1
|
Villao NV, Tabraue-Chavez M, Megino-Luque C, Aguilar-Gonzalez A, Guardia-Monteagudo JJ, Lopez-Delgado FJ, Robles-Remacho A, Cano-Cortés V, Diaz-Mochon JJ, Sanchez-Martin RM, Pernagallo S. A novel colorimetric assay for early differentiation of mucocutaneous and cutaneous leishmaniasis via species-specific identification. Talanta 2025; 293:128016. [PMID: 40179686 DOI: 10.1016/j.talanta.2025.128016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/05/2025]
Abstract
Mucocutaneous leishmaniasis (MCL) is a severe and debilitating progression of cutaneous leishmaniasis (CL) that occurs when the disease spreads to involve mucosal tissues. Contrasting CL, which can often be treated with local therapies, MCL requires aggressive systemic treatment, strict adherence to a 30-day regimen and regular monitoring to prevent recurrence. These requirements highlight the critical need for accurate and rapid early diagnosis to guide effective treatment strategies. However, differentiating between the Leishmania species responsible for MCL and CL remains a significant challenge, particularly in resource-limited settings. To address this gap, this study introduces a novel colorimetric assay that integrates the Spin-Tube platform with Dynamic Chemical Labeling (DCL) technology for species-specific identification of Leishmania parasites. This approach targets single nucleotide fingerprints (SNFs) within the conserved hsp70 gene, allowing precise differentiation between species associated with MCL and CL. The assay employs single-plex PCR followed by DCL-based detection of SNFs, providing rapid and visually interpretable results to facilitate species differentiation. The assay demonstrated remarkable sensitivity, with a detection limit of 1 copy of parasite DNA per μL and performed effectively even under resource-limited conditions. It was used to identify ten MCL patients, with the results confirmed through DNA sequencing. Its simplicity and rapid turnaround could make it an ideal diagnostic solution for endemic regions. By providing accurate early differentiation between CL and MCL, this assay enables the implementation of personalised treatment plans, minimising unnecessary exposure to toxic therapies and reducing the risk of irreversible mucosal damage for affected patients.
Collapse
Affiliation(s)
- Nancy Villegas Villao
- GENYO Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, PTS Granada - Avenida de la Ilustración, 114- 18016, Granada, Spain; Department of Medicinal & Organic Chemistry, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, Spain; Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Departamento de Parasitología y Medicina Tropical. Carrera de Medicina, Facultad de Ciencias de la Salud, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| | - Mavys Tabraue-Chavez
- DESTINA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, 18016, Granada, Spain
| | - Cristina Megino-Luque
- DESTINA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, 18016, Granada, Spain
| | - Araceli Aguilar-Gonzalez
- GENYO Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, PTS Granada - Avenida de la Ilustración, 114- 18016, Granada, Spain; Department of Medicinal & Organic Chemistry, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, Spain; Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Juan J Guardia-Monteagudo
- DESTINA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, 18016, Granada, Spain
| | - F Javier Lopez-Delgado
- DESTINA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, 18016, Granada, Spain
| | - Agustin Robles-Remacho
- GENYO Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, PTS Granada - Avenida de la Ilustración, 114- 18016, Granada, Spain; Department of Medicinal & Organic Chemistry, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, Spain; Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Victoria Cano-Cortés
- GENYO Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, PTS Granada - Avenida de la Ilustración, 114- 18016, Granada, Spain; Department of Medicinal & Organic Chemistry, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, Spain; Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Juan J Diaz-Mochon
- GENYO Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, PTS Granada - Avenida de la Ilustración, 114- 18016, Granada, Spain; Department of Medicinal & Organic Chemistry, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, Spain; Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Rosario M Sanchez-Martin
- GENYO Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, PTS Granada - Avenida de la Ilustración, 114- 18016, Granada, Spain; Department of Medicinal & Organic Chemistry, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, Spain; Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - Salvatore Pernagallo
- DESTINA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, 18016, Granada, Spain.
| |
Collapse
|
2
|
Detassis S, Precazzini F, Brentari I, Ruffilli R, Ress C, Maglione A, Pernagallo S, Denti MA. SA-ODG platform: a semi-automated and PCR-free method to analyse microRNAs in solid tissues. Analyst 2024; 149:3891-3899. [PMID: 38994789 DOI: 10.1039/d4an00783b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Over the past two decades, numerous techniques have been developed for analysing microRNAs in body fluids and tissues. However, these techniques still face technical challenges, particularly when compared to well-established techniques for proteins and metabolites. Recently, the ODG platform was introduced, which is an innovative technology that allows for the direct detection and quantification of microRNAs in liquid biopsies without requiring extraction or amplification. This study presents the implementation of the ODG platform within a semi-automated protocol to create the "SA-ODG" platform, enhancing the efficiency and precision of microRNA testing while reducing hands-on time required by laboratory staff. For the first time, the SA-ODG platform has been used to directly quantify microRNAs in solid tissues. The results demonstrate precise analysis of miR-122-5p in mouse liver tissues using SA-ODG. These developments represent a crucial step forward in advancing the field of extraction and amplification-free microRNA detection and quantification.
Collapse
Affiliation(s)
- S Detassis
- OPTOI SRL, Via Vienna 8, 38121, Trento, Italy.
| | - F Precazzini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - I Brentari
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - R Ruffilli
- OPTOI SRL, Via Vienna 8, 38121, Trento, Italy.
| | - C Ress
- OPTOI SRL, Via Vienna 8, 38121, Trento, Italy.
| | - A Maglione
- OPTOI SRL, Via Vienna 8, 38121, Trento, Italy.
| | - S Pernagallo
- DESTINA Genomica SL, Parque Tecnológico de la Salud (PTS), Avenida de la Innovación 1, 18016 Granada, Spain
| | - M A Denti
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| |
Collapse
|
3
|
Marín-Romero A, Pernagallo S. A comprehensive review of Dynamic Chemical Labelling on Luminex xMAP technology: a journey towards Drug-Induced Liver Injury testing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6139-6149. [PMID: 37965948 DOI: 10.1039/d3ay01481a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Drug-Induced Liver Injury (DILI) is a grave global adverse event that can result in fatal consequences, causing drug failures, market withdrawals, and regulatory warnings, leading to substantial financial losses. The early detection of DILI remains a significant challenge in global healthcare. Although circulating microRNAs (miRs) show promise as clinical biomarkers for DILI, the current analytical methods for their measurement are insufficient. There is a pressing need for rapid and reliable miR detection methods that eliminate the need for nucleic acid extraction and PCR-based amplification. This review highlights recent advancements achieved by integrating Dynamic Chemical Labelling (DCL) with Luminex xMAP technology. This powerful combination has resulted in groundbreaking bead-based assays that allow (1) the direct, multiplex detection of miRs, and (2) the simultaneous testing of miR and protein biomarkers. This triple capability enables a comprehensive assessment that significantly enhances the detection and analysis of crucial biomarkers, thus improving the understanding and diagnosis of DILI. In conclusion, this review offers valuable insights into the capabilities and potential applications of these groundbreaking assays in DILI research, as well as their potential use in other diagnostic and research domains that require direct or multiplex analysis of miRs or analysis of miRs in combination with proteins.
Collapse
Affiliation(s)
- Antonio Marín-Romero
- DESTINA Genomica S.L., Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, Granada 18100, Spain.
| | - Salvatore Pernagallo
- DESTINA Genomica S.L., Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, Granada 18100, Spain.
| |
Collapse
|
4
|
Shen H, Li Z, Dou B, Feng Q, Wang P. An amplified logic gate driven by in situ synthesis of silver nanoclusters for identification of biomarkers. Chem Commun (Camb) 2023; 59:5705-5708. [PMID: 37083922 DOI: 10.1039/d3cc00643c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
An amplified DNA logic sensor was constructed for the identification of multiple biomarkers, in which the inputs of targets triggered the disassembly of a V-shaped probe (VSP) structure by a strand displacement reaction, leading to the synthesis of silver nanoclusters (AgNCs) for electrocatalytic reduction of H2O2. The sensing platform achieved sensitive detection of methylated DNA and microRNA 122 with detection limits down to 3.4 and 4.1 fM, respectively, and can be used for the assay of clinical serum samples from healthy volunteers and liver injury patients with satisfactory results. The DNA logic sensor exhibited the advantages of convenience, low cost, and versatility without the involvement of electroactive label modification, which is helpful for disease diagnosis as well as the fundamental investigation of interfacial electrochemistry and molecular biology.
Collapse
Affiliation(s)
- Hui Shen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Zhimin Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Baoting Dou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
5
|
Roychoudhury A, Dear JW, Kersaudy-Kerhoas M, Bachmann TT. Amplification-free electrochemical biosensor detection of circulating microRNA to identify drug-induced liver injury. Biosens Bioelectron 2023; 231:115298. [PMID: 37054598 DOI: 10.1016/j.bios.2023.115298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
Drug-induced liver injury (DILI) is a major challenge in clinical medicine and drug development. There is a need for rapid diagnostic tests, ideally at point-of-care. MicroRNA 122 (miR-122) is an early biomarker for DILI which is reported to increase in the blood before standard-of-care markers such as alanine aminotransferase activity. We developed an electrochemical biosensor for diagnosis of DILI by detecting miR-122 from clinical samples. We used electrochemical impedance spectroscopy (EIS) for direct, amplification free detection of miR-122 with screen-printed electrodes functionalised with sequence specific peptide nucleic acid (PNA) probes. We studied the probe functionalisation using atomic force microscopy and performed elemental and electrochemical characterisations. To enhance the assay performance and minimise sample volume requirements, we designed and characterised a closed-loop microfluidic system. We presented the EIS assay's specificity for wild-type miR-122 over non-complementary and single nucleotide mismatch targets. We successfully demonstrated a detection limit of 50 pM for miR-122. Assay performance could be extended to real samples; it displayed high selectivity for liver (miR-122 high) comparing to kidney (miR-122 low) derived samples extracted from murine tissue. Finally, we successfully performed an evaluation with 26 clinical samples. Using EIS, DILI patients were distinguished from healthy controls with a ROC-AUC of 0.77, a comparable performance to qPCR detection of miR-122 (ROC-AUC: 0.83). In conclusion, direct, amplification free detection of miR-122 using EIS was achievable at clinically relevant concentrations and in clinical samples. Future work will focus on realising a full sample-to-answer system which can be deployed for point-of-care testing.
Collapse
Affiliation(s)
- Appan Roychoudhury
- Infection Medicine, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - James W Dear
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Maïwenn Kersaudy-Kerhoas
- Infection Medicine, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK; Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Till T Bachmann
- Infection Medicine, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
6
|
SARS-CoV-2 viral RNA detection using the novel CoVradar device associated with the CoVreader smartphone app. Biosens Bioelectron 2023; 230:115268. [PMID: 37030262 PMCID: PMC10060197 DOI: 10.1016/j.bios.2023.115268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/25/2023] [Indexed: 04/01/2023]
Abstract
The COVID-19 pandemic has highlighted the need for innovative approaches to its diagnosis. Here we present CoVradar, a novel and simple colorimetric method that combines nucleic acid analysis with dynamic chemical labeling (DCL) technology and the Spin-Tube device to detect SARS-CoV-2 RNA in saliva samples. The assay includes a fragmentation step to increase the number of RNA templates for analysis, using abasic peptide nucleic acid probes (DGL probes) immobilized to nylon membranes in a specific dot pattern to capture RNA fragments. Duplexes are formed by labeling complementary RNA fragments with biotinylated SMART bases, which act as templates for DCL. Signals are generated by recognizing biotin with streptavidin alkaline phosphatase and incubating with a chromogenic substrate to produce a blue precipitate. CoVradar results are analysed by CoVreader, a smartphone-based image processing system that can display and interpret the blotch pattern. CoVradar and CoVreader provide a unique molecular assay capable of detecting SARS-CoV-2 viral RNA without the need for extraction, preamplification, or prelabeling steps, offering advantages in terms of time (∼3 h/test), cost (∼€1/test manufacturing cost) and simplicity (does not require large equipment). This solution is also promising for the development of assays for other infectious diseases.
Collapse
|
7
|
Forte G, Ventimiglia G, Pesaturo M, Petralia S. A highly sensitive PNA-microarray system for miRNA122 recognition. Biotechnol J 2022; 17:e2100587. [PMID: 35225426 DOI: 10.1002/biot.202100587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/09/2022]
Abstract
Surface chemistry is a fundamental aspect of the development of the sensitive biosensor based on microarray technology. Here we described an advanced PNA-microarray system for the detection of miRNA, composed by a multilayered Si/Al/Agarose component. A straightforward optical signal enhancement is achieved thanks to a combination of the Al film mirror effect and the positive interference for the emission wavelength of the Cy5 fluorescent label tuned by the agarose film. The PNA-microarray was investigated for the detection of miRNA_122, resulting in a sensitivity of about 1.75 μM-1 and Limit of Detection in the range of 0.043 nM as a function of the capture probe sequence. The contribution, in terms of H-bonds amounts at 298 and 333 K, of the agarose coating to the dsPNA-RNA interactions was demonstrated by Molecular Dynamic simulations. These results pave the way for advanced sensing strategies suitable for the environmental monitoring and the public safety. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Giuseppe Forte
- Department of Drug Science and Health, University of Catania, via S. Sofia 64, 95125, Catania, Italy
| | - Giorgio Ventimiglia
- EM Microelectronic, Rue de Sors 3, 2074, Marin (Suisse), Marin-Epagnier, Switzerland
| | | | - Salvatore Petralia
- Department of Drug Science and Health, University of Catania, via S. Sofia 64, 95125, Catania, Italy
| |
Collapse
|
8
|
Muhammad M, Shao CS, Liu C, Huang Q. Highly Sensitive Detection of Elevated Exosomal miR-122 Levels in Radiation Injury and Hepatic Inflammation Using an Aptamer-Functionalized SERS-Sandwich Assay. ACS APPLIED BIO MATERIALS 2021; 4:8386-8395. [PMID: 35005951 DOI: 10.1021/acsabm.1c00845] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Radiation-induced organ injury is one of the major fallouts noticed during radiotherapy treatment of malignancies and other detrimental radiation exposures. MicroRNA (miRNA), which is involved in multiple critical cellular processes, is released from the cells of damaged organs in cellular vesicles, commonly known as exosomes. Specifically, exosomal miR-122 is reported to be actively involved in radiation-actuated rectal and hepatic injuries or inflammation. In this work, we developed a surface-enhanced Raman spectroscopy (SERS) assay for the quantitative and targeted detection of exosomal miR-122 in mice after drug/radiation treatments. In particular, an aptamer-functionalized magnetic capturing element and Au shell nanoparticle (NP)-based SERS tags were utilized, which upon recognition of the target miRNA constituted a "sandwich" formation, with which an 8 fM limit of detection (LOD) could be achieved. Using this SERS assay, we further found that radiation injury led to the elevated expression of exosomal miR-122 in mice at 4 h postirradiation, confirmed by the quantitative real-time PCR method. It was demonstrated that the drug-induced hepatic inflammation could also be assessed via detecting miR-122 using this SERS method. As such, this work has demonstrated the achievement of a highly selective and sensitive probe of exosomal miRNA, which may thus open a gateway for promising usage in drug/radiation-induced inflammation.
Collapse
Affiliation(s)
- Muhammad Muhammad
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei Anhui230031, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Chang-Sheng Shao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei Anhui230031, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Chao Liu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei Anhui230031, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei Anhui230031, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Simultaneous Detection of Drug-Induced Liver Injury Protein and microRNA Biomarkers Using Dynamic Chemical Labelling on a Luminex MAGPIX System. ANALYTICA 2021. [DOI: 10.3390/analytica2040013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Drug-induced liver injury (DILI) is a potentially fatal adverse event and a leading cause for pre- and post-marketing drug withdrawal. Several multinational DILI initiatives have now recommended a panel of protein and microRNA (miRNA) biomarkers that can detect early liver injury and inform about mechanistic basis. This manuscript describes the development of seqCOMBO, a unique combo-multiplexed assay which combines the dynamic chemical labelling approach and an antibody-dependant method on the Luminex MAGPIX system. SeqCOMBO enables a versatile multiplexing platform to perform qualitative and quantitative analysis of proteins and miRNAs in patient serum samples simultaneously. To the best of our knowledge, this is the first method to profile protein and miRNA biomarkers to diagnose DILI in a single-step assay.
Collapse
|
10
|
Dou B, Zhou H, Hong Y, Zhao L, Wang P. Cross-triggered and cascaded recycling amplification system for electrochemical detection of circulating microRNA in human serum. Chem Commun (Camb) 2021; 57:7116-7119. [PMID: 34179904 DOI: 10.1039/d1cc02060a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A cross-triggered and cascaded recycling amplification system was developed for electrochemical sensing of microRNA 122 based on the DNAzyme/multicomponent nucleic acid enzyme cleavage technique and a dumbbell-shaped probe. The linear range and detection limit were obtained to be 1 fM-100 pM and 0.34 fM, respectively. Compared with some reported studies, the proposed system can achieve the selective detection of endogenous miRNA in liver injury patients and healthy human serums with the advantages of high sensitivity, low cost, and easy manipulation, which are significant for disease diagnosis as well as the fundamental research of molecular biology.
Collapse
Affiliation(s)
- Baoting Dou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Hui Zhou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Yajun Hong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Liming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
11
|
Takahashi M, Tsuji N, Yazaki K, Sei Y, Obata M. A fluorescent calix[4]arene with naphthalene units at the upper rim exhibits long fluorescence emission lifetime without fluorescence quenching. RSC Adv 2021; 11:11651-11654. [PMID: 35423651 PMCID: PMC8695987 DOI: 10.1039/d1ra01743h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 11/21/2022] Open
Abstract
We synthesised a new compound with four naphthyl groups in the upper rims of calix[4]arene (1). Compared to the monomer unit, compound 1 has redshifted absorption and fluorescence, together with high fluorescence quantum yield and long fluorescence lifetime, which is extremely rare because long fluorescence lifetime emission tends to reduce the quantum yield. Single-crystal X-ray analysis and quantum calculations in the S1 state revealed π-π through-space interactions between naphthalene rings.
Collapse
Affiliation(s)
- Masaki Takahashi
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi 4-4-37 Takeda Kofu 400-8510 Japan
| | - Naoya Tsuji
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi 4-4-37 Takeda Kofu 400-8510 Japan
| | - Kohei Yazaki
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi 4-4-37 Takeda Kofu 400-8510 Japan
| | - Yoshihisa Sei
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Makoto Obata
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi 4-4-37 Takeda Kofu 400-8510 Japan
| |
Collapse
|
12
|
Moya-Ramírez I, Bouton C, Kontoravdi C, Polizzi K. High resolution biosensor to test the capping level and integrity of mRNAs. Nucleic Acids Res 2021; 48:e129. [PMID: 33152073 PMCID: PMC7736790 DOI: 10.1093/nar/gkaa955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/22/2020] [Accepted: 10/08/2020] [Indexed: 11/21/2022] Open
Abstract
5′ Cap structures are ubiquitous on eukaryotic mRNAs, essential for post-transcriptional processing, translation initiation and stability. Here we describe a biosensor designed to detect the presence of cap structures on mRNAs that is also sensitive to mRNA degradation, so uncapped or degraded mRNAs can be detected in a single step. The biosensor is based on a chimeric protein that combines the recognition and transduction roles in a single molecule. The main feature of this sensor is its simplicity, enabling semi-quantitative analyses of capping levels with minimal instrumentation. The biosensor was demonstrated to detect the capping level on several in vitro transcribed mRNAs. Its sensitivity and dynamic range remained constant with RNAs ranging in size from 250 nt to approximately 2700 nt and the biosensor was able to detect variations in the capping level in increments of at least 20%, with a limit of detection of 2.4 pmol. Remarkably, it also can be applied to more complex analytes, such mRNA vaccines and mRNAs transcribed in vivo. This biosensor is an innovative example of a technology able to detect analytically challenging structures such as mRNA caps. It could find application in a variety of scenarios, from quality analysis of mRNA-based products such as vaccines to optimization of in vitro capping reactions.
Collapse
Affiliation(s)
- Ignacio Moya-Ramírez
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Clement Bouton
- Department of Infectious Disease, Imperial College London, London W2 1NY, UK
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Karen Polizzi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
13
|
Marín-Romero A, Tabraue-Chávez M, Dear JW, Sánchez-Martín RM, Ilyine H, Guardia-Monteagudo JJ, Fara MA, López-Delgado FJ, Díaz-Mochón JJ, Pernagallo S. Amplification-free profiling of microRNA-122 biomarker in DILI patient serums, using the luminex MAGPIX system. Talanta 2020; 219:121265. [PMID: 32887156 DOI: 10.1016/j.talanta.2020.121265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 01/08/2023]
Abstract
Dynamic chemical labelling is a single-base specific method to enable detection and quantification of micro-Ribonucleic Acids in biological fluids without extraction and pre-amplification. In this study, dynamic chemical labelling was combined with the Luminex MAGPIX system to profile levels of microRNA-122 biomarker in serum from patients with Drug-Induced Liver Injury.
Collapse
Affiliation(s)
- Antonio Marín-Romero
- DESTINA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, Granada, 18100, Spain; GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada, Andalusian Regional Government, PTS Granada - Avenida de la Ilustración, 114 - 18016, GRANADA, Spain; Universidad de Granada. Facultad de Farmacia. Departamento de Quimica Farmacéutica y Orgánica, Campus Cartuja s/n, 18071, Granada, Spain
| | - Mavys Tabraue-Chávez
- DESTINA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, Granada, 18100, Spain
| | - James W Dear
- Pharmacology,Therapeutics and Toxicology, Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47, Little France Crescent, Edinburgh, EH16, 4TJ, UK
| | - Rosario M Sánchez-Martín
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada, Andalusian Regional Government, PTS Granada - Avenida de la Ilustración, 114 - 18016, GRANADA, Spain; Universidad de Granada. Facultad de Farmacia. Departamento de Quimica Farmacéutica y Orgánica, Campus Cartuja s/n, 18071, Granada, Spain
| | - Hugh Ilyine
- DESTINA Genomics Ltd, 7-11 Melville St, Edinburgh, EH3 7PE, UK
| | - Juan J Guardia-Monteagudo
- DESTINA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, Granada, 18100, Spain
| | - Mario A Fara
- DESTINA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, Granada, 18100, Spain
| | - Francisco J López-Delgado
- DESTINA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, Granada, 18100, Spain
| | - Juan J Díaz-Mochón
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada, Andalusian Regional Government, PTS Granada - Avenida de la Ilustración, 114 - 18016, GRANADA, Spain; Universidad de Granada. Facultad de Farmacia. Departamento de Quimica Farmacéutica y Orgánica, Campus Cartuja s/n, 18071, Granada, Spain.
| | - Salvatore Pernagallo
- DESTINA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, Granada, 18100, Spain.
| |
Collapse
|