were successfully combined to create a linear AIE supramolecular pseudorotaxane polymer (PCDP-G). The use of PCDP-G as a supramolecular AIE polymer material for recyclable ultra-sensitive Fe3+ and F- detection is an interesting application of the materials. According to measurements, the low detection limits of PCDP-G for Fe3+ and F- are 4.16 × 10-10 M and 6.8 × 10-10 M, respectively. The PCDP-G is also a very effective logic gate and a material for luminous displays.
Collapse
Affiliation(s)
- Wen-Bo Zhu
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Hao-Bin Hu
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Zhi-Jun Li
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Yu-Quan Zhang
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Yan-Chun Li
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Liang Zhang
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Xiao-Wei Zhang
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| |
Collapse
|
17
|
Kato K, Kaneda T, Ohtani S, Ogoshi T. Per-Arylation of Pillar[ n]arenes: An Effective Tool to Modify the Properties of Macrocycles. J Am Chem Soc 2023; 145:6905-6913. [PMID: 36929722 DOI: 10.1021/jacs.3c00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Installation of various substituents is a reliable and versatile way to alter the properties of macrocyclic molecules, but high-yield and controlled methods are not always available especially for multifold reactions. Herein, we report 10- and 12-fold introduction of aryl substituents onto both rims of cylinder-shaped pillar[n]arenes, which usually have alkoxy substituents slanting to the cylinder axes. Although alkoxy pillar[5]arenes exist as D5-symmetric enantiomeric pairs, arylated pillar[5]arenes provide crushed single-crystal structures and stereoisomerism including C2-symmetric conformations depending on the aryl groups. Pillar[n]arenes with 2-benzofuranyl groups display bright fluorescence with quantum yields of 88-90% and no host-guest complexation with electron-deficient molecules in solution due to large deviation from alkoxy compounds. A benzofuran-appended pillar[6]arene instead captures small gaseous molecules in the solid state, probably owing to outside spaces surrounded by aromatic rings.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoya Kaneda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
18
|
Wang Y, Yang Y, Wu Y, Li J, Hu B, Cai Y, Yuan L, Feng W. Selective Complexation and Separation of Uranium(VI) from Thorium(IV) with New Tetradentate N,O-Hybrid Diamide Ligands: Synthesis, Extraction, Spectroscopy, and Crystallographic Studies. Inorg Chem 2023; 62:4922-4933. [PMID: 36919932 DOI: 10.1021/acs.inorgchem.2c04384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
An unmet challenge in the thorium-uranium fuel cycle is the efficient separation of uranium from thorium. Herein, two new tetradentate N,O-hybrid ligands, N,N'-diethyl-N,N'-di-p-tolyl-2,2'-bipyridine-6,6'-dicarboxamide (Et-Tol-BPDA) and N,N'-diethyl-N,N'-di-p-tolyl-2,2'-bipyrimidine-4,4'-dicarboxamide (Et-Tol-BPymDA), comprising a bipyridine or bipyrimidine core and amide moieties were designed and synthesized for selectively complexing and separating U(VI) from Th(IV). The high U(VI)/Th(IV) extraction selectivity was achieved by Et-Tol-BPDA (SFU/Th = 33 at 3 M HNO3) and Et-Tol-BPymDA (SFU/Th = 73 at 3 M HNO3) in nitric acid solutions. The extraction process for U(VI) or Th(IV) with these two ligands primarily proceeded through the solvation mechanism, as evidenced by slope analyses. Thermodynamic studies for the extraction of U(VI) and Th(IV) revealed a spontaneous process. Results from UV-vis spectroscopic titration and slope analyses demonstrated that U(VI) and Th(IV) each form a 1:1 complex with the two ligands both in the monophasic organic solution and the biphasic extraction system. The stability constants of the 1:1 complexes of Et-Tol-BPDA or Et-Tol-BPymDA with U(VI) were found to be larger than those with Th(IV), which coincide well with the high U(VI)/Th(IV) extraction selectivity. The solid-state structures of Et-Tol-BPDA, Et-Tol-BPymDA, and 1:1 complexes of the two ligands with U(VI) or Th(IV) were analyzed by X-ray diffraction technique. The results from this work implicate the potential of bipyridine- and bipyrimidine-derived diamide ligands for uranium/thorium separation.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuxiang Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yijie Wu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jin Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bowen Hu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yimin Cai
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lihua Yuan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wen Feng
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
19
|
Wang K, Zhang R, Song Z, Zhang K, Tian X, Pangannaya S, Zuo M, Hu X. Dimeric Pillar[5]arene as a Novel Fluorescent Host for Controllable Fabrication of Supramolecular Assemblies and Their Photocatalytic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206897. [PMID: 36683255 PMCID: PMC10037968 DOI: 10.1002/advs.202206897] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
A dimeric fluorescent macrocycle m-TPE Di-EtP5 (meso-tetraphenylethylene dimeric ethoxypillar[5]arene) is synthesized based on the meso-functionalized ethoxy pillar[5]arene. Through the connectivity of two pillar[5]arenes by CC double bond, the central tetraphenylethylene (TPE) moiety is simultaneously formed. The resultant bicyclic molecule not only retains the host-guest properties of pillararenes but also introduces the interesting aggregation-induced emission properties inherent in the embedded TPE structure. Three dinitrile derivatives with various linkers are designed as guests (G1, G2, and G3) to form host-guest assemblies with m-TPE Di-EtP5. The morphological control and fluorescence properties of the assemblies are successfully realized. G1 with a shorter alkyl chain as the linker completely threads into the cavities of the host. G2, due to its longer chain length, forms a linear supramolecular polymer upon binding to m-TPE Di-EtP5. G3 differs from G2 by possessing a bulky phenyl group in the middle of the chain, which can be further assembled with m-TPE Di-EtP5 to form supramolecular layered polymer and precipitated out in solution, and can be efficiently applied to photocatalytic reactions.
Collapse
Affiliation(s)
- Kaiya Wang
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Rongbo Zhang
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Zejing Song
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Kaituo Zhang
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Xueqi Tian
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Srikala Pangannaya
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Minzan Zuo
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Xiao‐Yu Hu
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| |
Collapse
|
20
|
Yang W, Wang H, Chang R, Feng Z, Zhu Y, Sue ACH. Handcuff-like metallo-pseudorotaxanes consisting of tiara[5]arene wheels and dimeric silver trifluoroacetate axles. Chem Commun (Camb) 2023; 59:2457-2460. [PMID: 36752094 DOI: 10.1039/d2cc06951b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The complexation between tiara[5]arene (T[5]) and silver trifluoroacetate affords a binuclear metallo-pseudorotaxane on account of multiple endo-cavity AgI η2-arene interactions. Furthermore, two such enantiomeric [(CF3CO2Ag)2⊂T[5]] complexes are bridged by an extra (CF3CO2Ag)2 dimer through exo-wall AgI η2-arene coordination, resulting in a unique handcuff metallo-bis-pseudorotaxane structure in the solid state.
Collapse
Affiliation(s)
- Weiwei Yang
- School of Pharmaceutical Science and Technology, Tianjin University, P. R. China
| | - Haiying Wang
- School of Pharmaceutical Science and Technology, Tianjin University, P. R. China
| | - Rong Chang
- College of Chemistry and Chemical Engineering, Xiamen University, P. R. China.
| | - Zhitao Feng
- Department of Chemistry, University of California Davis, USA
| | - Yumei Zhu
- School of Pharmaceutical Science and Technology, Tianjin University, P. R. China
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, P. R. China.
| |
Collapse
|
21
|
Aleksandrova YI, Shurpik DN, Nazmutdinova VA, Mostovaya OA, Subakaeva EV, Sokolova EA, Zelenikhin PV, Stoikov II. Toward Pathogenic Biofilm Suppressors: Synthesis of Amino Derivatives of Pillar[5]arene and Supramolecular Assembly with DNA. Pharmaceutics 2023; 15:pharmaceutics15020476. [PMID: 36839796 PMCID: PMC9966598 DOI: 10.3390/pharmaceutics15020476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
New amino derivatives of pillar[5]arene were obtained in three stages with good yields. It was shown that pillar[5]arene containing thiaether and tertiary amino groups formed supramolecular complexes with low molecular weight model DNA. Pillar[5]arene formed complexes with a DNA nucleotide pair at a ratio of 1:2 (macrocycle/DNA base pairs), as demonstrated by UV-visible and fluorescence spectroscopy. The association constants of pillar[5]arene with DNA were lgKass1:1 = 2.38 and lgKass1:2 = 5.07, accordingly. By using dynamic light scattering and transmission electron microscopy, it was established that the interaction of pillar[5]arene containing thiaether and tertiary amino groups (concentration of 10-5 M) with a model nucleic acid led to the formation of stable nanosized macrocycle/DNA associates with an average particle size of 220 nm. It was shown that the obtained compounds did not exhibit a pronounced toxicity toward human adenocarcinoma cells (A549) and bovine lung epithelial cells (LECs). The hypothesis about a possible usage of the synthesized macrocycle for the aggregation of extracellular bacterial DNA in a biofilm matrix was confirmed by the example of St. Aureus. It was found that pillar[5]arene at a concentration of 10-5 M was able to reduce the thickness of the St. Aureus biofilm by 15%.
Collapse
Affiliation(s)
- Yulia I. Aleksandrova
- A.M. Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia
| | - Dmitriy N. Shurpik
- A.M. Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia
- Correspondence: (D.N.S.); (I.I.S.); Tel.: +7-843-233-7241 (I.I.S.)
| | | | - Olga A. Mostovaya
- A.M. Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia
| | - Evgenia V. Subakaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia
| | - Evgenia A. Sokolova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia
| | - Pavel V. Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia
| | - Ivan I. Stoikov
- A.M. Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia
- Correspondence: (D.N.S.); (I.I.S.); Tel.: +7-843-233-7241 (I.I.S.)
| |
Collapse
|
22
|
Sabin C, Sam S, Hrishikes A, Salin B, Vigneshkumar PN, George J, John F. Supramolecular Drug Delivery Systems Based on Host‐Guest Interactions for Nucleic Acid Delivery. ChemistrySelect 2022. [DOI: 10.1002/slct.202203644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Christeena Sabin
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Samanta Sam
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - A. Hrishikes
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Biyatris Salin
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - P. N. Vigneshkumar
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
- Department of Chemistry The University of British Columbia Okanagan Vancouver BC V6T 1Z4 Canada
| | - Jinu George
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Franklin John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| |
Collapse
|
23
|
Zhong S, Zhu L, Wu S, Li Y, Lin M. Photoactive donor-acceptor conjugated macrocycles: New opportunities for supramolecular chemistry. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Liu Z, Li B, Song L, Zhang H. Pillar[ n]arene-calix[ m]arene hybrid macrocyclic structures. RSC Adv 2022; 12:28185-28195. [PMID: 36320255 PMCID: PMC9528731 DOI: 10.1039/d2ra05118d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023] Open
Abstract
To reserve planar chirality, enhance molecular recognition, and build advanced self-assemblies, hybrid macrocyclic hosts containing rigid pillar[n]arene and flexible calix[m]arene were designed, prepared and investigated for interesting applications. This review summarizes and discusses different synthetic strategies for constructing hybrid macrocyclic structures. Pillar[n]arene dimer with rigid aromatic double bridges provided the possibility of introducing calix[m]arene cavities, where the planar chirality was reserved in the structure of pillararene. The capacity for molecular recognition was enhanced by hybrid macrocyclic cavities. Interestingly, the obtained pillar[n]arene-calix[m]arene could self-assemble into "channels" and "honeycomb" in both the solid state and solution phase as well as donate the molecular architecture as the wheel for the formation of mechanically interlocked molecules, such as rotaxane. In addition, the pillar[n]arene and calix[m]arene could also be coupled together to produce pillar[n]arene embeded 1,3-alternate and cone conformational calix[m]arene derivatives, which could catalyze the oxidative polymerization of aniline in aqueous solutions. Except for building hybrid cyclophanes by covalent bonds, weak supramolecular interactions were used to prepare pillar[n]arene-calix[m]arene analogous composites with other pillar-like pillar[n]pyridiniums and calix-like calix[m]pyrroles, exhibiting reasonable performances in enhancing molecular recognition and trapping solvent molecules.
Collapse
Affiliation(s)
- Zhaona Liu
- Medical School, Xi'an Peihua University Xi'an 710125 Shaanxi China
| | - Bing Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Leqian Song
- School of Chemical Engineering and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| |
Collapse
|
25
|
Jiang X, Wang L, Ran X, Tang H, Cao D. Green, Efficient Detection and Removal of Hg2+ by Water-Soluble Fluorescent Pillar[5]arene Supramolecular Self-Assembly. BIOSENSORS 2022; 12:bios12080571. [PMID: 36004967 PMCID: PMC9405992 DOI: 10.3390/bios12080571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Developing a water-soluble supramolecular system for the detection and removal of Hg2+ is extremely needed but remains challenging. Herein, we reported the facile construction of a fluorescent supramolecular system (H⊃G) in 100% water through the self-assembly of carboxylatopillar[5]arene sodium salts (H) and diketopyrrolopyrrole-bridged bis(quaternary ammonium) guest (G) by host–guest interaction. With the addition of Hg2+, the fluorescence of H⊃G could be efficiently quenched. Since Hg2+ showed synergistic interactions (coordination and Hg2+- cavity interactions with G and H, respectively), crosslinked networks of H⊃G@Hg2+ were formed. A sensitive response to Hg2+ with excellent selectivity and a low limit of detection (LOD) of 7.17 × 10−7 M was obtained. Significantly, the quenching fluorescence of H⊃G@Hg2+ can be recovered after a simple treatment with Na2S. The reusability of H⊃G for the detection of Hg2+ ions was retained for four cycles, indicating the H⊃G could be efficiently used in a reversible manner. In addition, the H⊃G could efficiently detect Hg2+ concentration in real samples (tap water and lake water). The developed supramolecular system in 100% water provides great potential in the treatment of Hg2+ detection and removal for environmental sustainability.
Collapse
Affiliation(s)
- Xiaomei Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China; (X.J.); (H.T.); (D.C.)
| | - Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China; (X.J.); (H.T.); (D.C.)
- Correspondence:
| | - Xueguang Ran
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510641, China;
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China; (X.J.); (H.T.); (D.C.)
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China; (X.J.); (H.T.); (D.C.)
| |
Collapse
|
26
|
Novel phenanthroline-derived pyrrolidone ligands for efficient uranium separation: Liquid-liquid extraction, spectroscopy, and molecular simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Liu Z, Li Z, Li B, Zhou L, Zhang H, Han J. Hybrid Macrocyclic Polymers: Self-Assembly Containing Cucurbit[m]uril-pillar[n]arene. Polymers (Basel) 2022; 14:1777. [PMID: 35566949 PMCID: PMC9106019 DOI: 10.3390/polym14091777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Supramolecular self-assembly by hybrid macrocycles containing both cucurbit[m]uril (CB[m]) and pillar[n]arene was discussed and summarized in this review. Due to different solubility, diverse-sized cavities, and various driving forces in recognizing guests, the role of CB[m] and pillar[n]arene in such hybrid macrocyclic systems could switch between competitor in capturing specialized guests, and cooperator for building advanced hybridized macrocycles, by controlling their characteristics in host-guest inclusions. Furthermore, both CB[m] and pillar[n]arene were employed for fabricating advanced supramolecular self-assemblies such as mechanically interlocked molecules and supramolecular polymers. In those self-assemblies, CB[m] and pillar[n]arene played significant roles in, e.g., microreactor for catalyzing particular reactions to bridge different small pieces together, molecular "joint" to connect different monomers into larger assemblies, and "stabilizer" in accommodating the guest molecules to adopt a favorite structure geometry ready for assembling.
Collapse
Affiliation(s)
- Zhaona Liu
- Medical School, Xi’an Peihua University, Xi’an 710125, China;
| | - Zhizheng Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (B.L.); (L.Z.)
| | - Bing Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (B.L.); (L.Z.)
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (B.L.); (L.Z.)
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (B.L.); (L.Z.)
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
The pillar[5]arene-based spun thin films: preparation, characterization, development of optical and mass sensitive sensors for swelling dynamics and gas sensing abilities. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04710-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Shi B, Chai Y, Qin P, Zhao XX, Li W, Zhang YM, Wei TB, Lin Q, Yao H, Qu WJ. Detection of aliphatic aldehydes by a pillar[5]arene-based fluorescent supramolecular polymer with vaporchromic behavior. Chem Asian J 2022; 17:e202101421. [PMID: 35037734 DOI: 10.1002/asia.202101421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/12/2022] [Indexed: 11/10/2022]
Abstract
The detection of volatile aliphatic aldehydes is of significance because of their chemical toxicity, physical volatility and widespread applications in chemical industrial processes. In this work, the direct detection of aliphatic aldehydes is tackled using a fluorescent supramolecular polymer with vaporchromic behavior which is contructed by pillar[5]arene-based host-guest intereactions. Thin films with strong orange-yellow fluorescence are prepared by coating the linear supramolecular polymer on glass sheets. When the thin films are exposed to aliphatic aldehydes with different carbon chain lengths, they can selectivly sensing n -butyraldehyde ( C 4 ) and caprylicaldehyde ( C 8 ), accompanied by fluorescence quenching, indicating that the supramolecular polymer is a highly selective vapochromic response material for aliphatic aldehydes with long alkyl chains.
Collapse
Affiliation(s)
- Bingbing Shi
- Northwest Normal University, college of chemistry and chemical engineering, 967 Anning East Road, 730070, Lanzhou, CHINA
| | - Yongping Chai
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Peng Qin
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Xing-Xing Zhao
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Weichun Li
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - You-Ming Zhang
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Tai-Bao Wei
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Qi Lin
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Hong Yao
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Wen-Juan Qu
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| |
Collapse
|
30
|
Nazarova A, Yakimova L, Filimonova D, Stoikov I. Surfactant Effect on the Physicochemical Characteristics of Solid Lipid Nanoparticles Based on Pillar[5]arenes. Int J Mol Sci 2022; 23:779. [PMID: 35054962 PMCID: PMC8775580 DOI: 10.3390/ijms23020779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/05/2022] Open
Abstract
Novel monosubstituted pillar[5]arenes containing both amide and carboxyl functional groups were synthesized. Solid lipid nanoparticles based on the synthesized macrocycles were obtained. Formation of spherical particles with an average hydrodynamic diameter of 250 nm was shown for pillar[5]arenes containing N-(amidoalkyl)amide fragments regardless of their concentration. It was established that pillar[5]arene containing N-alkylamide fragments can form spherical particles with two different sizes (88 and 223 nm) depending on its concentration. Mixed solid lipid nanoparticles based on monosubstituted pillar[5]arenes and surfactant (dodecyltrimethylammonium chloride) were obtained for the first time. The surfactant made it possible to level the effect of the macrocycle concentration. It was found that various types of aggregates are formed depending on the macrocycle/surfactant ratio. Changing the macrocycle/surfactant ratio allows to control the charge of the particles surface. This controlled property will lead to the creation of molecular-scale porous materials that selectively interact with various types of substrates, including biopolymers.
Collapse
Affiliation(s)
- Anastasia Nazarova
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia;
| | - Luidmila Yakimova
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia;
| | | | - Ivan Stoikov
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia;
| |
Collapse
|
31
|
Song L, Zhou L, Li B, Zhang H. Fullerene-containing pillar[ n]arene hybrid composites. Org Biomol Chem 2022; 20:8176-8186. [DOI: 10.1039/d2ob01664h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The construction and application of fullerene-containing pillar[n]arene organic–inorganic hybrid composites/systems has been discussed and summarized.
Collapse
Affiliation(s)
- Leqian Song
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Bing Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
32
|
Chen SQ, Yu SN, Zhao W, Liang L, Gong Y, Yuan L, Tang J, Yang XJ, Wu B. Recognition-guided sulfate extraction and transport using tripodal hexaurea receptors. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01991d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hexaurea-based receptors enable highly efficient sulfate extraction (over 97%) via liquid–liquid extraction, and a controllable release of the bound sulfate is achieved by acidifying the solution, as demonstrated in the U-tube experiment.
Collapse
Affiliation(s)
- Si-Qi Chen
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Shu-Na Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Wei Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Lin Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Yunyan Gong
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Lifei Yuan
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Juan Tang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Xiao-Juan Yang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Biao Wu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
33
|
Khamphaijun K, Namnouad P, Docker A, Ruengsuk A, Tantirungrotechai J, Díaz-Torres R, Harding DJ, Bunchuay T. Neutral Isocyanide-Templated Assembly of Pillar[5]arene [2] and [3]Pseudorotaxanes. Chem Commun (Camb) 2022; 58:7253-7256. [DOI: 10.1039/d2cc02255a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unprecedented pillar[5]arene–isocyanide pseudorotaxane inclusion complexes are reported. Extensive 1H-NMR experiments reveal remarkably strong binding affinities of alkyl diisocyanide guests (Ka >105 M-1 in CDCl3) by pillar[5]arenes. Characterised by multinuclear 1H...
Collapse
|
34
|
Lai J, Huang S, Wu S, Li F, Dong S. Adhesion behaviour of bulk supramolecular polymers via pillar[5]arene-based molecular recognition. Chem Commun (Camb) 2021; 57:13317-13320. [PMID: 34812444 DOI: 10.1039/d1cc05518f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pillar[n]arenes were rarely used as the building blocks for supramolecular adhesives. Herein, pillar[5]arene-based supramolecular polymer materials with tough adhesion behaviours on different substrates were prepared, with adhesion strengths up to 4.75 MPa. Strong and long-term dichloromethane-resistant adhesion performances were successfully obtained.
Collapse
Affiliation(s)
- Jinlei Lai
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Shiyu Huang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Shuanggen Wu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| |
Collapse
|
35
|
Shi C, Li H, Shi X, Zhao L, Qiu H. Chiral pillar[n]arenes: Conformation inversion, material preparation and applications. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Mahmoud ME, Fekry NA, Abdelfattah AM. Novel supramolecular network of graphene quantum dots-vitamin B9-iron (III)-tannic acid complex for removal of chromium (VI) and malachite green. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Horin I, Shalev O, Cohen Y. Aggregation Mode, Host-Guest Chemistry in Water, and Extraction Capability of an Uncharged, Water-Soluble, Liquid Pillar[5]arene Derivative. ChemistryOpen 2021; 10:1111-1115. [PMID: 34730286 PMCID: PMC8564886 DOI: 10.1002/open.202100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Indexed: 11/05/2022] Open
Abstract
An uncharged, water-soluble per-ethylene-glycol pillar[5]arene derivative (1) was synthesized and its aggregation mode, host-guest chemistry in water and extraction ability was explored. Compound 1 is a liquid at room temperature; in water, limited self-aggregation occurred at high concentrations as deduced from diffusion NMR and dynamic light scattering. Compound 1 forms pseudo-rotaxane-like 1 : 1 host-guest complexes with 1,ω-di-substituted alkanes with association constants on the order of 103 -104 m-1 . Interestingly, NMR experiments showed that the guest location relative to the host ring system differs among the different complexes. In proof-of-concept experiments, compound 1 was shown to extract structurally related organic compounds from benzene into water with significant selectivity. Compound 1, which is a liquid at room temperature and has only limited interactions with its side arms, can, in principle, be regarded as a complement to or as a kind of type I porous liquid.
Collapse
Affiliation(s)
- Inbar Horin
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| | - Ori Shalev
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| |
Collapse
|
38
|
Hua B, Ding Y, Alimi LO, Moosa B, Zhang G, Baslyman WS, Sessler J, Khashab NM. Tuning the porosity of triangular supramolecular adsorbents for superior haloalkane isomer separations. Chem Sci 2021; 12:12286-12291. [PMID: 34603658 PMCID: PMC8480323 DOI: 10.1039/d1sc03509f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/14/2021] [Indexed: 12/19/2022] Open
Abstract
Distillation-free separations of haloalkane isomers represents a persistent challenge for the chemical industry. Several classic molecular sorbents show high selectivity in the context of such separations; however, most suffer from limited tunability or poor stability. Herein, we report the results of a comparative study involving three trianglamine and trianglimine macrocycles as supramolecular adsorbents for the selective separation of halobutane isomers. Methylene-bridged trianglamine, TA, was found to capture preferentially 1-chlorobutane (1-CBU) from a mixture of 1-CBU and 2-chlorobutane (2-CBU) with a purity of 98.1%. It also separates 1-bromobutane (1-BBU) from a mixture of 1-BBU and 2-bromobutane (2-BBU) with a purity of 96.4%. The observed selectivity is ascribed to the thermodynamic stability of the TA-based host–guest complexes. Based on single crystal X-ray diffraction analyses, a [3]pseudorotaxane structure (2TA⊃1-CBU) is formed between TA and 1-CBU that is characterized by an increased level of noncovalent interactions compared to the corresponding [2]pseudorotaxane structure seen for TA⊃2-CBU. We believe that molecular sorbents that rely on specific molecular recognition events, such as the triangular pores detailed here, will prove useful as next generation sorbents in energy-efficient separations. The methylene-bridged trianglamine (TA) can selectively capture 1-chlorobutane from a mixture of 1-chlorobutane and 2-chlorobutane due to the greater thermodynamic stability of the TA-based host–guest complex formed with 1-chlorobutane.![]()
Collapse
Affiliation(s)
- Bin Hua
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Yanjun Ding
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Lukman O Alimi
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Basem Moosa
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Gengwu Zhang
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Walaa S Baslyman
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Jonathan Sessler
- Department of Chemistry, The University of Texas at Austin Austin TX 78712-1224 USA
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
39
|
Wu Y, Shangguan L, Li Q, Cao J, Liu Y, Wang Z, Zhu H, Wang F, Huang F. Chemoresponsive Supramolecular Polypseudorotaxanes with Infinite Switching Capability. Angew Chem Int Ed Engl 2021; 60:19997-20002. [PMID: 34189820 DOI: 10.1002/anie.202107903] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 01/07/2023]
Abstract
Chemoresponsive supramolecular systems with infinite switching capability are important for applications in recycled materials and intelligent devices. To attain this objective, here a chemoresponsive polypseudorotaxane is reported on the basis of a bis(p-phenylene)-34-crown-10 macrocycle (H) and a cyano-substituted viologen guest (G). H and G form a [2]pseudorotaxane (H⊃G) both in solution and in the solid state. Upon addition of AgSF6 , a polypseudorotaxane (denoted as [H⋅G⋅Ag]n ) forms as synergistically driven by host-guest complexation and metal-coordination interactions. [H⋅G⋅Ag]n depolymerizes into a [3]pseudorotaxane (denoted as H2 ⋅G⋅Ag2 ⋅acetone2 ) upon addition of H and AgSF6 , while it reforms with successive addition of G. The transformations between [H⋅G⋅Ag]n and H2 ⋅G⋅Ag2 ⋅acetone2 can be switched for infinite cycles, superior to the conventional chemoresponsive supramolecular polymeric systems with limited switching capability.
Collapse
Affiliation(s)
- Yitao Wu
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Liqing Shangguan
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qi Li
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jiajun Cao
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yang Liu
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zeju Wang
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
40
|
Liu P, Yang P, Yang J, Gu J. One-pot synthesis of sulfonic acid functionalized Zr-MOFs for rapid and specific removal of radioactive Ba 2. Chem Commun (Camb) 2021; 57:5822-5825. [PMID: 34002199 DOI: 10.1039/d1cc01740c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Efficient decontamination of radioactive Ba2+ is of great significance to human health and environmental safety. Herein, an adsorbent based on the sulfonic acid functionalized Zr-MOF has been successfully developed, which could efficiently decontaminate radioactive Ba2+ with excellent selectivity, recyclability, a high adsorption capacity up to 60.8 mg g-1 as well as a short adsorption kinetic time of less than 5 min. This outstanding adsorption performance is attributed to the strong affinity between Ba2+ and high density -SO3H active sites in MOFs which were introduced by an in situ ligand modification strategy during the assembly of MOFs.
Collapse
Affiliation(s)
- Peijia Liu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Pengfei Yang
- Skshu Paint Co., Ltd, Fujian Key Laboratory of Architectural Coating, 518 North Liyuan Avenue, Licheng District Putian, Fujian, 351100, China
| | - Jian Yang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jinlou Gu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
41
|
Cai Y, Yan Q, Wang M, Chen J, Fu H, Ye J, Conradson SD, Yuan L, Xu C, Feng W. Endowing 2,6-bis-triazolyl-pyridine of poor extraction with superior efficiency for actinide/lanthanide separation at high acidity by anchoring to a macrocyclic scaffold. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125745. [PMID: 33866294 DOI: 10.1016/j.jhazmat.2021.125745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Exploring nitrogen-containing extractants for recovering hazardous minor actinides that are workable in solutions of high acidity has been a challenge in nuclear waste treatment. Herein, we report our findings that 2,6-bis-triazolyl-pyridine (PyTri), which is ineffective as a hydrophobic ligand for minor actinide separation, turns into an excellent extractant that exhibits unexpectedly high efficiency and selectivity (SFAm/Eu = 172, 1 M HNO3) when attaching to pillar[5]arene platform. Surprisingly, the distribution ratio of Am(III) (DAm) is 4300 times higher than that of the acyclic PyTri ligand. The solvent extraction performance of this pillar[5]arene-achored PyTri not only far exceeds the best known pillar[5]arene ligands reported to date, but also stays comparable to other reported outstanding extractants. Slope analysis indicates that each P[5]A-PyTri can bind two metal ions, which is further corroborated by spectroscopic characterizations. Thermodynamic studies imply that the extraction process is exothermic and spontaneous in nature. Complexation investigation via EXAFS technique and DFT calculations strongly suggest that each Eu(III) ion is coordinated to three PyTri arms through a nine-coordination mode. This work provides a N-donor extractant that can operate at high acidity for minor actinide partitioning and implicates a promising approach for transforming poor extractants into superior ones.
Collapse
Affiliation(s)
- Yimin Cai
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qiang Yan
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Mengxin Wang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jing Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Haiying Fu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiawei Ye
- Irradiation Preservation Technology Key Laboratory of Sichuan Province, Chengdu 610101, China
| | - Steven D Conradson
- Department of Complex Matter, Jozef Stefan Institute, 1000 Ljubljana, Slovenia; Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Lihua Yuan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| | - Wen Feng
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
42
|
Tian X, Zuo M, Niu P, Velmurugan K, Wang K, Zhao Y, Wang L, Hu XY. Orthogonal Design of a Water-Soluble meso-Tetraphenylethene-Functionalized Pillar[5]arene with Aggregation-Induced Emission Property and Its Therapeutic Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37466-37474. [PMID: 34314153 DOI: 10.1021/acsami.1c07106] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An orthogonal strategy was utilized for synthesizing a novel water-soluble pillar[5]arene (m-TPEWP5) with tetraphenylethene-functionalized on the bridged methylene group (meso-position) of the pillararene skeleton. The obtained macrocycle exhibit both the aggregation-induced emission (AIE) effect and interesting host-guest property. Moreover, it can be made to bind with a tailor-made camptothecin-based prodrug guest (DNS-G) to form AIE-nanoparticles based on host-guest interaction and the fluorescence resonance energy transfer process for fabricating a drug delivery system. This novel type of water-soluble AIE-active macrocycle can serve as a potential fluorescent material for cancer diagnosis and therapy. In addition, the present orthogonal strategy for designing meso-functionalized aromatic macrocycles may pave a new avenue for creating novel supramolecular structures and functional materials.
Collapse
Affiliation(s)
- Xueqi Tian
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Minzan Zuo
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Pengbo Niu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Krishnasamy Velmurugan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yue Zhao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Leyong Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
43
|
Wu Y, Shangguan L, Li Q, Cao J, Liu Y, Wang Z, Zhu H, Wang F, Huang F. Chemoresponsive Supramolecular Polypseudorotaxanes with Infinite Switching Capability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yitao Wu
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Liqing Shangguan
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Qi Li
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Jiajun Cao
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Yang Liu
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Zeju Wang
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
44
|
A review of the alpha radiolysis of extractants for actinide lanthanide separation in spent nuclear fuel reprocessing. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2021-1009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Radiation stability is one of the key properties to enable the efficient use of extractants in spent nuclear fuel with high radioactivity. The last several decades have witnessed a rapid progress in the radiation chemistry of extractants. A variety of studies and reviews pertinent to the radiation stability of extractants have been published. However, a thorough summary for the alpha radiolysis results of extractants is not available. In this review, we survey the development of alpha radiolysis of extractants for actinide lanthanide separation and compare their radiolysis behaviors induced by alpha particles and gamma rays. The discussion of alpha radiolysis of extractants is divided into three parts according to the functional groups of extractants (i.e., phosphine oxide, amide and bis-triazinyl bipyridines). Given the importance of radiation source to carry out alpha irradiation experiment, we first give a brief introduction to three practicable alpha radiation sources including alpha emitting isotopes, helium ion beam and reactor. We hope this review will provide useful information and unleash a broad palette of opportunities for researchers interested in radiation chemistry.
Collapse
|
45
|
Li K, Hu S, Zou Q, Zhang Y, Zhang H, Zhao Y, Zhou T, Chai Z, Wang Y. Synthesis and Characterizations of a Plutonium(III) Crown Ether Inclusion Complex. Inorg Chem 2021; 60:8984-8989. [PMID: 34044532 DOI: 10.1021/acs.inorgchem.1c00886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis, single-crystal structure, solid-state ultraviolet-visible-near-infrared spectroscopy, and theoretical calculations on the first trivalent plutonium crown ether inclusion complex, [(H3O)(18-crown-6)][Pu(H2O)4(18-crown-6)](ClO4)4·2(H2O) (denoted as PuIII-18C6). Single-crystal X-ray diffraction reveals that PuIII-18C6 crystallizes in the orthorhombic space group of Pccn, which is assembled by independent ionic pairs including [Pu(H2O)4(18-crown-6)]3+, [(H3O)(18-crown-6)]+, and perchlorate anions. The plutonium atom is fully encapsulated within the cavity of the 18-crown-6, generating a distorted bicapped square antiprism geometry. The theoretical evaluation confirms that weak Pu-O dative bond is involved between PuIII ions with 18-crown-6. This work may deepen the understanding of the host-guest interactions between trivalent transuranic and macrocyclic ligands.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Shuxian Hu
- Beijing Computational Science Research Center, Beijing 100193, P. R. China
| | - Qing Zou
- China Nuclear Power Technology Research Institute Co. Ltd., Shenzhen 518028, P. R. China
| | - Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Hailong Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yuan Zhao
- China Nuclear Power Technology Research Institute Co. Ltd., Shenzhen 518028, P. R. China
| | - Tong Zhou
- China Nuclear Power Technology Research Institute Co. Ltd., Shenzhen 518028, P. R. China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
46
|
Nazarova A, Khannanov A, Boldyrev A, Yakimova L, Stoikov I. Self-Assembling Systems Based on Pillar[5]arenes and Surfactants for Encapsulation of Diagnostic Dye DAPI. Int J Mol Sci 2021; 22:6038. [PMID: 34204914 PMCID: PMC8199762 DOI: 10.3390/ijms22116038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
In this paper, we report the development of the novel self-assembling systems based on oppositely charged Pillar[5]arenes and surfactants for encapsulation of diagnostic dye DAPI. For this purpose, the aggregation behavior of synthesized macrocycles and surfactants in the presence of Pillar[5]arenes functionalized by carboxy and ammonium terminal groups was studied. It has been demonstrated that by varying the molar ratio in Pillar[5]arene-surfactant systems, it is possible to obtain various types of supramolecular systems: host-guest complexes at equimolar ratio of Pillar[5]arene-surfactant and interpolyelectrolyte complexes (IPECs) are self-assembled materials formed in aqueous medium by two oppositely charged polyelectrolytes (macrocycle and surfactant micelles). It has been suggested that interaction of Pillar[5]arenes with surfactants is predominantly driven by cooperative electrostatic interactions. Synthesized stoichiometric and non-stoichiometric IPECs specifically interact with DAPI. UV-vis, luminescent spectroscopy and molecular docking data show the structural feature of dye-loaded IPEC and key role of the electrostatic, π-π-stacking, cation-π interactions in their formation. Such a strategy for the design of supramolecular Pillar[5]arene-surfactant systems will lead to a synergistic interaction of the two components and will allow specific interaction with the third component (drug or fluorescent tag), which will certainly be in demand in pharmaceuticals and biomedical diagnostics.
Collapse
Affiliation(s)
| | | | | | - Luidmila Yakimova
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.N.); (A.K.); (A.B.)
| | - Ivan Stoikov
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.N.); (A.K.); (A.B.)
| |
Collapse
|
47
|
Chen L, Wang S. Multivalent cooperativity induced by self-assembly for f-element separation. Commun Chem 2021; 4:78. [PMID: 36697716 PMCID: PMC9814836 DOI: 10.1038/s42004-021-00514-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/26/2021] [Indexed: 01/28/2023] Open
Affiliation(s)
- Lixi Chen
- grid.263761.70000 0001 0198 0694State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Shuao Wang
- grid.263761.70000 0001 0198 0694State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
48
|
Catechol-Containing Schiff Bases on Thiacalixarene: Synthesis, Copper (II) Recognition, and Formation of Organic-Inorganic Copper-Based Materials. Molecules 2021; 26:molecules26082334. [PMID: 33920537 PMCID: PMC8072794 DOI: 10.3390/molecules26082334] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/28/2022] Open
Abstract
For the first time, a series of catechol-containing Schiff bases, tetrasubstituted at the lower rim thiacalix[4]arene derivatives in three stereoisomeric forms, cone, partial cone, and 1,3-alternate, were synthesized. The structure of the obtained compounds was proved by modern physical methods, such as NMR, IR spectroscopy, and HRMS. Selective recognition (Kb difference by three orders of magnitude) of copper (II) cation in the series of d-metal cations (Cu2+, Ni2+, Co2+, Zn2+) was shown by UV-vis spectroscopy. Copper (II) ions are coordinated at the nitrogen atom of the imine group and the nearest oxygen atom of the catechol fragment in the thiacalixarene derivatives. High thermal stable organic-inorganic copper-based materials were obtained on the base of 1,3-alternate + Cu (II) complexes.
Collapse
|
49
|
Affiliation(s)
- Roymon Joseph
- Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India – 682013
- Department of Chemistry University of Calicut Malappuram Kerala India – 673635
| |
Collapse
|
50
|
Shurpik DN, Makhmutova LI, Usachev KS, Islamov DR, Mostovaya OA, Nazarova AA, Kizhnyaev VN, Stoikov II. Towards Universal Stimuli-Responsive Drug Delivery Systems: Pillar[5]arenes Synthesis and Self-Assembly into Nanocontainers with Tetrazole Polymers. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:947. [PMID: 33917874 PMCID: PMC8068209 DOI: 10.3390/nano11040947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/27/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022]
Abstract
In this work, we have proposed a novel universal stimulus-sensitive nanosized polymer system based on decasubstituted macrocyclic structures-pillar[5]arenes and tetrazole-containing polymers. Decasubstituted pillar[5]arenes containing a large, good leaving tosylate, and phthalimide groups were first synthesized and characterized. Pillar[5]arenes containing primary and tertiary amino groups, capable of interacting with tetrazole-containing polymers, were obtained with high yield by removing the tosylate and phthalimide protection. According to the fluorescence spectroscopy data, a dramatic fluorescence enhancement in the pillar[5]arene/fluorescein/polymer system was observed with decreasing pH from neutral (pH = 7) to acidic (pH = 5). This indicates the destruction of associates and the release of the dye at a pH close to 5. The presented results open a broad range of opportunities for the development of new universal stimulus-sensitive drug delivery systems containing macrocycles and nontoxic tetrazole-based polymers.
Collapse
Affiliation(s)
- Dmitriy N. Shurpik
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| | - Lyaysan I. Makhmutova
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| | - Konstantin S. Usachev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia;
| | - Daut R. Islamov
- FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Institute of Organic and Physical Chemistry, Arbuzov St., 8, 420088 Kazan, Russia;
| | - Olga A. Mostovaya
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| | - Anastasia A. Nazarova
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| | - Valeriy N. Kizhnyaev
- Department of Theoretical and Applied Organic Chemistry and Polymerization Processes, Irkutsk State University, K. Marksa, 1, 664003 Irkutsk, Russia;
| | - Ivan I. Stoikov
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| |
Collapse
|