1
|
Choi Y, Jeon JY, Hwang J, Choi S, Kim KM, Park JU, Lee Y. 3D Histology visualizing hypoxia-induced upregulation of N-terminal cysteine using de novo fluorophore generation. Redox Biol 2025; 81:103577. [PMID: 40054059 PMCID: PMC11930192 DOI: 10.1016/j.redox.2025.103577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/22/2025] Open
Abstract
Our research group developed a novel fluorescence staining strategy based on the DNFC targeting N-Cys in proteins. By treating biological samples with non-fluorogenic citrate and coupling reagents, we achieved strong cyan fluorescence, enabling effective visualization of N-Cys proteins in cells and tissues. The DNFC reaction occurs specifically on N-Cys residues, making it highly ideal for monitoring protein processing events, particularly within the Arg/N-degron pathway. Under hypoxic conditions, DNFC fluorescence is significantly enhanced, likely due to the increased presence of N-Cys-containing proteins. Using immunoassays and mass spectrometry, we identified Class 2 actin as a target protein under hypoxia, emphasizing the utility of 3D histopathology for analyzing actin's spatial distribution. Furthermore, we have identified a novel finding indicating a significant presence of RGS5 in red blood cells (RBCs), a discovery that has not been previously reported. Our fluorescence imaging studies, conducted across various cell types, animal tissues, and human clinical samples suggest that DNFC staining, when combined with tissue-clearing techniques, enables detailed 3D imaging of N-Cys proteins and may offer a means to assess molecular responses to hypoxia within tissues. This study highlights the potential of DNFC as a valuable tool for imaging and quantitative analysis of N-proteomes and providing a foundation for 3D histopathology in hypoxia-related disease research.
Collapse
Affiliation(s)
- Yunjung Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Joo-Yeong Jeon
- Korea Basic Science Institute (KBSI), Seoul, 02841, South Korea
| | - Jeongin Hwang
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Sejong Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Ki-Myo Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, 07061, South Korea
| | - Ji-Ung Park
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, 07061, South Korea.
| | - Yan Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea; School of Transdisciplinary Innovations, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
2
|
Pac J, Koo DJ, Cho H, Jung D, Choi MH, Choi Y, Kim B, Park JU, Kim SY, Lee Y. Three-dimensional imaging and analysis of pathological tissue samples with de novo generation of citrate-based fluorophores. SCIENCE ADVANCES 2022; 8:eadd9419. [PMID: 36383671 PMCID: PMC9668299 DOI: 10.1126/sciadv.add9419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) histopathology based on the observation of thin tissue slides is the current paradigm in diagnosis and prognosis. However, labeling strategies in conventional histopathology are limited in compatibility with 3D imaging combined with tissue clearing techniques. Here, we present a rapid and efficient volumetric imaging technique of pathological tissues called 3D tissue imaging through de novo formation of fluorophores, or 3DNFC, which is the integration of citrate-based fluorogenic reaction DNFC and tissue clearing techniques. 3DNFC markedly increases the fluorescence intensity of tissues by generating fluorophores on nonfluorescent amino-terminal cysteine and visualizes the 3D structure of the tissues to provide their anatomical morphology and volumetric information. Furthermore, the application of 3DNFC to pathological tissue achieves the 3D reconstruction for the unbiased analysis of diverse features of the disorders in their natural context. We suggest that 3DNFC is a promising volumetric imaging method for the prognosis and diagnosis of pathological tissues.
Collapse
Affiliation(s)
- Jinyoung Pac
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Dong-Jun Koo
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Hyeongjun Cho
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Dongwook Jung
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Min-ha Choi
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 5 Gil 20, Boramae Road, Dongjak-Gu, Seoul 07061, South Korea
| | - Yunjung Choi
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Bohyun Kim
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, South Korea
| | - Ji-Ung Park
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 5 Gil 20, Boramae Road, Dongjak-Gu, Seoul 07061, South Korea
| | - Sung-Yon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Yan Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
3
|
Kasprzyk W, Świergosz T, Romańczyk PP, Feldmann J, Stolarczyk JK. The role of molecular fluorophores in the photoluminescence of carbon dots derived from citric acid: current state-of-the-art and future perspectives. NANOSCALE 2022; 14:14368-14384. [PMID: 36156633 DOI: 10.1039/d2nr03176k] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carbon dots (CDs), an emerging class of nanomaterials, have attracted considerable attention due to their intriguing photophysical properties. Despite their indisputable potential of utilization in many fascinating areas of research and life, some fundamental aspects concerning their structure and the origin of their photoluminescence (PL) properties still await clarification. The mechanism of PL emission of CDs is associated with their structure, which is dependent on the carbonization process. At the initial stages of CD synthesis via a bottom-up approach, molecular fluorophores are considered to dominate the optical characteristics of the resulting nanomaterials. In this review, the recent progress in the use of molecular state theory for explanation of the structure-property relationship in CDs is summarized. This review focuses exclusively on the molecular fluorophores existing in nanomaterials prepared from citric acid (CA) as one of the most frequent carbon sources reported for the bottom-up synthesis of CDs. Consequently, the most relevant transformations of CA and the history of molecular fluorophores derived from it are described, followed by an in-depth discussion on their relevance in understanding the specific photophysical properties of blue-, green-, and red-emitting CDs. Finally, the challenging issues and future perspectives of molecular state PL mechanism exploration in CDs are highlighted.
Collapse
Affiliation(s)
- Wiktor Kasprzyk
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland.
| | - Tomasz Świergosz
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| | - Piotr P Romańczyk
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland.
| | - Jochen Feldmann
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, Munich, 80539, Germany
| | - Jacek K Stolarczyk
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, Munich, 80539, Germany
- Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| |
Collapse
|
4
|
Ran X, Zhou Q, Zhang J, Wang S, Wang G, Yang H, Liu X, Wang Z, Yu X. A solvent-free and efficient synthesis of bicyclic 2-pyridone derivatives for endoplasmic reticulum imaging. Org Chem Front 2021. [DOI: 10.1039/d1qo00350j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A solvent-free method was developed for the synthesis of bicyclic 2-pyridone (DHIP) derivatives, which demonstrated excellent endoplasmic reticulum (ER) targeting and antibacterial activity after a slight structure regulation.
Collapse
Affiliation(s)
- Xiaoyun Ran
- Department of Chemistry
- Xihua University
- Chengdu
- China
| | - Qian Zhou
- Department of Chemistry
- Xihua University
- Chengdu
- China
| | - Jin Zhang
- Department of Chemistry
- Xihua University
- Chengdu
- China
| | - Shanqiang Wang
- Department of Pharmaceutics Engineering
- Xihua University
- Chengdu
- China
| | - Gui Wang
- Department of Pharmaceutics Engineering
- Xihua University
- Chengdu
- China
| | - Hui Yang
- Department of Chemistry
- Xihua University
- Chengdu
- China
| | - Xiaochun Liu
- Department of Chemistry
- Xihua University
- Chengdu
- China
| | - Zhouyu Wang
- Department of Chemistry
- Xihua University
- Chengdu
- China
| | - Xiaoqi Yu
- Department of Chemistry
- Xihua University
- Chengdu
- China
- Key Laboratory of Green Chemistry and Technology
| |
Collapse
|
5
|
Sunil L, Appaiah P, Martin A, Vasu P. Characterization of in silico modeled synthetic protein enriched with branched-chain amino acids expressed in Pichia pastoris. Int J Biol Macromol 2020; 168:518-525. [PMID: 33321135 DOI: 10.1016/j.ijbiomac.2020.12.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 11/28/2022]
Abstract
We have designed earlier the 3-dimensional structure of protein enriched with 56% branched-chain amino acids (BCAA) based on an α-helical coiled-coil structure. The chemically synthesized DNA (BCAA51 gene) was expressed in Pichia pastoris and confirmed by SDS-PAGE and western blot analysis. In the present study, the purified recombinant protein was characterized using circular dichroism and data revealed that the secondary structure contained 53.5% α-helix, 3.2% β-strand, and 43.3% turns, which is in concurrence with the overall structure predicted by in silico modeling. The LC-ESI-MS/MS spectra revealed that three peptide masses showed similarity to peptides like EQLTK, LEIVIR, and ILDK, of the modeled BCAA51 protein with the sequence coverage of ~16% from N-terminal region. The N-terminal sequence of the first seven amino acid residues (EQLTKLE) was exactly matching with the in silico designed protein. In vitro digestibility of the protein using SGF and SIF showed the disappearance of ~11 kDa band and appearance of low molecular weight peptides, which indicated that the protein was easily digestible and non-allergenic, which is the overall objective of this study. Further in vivo digestibility and toxicology studies are required to conclusively utilize this protein as a supplement for the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- L Sunil
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Prakruthi Appaiah
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Asha Martin
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Prasanna Vasu
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|