1
|
Qi X, Khattak BN, Alam A, Liu W, Gui Y. The Gas-Sensing Properties of Ag-/Au-Modified Ti 3C 2T x (T=O, F, OH) Monolayers for HCHO and C 6H 6 Gases. Molecules 2025; 30:219. [PMID: 39860089 PMCID: PMC11767953 DOI: 10.3390/molecules30020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Based on density functional theory calculations, this study analyzed the gas-sensing performance of Ti3C2Tx (T=O, F, OH) monolayers modified with precious metal atoms (Ag and Au) for HCHO and C6H6 gas molecules. Firstly, stable structures of Ag- and Au-single-atom doped Ti3C2Tx (T=O, F, OH) surfaces were constructed and then HCHO and C6H6 gas molecules were set to approach the modified structures at different initial positions. The most stable adsorption structure was selected for further analysis of the adsorption energy, adsorption distance, charge transfer, charge deformation density, total density of states, and partial density of states. The results show that the Ag and Au modifications improved the adsorption performance of Ti3C2O2 for HCHO and C6H6. In comparison, the effect of the Au modification was better than that of Ag. For Ti3C2F2, the Ag and Au doping modifications did not significantly change the adsorption effects for HCHO and C6H6. However, the Ag and Au doping modifications decreased the adsorption of Ti3C2(OH)2 for HCHO, while there was no significant change in the gas adsorption for C6H6. The above results serve as a theoretical foundation for the design of new sensors for HCHO and C6H6.
Collapse
Affiliation(s)
- Xinghua Qi
- College of Economics and Management, Huanghuai University, Zhumadian 463000, China
- Department of Development Studies, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, Pakistan
| | - Bahadar Nawab Khattak
- Department of Development Studies, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, Pakistan
| | - Arif Alam
- Department of Development Studies, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, Pakistan
| | - Wenfu Liu
- College of Energy Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yingang Gui
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Liu R, Wang P, Wang X, Chen F, Yu H. Facilitating Oriented Electron Transfer from Cu to Mo 2C MXene for Weakened Mo─H Bond Toward Enhanced Photocatalytic H 2 Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408330. [PMID: 39604232 DOI: 10.1002/smll.202408330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Indexed: 11/29/2024]
Abstract
Mo2C MXene (Mo2CTx) is recognized as an excellent cocatalyst due to unique physicochemical properties and platinum-like d-band of Mo active sites. However, Mo sites of Mo2CTx with high-density empty d-orbitals exhibit strong Mo─Hads bonds during photocatalytic hydrogen evolution, leading to easy adsorption of hydrogen ions from solution and unfavorable desorption of H2 from Mo sites. To weaken the Mo─Hads bond, a strategy of oriented electron transfer from Cu to Mo2CTx to increase the antibonding orbital occupancy of Mo─Hads hybrid orbitals is implemented by introducing Cu into Mo2CTx interlayers to form Cu-Mo2CTx. The Cu-Mo2CTx is synthesized from Mo2Ga2C and CuCl2 via a one-step molten salt method and combined with TiO2 to form Cu-Mo2CTx/TiO2 photocatalyst through an ultrasound-assisted approach. Hydrogen production tests reveal that an exceptional performance of Cu-Mo2CTx/TiO2 (6446 µmol h-1 g-1, AQE = 18.3%) is 8.4 fold higher than that of Mo2CF2/TiO2 (Mo2CF2 by the conventional etchant NH4F+HCl). Density functional theory (DFT) calculations and characterization results corroborate that the oriented electron transfer from Cu to Mo2CTx increases the Mo─Hads antibonding occupancy in Cu-Mo2CTx, thereby weakening Mo─Hads bonds and accelerating the hydrogen evolution rate of TiO2. This research offers valuable insights into optimizing H-adsorption capabilities at active sites on MXene materials.
Collapse
Affiliation(s)
- Ruiyun Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Ping Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Xuefei Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Feng Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Huogen Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| |
Collapse
|
3
|
Singh K, Selvaraj K. Tensile nanostructured hierarchically porous non-precious transition metal-based electrocatalyst for durable anion exchange membrane-based water electrolysis. J Colloid Interface Sci 2024; 664:389-399. [PMID: 38479275 DOI: 10.1016/j.jcis.2024.02.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 04/07/2024]
Abstract
Electrochemical water electrolysis is a promising method for sustainable hydrogen production while transiting towards hydrogen economy. Among many, the Anion Exchange Membrane (AEM) based water electrolyzer is an emerging yet potentially affordable technology on maturity for producing large-scale hydrogen accommodating the usage of Non-Platinum Group Metal (non-PGM) based inexpensive electrocatalysts. Herein, we demonstrate the excellent performance of a bifunctional Nickel Copper Phosphide-Nickel sulphide (NCP-NS) electrocatalyst with a unique tensile nanostructure obtained via a facile, controlled ambient galvanic displacement route. An AEM electrolyzer with a larger active area of 10 cm2 stacked with the symmetric NCP-NS electrodes and a membrane demonstrates scalability with a requirement of a mere 1.66 V to reach a current density of 10 mA cm-2. The nickel-copper phosphide boosts the kinetics of charge transfer between the electrode and electrolyte interface, while a unique combination of a few nickel sulphide phases present in the catalyst provides sufficiently appropriate active sites for the overall water electrolysis. For the first time, we report a room temperature performance of ∼ 230 mA cm-2 at 2 V for a non-PGM-based bifunctional electrocatalyst with exceptional durability for over 300 h of operation in an AEM water electrolyser with a retention rate of 95 %-97 % at a current density range of 80-800 mA cm-2.
Collapse
Affiliation(s)
- Kailash Singh
- Nano and Computational Materials Lab, Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kaliaperumal Selvaraj
- Nano and Computational Materials Lab, Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Central Microscopy Facility, CSIR-National Chemical Laboratory, Pune 411008, India.
| |
Collapse
|
4
|
Hussain I, Amara U, Bibi F, Hanan A, Lakhan MN, Soomro IA, Khan A, Shaheen I, Sajjad U, Mohana Rani G, Javed MS, Khan K, Hanif MB, Assiri MA, Sahoo S, Al Zoubi W, Mohapatra D, Zhang K. Mo-based MXenes: Synthesis, properties, and applications. Adv Colloid Interface Sci 2024; 324:103077. [PMID: 38219341 DOI: 10.1016/j.cis.2023.103077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/09/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
Ti-MXene allows a range of possibilities to tune their compositional stoichiometry due to their electronic and electrochemical properties. Other than conventionally explored Ti-MXene, there have been ample opportunities for the non-Ti-based MXenes, especially the emerging Mo-based MXenes. Mo-MXenes are established to be remarkable with optoelectronic and electrochemical properties, tuned energy, catalysis, and sensing applications. In this timely review, we systematically discuss the various organized synthesis procedures, associated experimental tunning parameters, physiochemical properties, structural evaluation, stability challenges, key findings, and a wide range of applications of emerging Mo-MXene over Ti-MXenes. We also critically examined the precise control of Mo-MXenes to cater to advanced applications by comprehensively evaluating the summary of recent studies using artificial intelligence and machine learning tools. The critical future perspectives, significant challenges, and possible outlooks for successfully developing and using Mo-MXenes for various practical applications are highlighted.
Collapse
Affiliation(s)
- Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong.
| | - Umay Amara
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong
| | - Faiza Bibi
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor 47500, Malaysia
| | - Abdul Hanan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor 47500, Malaysia
| | - Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Irfan Ali Soomro
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Amjad Khan
- School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan, Chungnam 31253, South Korea
| | - Irum Shaheen
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla 34956, Istanbul, Turkey
| | - Uzair Sajjad
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Gokana Mohana Rani
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Keelung Road, Taipei 10607, Taiwan.
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Karim Khan
- School of Electrical Engineering & Intelligentization, Dongguan University of Technology, Dongguan 523808, China
| | - Muhammad Bilal Hanif
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovakia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea.
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Debananda Mohapatra
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea.
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong.
| |
Collapse
|
5
|
Dai X, Du ZY, Sun Y, Chen P, Duan X, Zhang J, Li H, Fu Y, Jia B, Zhang L, Fang W, Qiu J, Ma T. Enhancing Green Ammonia Electrosynthesis Through Tuning Sn Vacancies in Sn-Based MXene/MAX Hybrids. NANO-MICRO LETTERS 2024; 16:89. [PMID: 38227269 PMCID: PMC10792155 DOI: 10.1007/s40820-023-01303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/25/2023] [Indexed: 01/17/2024]
Abstract
Renewable energy driven N2 electroreduction with air as nitrogen source holds great promise for realizing scalable green ammonia production. However, relevant out-lab research is still in its infancy. Herein, a novel Sn-based MXene/MAX hybrid with abundant Sn vacancies, Sn@Ti2CTX/Ti2SnC-V, was synthesized by controlled etching Sn@Ti2SnC MAX phase and demonstrated as an efficient electrocatalyst for electrocatalytic N2 reduction. Due to the synergistic effect of MXene/MAX heterostructure, the existence of Sn vacancies and the highly dispersed Sn active sites, the obtained Sn@Ti2CTX/Ti2SnC-V exhibits an optimal NH3 yield of 28.4 µg h-1 mgcat-1 with an excellent FE of 15.57% at - 0.4 V versus reversible hydrogen electrode in 0.1 M Na2SO4, as well as an ultra-long durability. Noticeably, this catalyst represents a satisfactory NH3 yield rate of 10.53 µg h-1 mg-1 in the home-made simulation device, where commercial electrochemical photovoltaic cell was employed as power source, air and ultrapure water as feed stock. The as-proposed strategy represents great potential toward ammonia production in terms of financial cost according to the systematic technical economic analysis. This work is of significance for large-scale green ammonia production.
Collapse
Affiliation(s)
- Xinyu Dai
- Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Institute of Clean Energy Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Zhen-Yi Du
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Ying Sun
- Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Institute of Clean Energy Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China.
| | - Ping Chen
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, People's Republic of China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Junjun Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, Ningxia, People's Republic of China
| | - Hui Li
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Yang Fu
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Wenhui Fang
- College of Chemical Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jieshan Qiu
- College of Chemical Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
6
|
Zhou Y, Wu Y, Guo D, Li J, Li Y, Yang X, Fu S, Sui G, Chai DF. Novel Strain Engineering Combined with a Microscopic Pore Synergistic Modulated Strategy for Designing Lattice Tensile-Strained Porous V 2C-MXene for High-Performance Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15797-15809. [PMID: 36930051 DOI: 10.1021/acsami.2c19729] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transition metal carbon/nitride (MXene) holds immense potential as an innovative electrocatalyst for enhancing the overall water splitting properties. Nevertheless, the re-stacking nature induced by van der Waals force remains a significant challenge. In this work, the lattice tensile-strained porous V2C-MXene (named as TS(24)-P(50)-V2C) is successfully constructed via the rapid spray freezing method and the following hydrothermal treatment. Besides, the influence of lattice strain degree and microscopic pores on the catalytic ability is reviewed and explored systematically. The lattice tensile strain within V2C-MXene could widen the interlayer spacing and accelerate the ion transfer. The microscopic pores could change the ion transmission path and shorten the migration distance. As a consequence, the obtained TS(24)-P(50)-V2C shows extraordinary hydrogen evolution reaction and oxygen evolution reaction activity with the overpotential of 154 and 269 mV, respectively, at the current density of 10 mA/cm2, which is quite remarkable compared to the MXene-based electrocatalysts. Moreover, the overall water splitting device assembled using TS(24)-P(50)-V2C as both anode and cathode demonstrates a low cell voltage requirement of 1.57 V to obtain 10 mA/cm2. Overall, the implementation of this work could offer an exciting avenue to overcome the re-stacking issue of V2C-MXene, affording a high-efficiency electrocatalyst with superior catalytic activity and desirable reaction kinetics.
Collapse
Affiliation(s)
- Yu Zhou
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yousen Wu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Yue Li
- School of Polymer Science & Engineering, Qingdao University of Science & Technology, Qingdao 266101, China
| | - Xue Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shanshan Fu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Guozhe Sui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Dong-Feng Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
7
|
Xiao S, Zheng Y, Wu X, Zhou M, Rong X, Wang L, Tang Y, Liu X, Qiu L, Cheng C. Tunable Structured MXenes With Modulated Atomic Environments: A Powerful New Platform for Electrocatalytic Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203281. [PMID: 35989101 DOI: 10.1002/smll.202203281] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Owing to their rich surface chemistry, high conductivity, tunable bandgap, and thermal stability, structured 2D transition-metal carbides, nitrides, and carbonitrides (MXenes) with modulated atomic environments have emerged as efficient electrochemical energy conversion systems in the past decade. Herein, the most recent advances in the engineering of tunable structured MXenes as a powerful new platform for electrocatalytic energy conversion are comprehensively summarized. First, the state-of-the-art synthetic and processing methods, tunable nanostructures, electronic properties, and modulation principles of engineering MXene-derived nanoarchitectures are focused on. The current breakthroughs in the design of catalytic centers, atomic environments, and the corresponding structure-performance correlations, including termination engineering, heteroatom doping, defect engineering, heterojunctions, and alloying, are discussed. Furthermore, representative electrocatalytic applications of structured MXenes in energy conversion systems are also summarized. Finally, the challenges in and prospects for constructing MXene-based electrocatalytic materials are also discussed. This review provides a leading-edge understanding of the engineering of various MXene-based electrocatalysts and offers theoretical and experimental guidance for prospective studies, thereby promoting the practical applications of tunable structured MXenes in electrocatalytic energy conversion systems.
Collapse
Affiliation(s)
- Sutong Xiao
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yijuan Zheng
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiao Rong
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Liyun Wang
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yuanjiao Tang
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Xikui Liu
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Li Qiu
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Peera SG, Koutavarapu R, Chao L, Singh L, Murugadoss G, Rajeshkhanna G. 2D MXene Nanomaterials as Electrocatalysts for Hydrogen Evolution Reaction (HER): A Review. MICROMACHINES 2022; 13:1499. [PMID: 36144122 PMCID: PMC9500977 DOI: 10.3390/mi13091499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 05/27/2023]
Abstract
MXenes, a novel family of 2D transition metal carbide, nitride and carbonitride materials, have been gaining tremendous interest in recent days as potential electrocatalysts for various electrochemical reactions, including hydrogen evolution reaction (HER). MXenes are characterized by their etchable metal layers, excellent structural stability, versatility for heteroatoms doping, excellent electronic conductivity, unique surface functional groups and admirable surface area, suitable for the role of electrocatalyst/support in electrochemical reactions, such as HER. In this review article, we summarized recent developments in MXene-based electrocatalysts synthesis and HER performance in terms of the theoretical and experimental point of view. We systematically evaluated the superiority of the MXene-based catalysts over traditional Pt/C catalysts in terms of HER kinetics, Tafel slope, overpotential and stability, both in acidic and alkaline electrolytic environments. We also pointed out the motives behind the electro catalytic enhancements, the effect of synthesis conditions, heteroatom doping, the effect of surface terminations on the electrocatalytic active sites of various MXenes families. At the end, various possible approaches were recommended for a deeper understanding of the active sites and catalytic improvement of MXenes catalysts for HER.
Collapse
Affiliation(s)
- Shaik Gouse Peera
- Department of Environmental Science, Keimyung University, Dalseo-gu, Daegu 42601, Korea
| | - Ravindranadh Koutavarapu
- Department of Robotics Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Liu Chao
- Engineering Research Center for Hydrogen Energy Materials and Devices, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Lakhveer Singh
- Department of Chemistry, Sardar Patel University, Mandi 175001, Himachal Pradesh, India
- Department of Civil Engineering, Center for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Govindhasamy Murugadoss
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, Tamilnadu, India
| | - Gaddam Rajeshkhanna
- Department of Chemistry, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| |
Collapse
|
9
|
Narendra Kumar AV, Muthu Prabhu S, Shin WS, Yadav KK, Ahn Y, Abdellattif MH, Jeon BH. Prospects of non-noble metal single atoms embedded in two-dimensional (2D) carbon and non-carbon-based structures in electrocatalytic applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Hussain S, Vikraman D, Nazir G, Mehran MT, Shahzad F, Batoo KM, Kim HS, Jung J. Development of Binder-Free Three-Dimensional Honeycomb-like Porous Ternary Layered Double Hydroxide-Embedded MXene Sheets for Bi-Functional Overall Water Splitting Reactions. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2886. [PMID: 36014753 PMCID: PMC9412967 DOI: 10.3390/nano12162886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
In this study, a honeycomb-like porous-structured nickel-iron-cobalt layered double hydroxide/Ti3C2Tx (NiFeCo-LDH@MXene) composite was successfully fabricated on a three-dimensional nickel foam using a simple hydrothermal approach. Owing to their distinguishable characteristics, the fabricated honeycomb porous-structured NiFeCo-LDH@MXene composites exhibited outstanding bifunctional electrocatalytic activity for pair hydrogen and oxygen evolution reactions in alkaline medium. The developed NiFeCo-LDH@MXene electrocatalyst required low overpotentials of 130 and 34 mV to attain a current density of 10 mA cm-2 for OER and HER, respectively. Furthermore, an assembled NiFeCo-LDH@MXene‖NiFeCo-LDH@MXene device exhibited a cell voltage of 1.41 V for overall water splitting with a robust firmness for over 24 h to reach 10 mA cm-2 current density, signifying outstanding performance for water splitting reactions. These results demonstrated the promising potential of the designed 3D porous NiFeCo-LDH@MXene sheets as outstanding candidates to replace future green energy conversion devices.
Collapse
Affiliation(s)
- Sajjad Hussain
- Hybrid Materials Center (HMC), Sejong University, Seoul 05006, Korea
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea
| | - Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| | - Muhammad Taqi Mehran
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan
| | - Faisal Shahzad
- Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Khalid Mujasam Batoo
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea
| | - Jongwan Jung
- Hybrid Materials Center (HMC), Sejong University, Seoul 05006, Korea
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| |
Collapse
|
11
|
Unnikrishnan B, Wu CW, Sangili A, Hsu YJ, Tseng YT, Shanker Pandey J, Chang HT, Huang CC. Synthesis and in situ sulfidation of molybdenum carbide MXene using fluorine-free etchant for electrocatalytic hydrogen evolution reactions. J Colloid Interface Sci 2022; 628:849-857. [DOI: 10.1016/j.jcis.2022.07.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022]
|
12
|
Das C, Sinha N, Roy P. Transition Metal Non-Oxides as Electrocatalysts: Advantages and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202033. [PMID: 35703063 DOI: 10.1002/smll.202202033] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The identification of hydrogen as green fuel in the near future has stirred global realization toward a sustainable outlook and thus boosted extensive research in the field of water electrolysis focusing on the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). A huge class of compounds consisting of transition metal-based nitrides, carbides, chalcogenides, phosphides, and borides, which can be collectively termed transition metal non-oxides (TMNOs), has emerged recently as an efficient class of electrocatalysts in terms of performance and longevity when compared to transition metal oxides (TMOs). Moreover, the superiority of TMNOs over TMOs to effectively catalyze not only OERs but also HERs and ORRs renders bifunctionality and even trifunctionality in some cases and therefore can replace conventional noble metal electrocatalysts. In this review, the crystal structure and phases of different classes of nanostructured TMNOs are extensively discussed, focusing on recent advances in design strategies by various regulatory synthetic routes, and hence diversified properties of TMNOs are identified to serve as next-generation bi/trifunctional electrocatalysts. The challenges and future perspectives of materials in the field of energy conversion and storage aiding toward a better hydrogen economy are also discussed in this review.
Collapse
Affiliation(s)
- Chandni Das
- Materials Processing & Microsystems Laboratory, CSIR - Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nibedita Sinha
- Materials Processing & Microsystems Laboratory, CSIR - Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Poulomi Roy
- Materials Processing & Microsystems Laboratory, CSIR - Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
13
|
Ponnada S, Kiai MS, Gorle DB, Venkatachalam R, Saini B, Murugavel K, Nowduri A, Singhal R, Marken F, Kulandainathan AM, Nanda KK, Sharma RK, Bose RSC. Recent Status and Challenges in Multifunctional Electrocatalysis Based on 2D MXenes. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00428c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to their chemical and electrical characteristics, such as metallic conductivity, redox-activity in transition metals, high hydrophilicity, and adjustable surface properties, MXenes are emerging as important contributors to oxygen reduction...
Collapse
|
14
|
Jin J, Xiao T, Zhang YF, Zheng H, Wang H, Wang R, Gong Y, He B, Liu X, Zhou K. Hierarchical MXene/transition metal chalcogenide heterostructures for electrochemical energy storage and conversion. NANOSCALE 2021; 13:19740-19770. [PMID: 34821248 DOI: 10.1039/d1nr05799e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MXenes have gained rapidly increasing attention owing to their two-dimensional (2D) layered structures and unique mechanical and physicochemical properties. However, MXenes have some intrinsic limitations (e.g., the restacking tendency of the 2D structure) that hinder their practical applications. Transition metal chalcogenide (TMC) materials such as SnS, NiS, MoS2, FeS2, and NiSe2 have attracted much interest for energy storage and conversion by virture of their earth-abundance, low costs, moderate overpotentials, and unique layered structures. Nonetheless, the intrinsic poor electronic conductivity and huge volume change of TMC materials during the alkali metal-ion intercalation/deintercalation process cause fast capacity fading and poor-rate and poor-cycling performances. Constructing heterostructures based on metallic conductive MXenes and highly electrochemically active TMCs is a promising and effective strategy to solve these problems and enhance the electrochemical performances. This review highlights and discusses the recent research development of MXenes and hierarchical MXene/TMC heterostructures, with a focus on the synthesis strategies, surface/heterointerface engineering, and potential applications for lithium-ion batteries, sodium-ion batteries, lithium-sulfur batteries, supercapacitors, electrocatalysis, and photocatalysis. The critical challenges and perspectives of the future development of MXenes and hierarchical MXene/TMC heterostructures for electrochemical energy storage and conversion are forecasted.
Collapse
Affiliation(s)
- Jun Jin
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Tuo Xiao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - You-Fang Zhang
- Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Han Zheng
- Environmental Process Modeling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141.
| | - Huanwen Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Rui Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yansheng Gong
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Beibei He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Kun Zhou
- Environmental Process Modeling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141.
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
15
|
Qiao J, Kong L, Xu S, Lin K, He W, Ni M, Ruan Q, Zhang P, Liu Y, Zhang W, Pan L, Sun Z. Research progress of MXene-based catalysts for electrochemical water-splitting and metal-air batteries. ENERGY STORAGE MATERIALS 2021; 43:509-530. [DOI: 10.1016/j.ensm.2021.09.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
|
16
|
Chen W, Wei W, Wang K, Cui J, Zhu X, Ostrikov KK. Partial sulfur vacancies created by carbon-nitrogen deposition of MoS 2 for high-performance overall electrocatalytic water splitting. NANOSCALE 2021; 13:14506-14517. [PMID: 34473169 DOI: 10.1039/d1nr02966e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrocatalytic water splitting is a promising energy-efficient solution to obtain clean hydrogen energy. Bifunctional electrocatalysts made up of cheap and abundant elements and suitable for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are critically needed, yet their performance deserves substantial improvement. The catalytic activity could be improved by creating unsaturated defects, which so far has rarely been demonstrated. Here, we combine the effects of unsaturated sulfur vacancies and bi-elemental C and N doping in MoS2 nanosheets to achieve high-performance bifunctional electrocatalysts. The new method to obtain C and N doped MoS2 at high temperature is presented. The obtained C-N-MoS2/CC-T catalysts with S unsaturated defect sites and Mo-N links exhibit high activity and improved electrical conductivity for both the HER and OER in alkaline media. Systematic experiments and density functional theory (DFT) analysis confirm that CN-doping exposes catalytically active sites and enhances water adsorption. The optimized C-N-MoS2/CC-700 catalyst exhibits low overpotentials of 90 and 230 mV at 10 mA cm-2 for the HER and OER, respectively. Importantly, the porous C-N-MoS2/CC-700 nanosheets deliver low voltages of 1.58 V for the overall water splitting at 10 mA cm-2 and robust operation for 30 h without any reduced activity. Such impressive performances are attributed to their unique structure with large specific surface area, abundant S unsaturated sites, Mo-N links, and shortened electron transfer paths. This partial defect filling by the bi-dopant incorporation approach is generic and is promising for a broad range of advanced energy materials.
Collapse
Affiliation(s)
- Wenxia Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China.
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China.
| | - Kefeng Wang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China.
| | - Jinhai Cui
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China.
| | - Xingwang Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
17
|
Recent advances in MXene-based nanoarchitectures as electrode materials for future energy generation and conversion applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213806] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Li S, Sun J, Guan J. Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63693-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Ren X, Wei Q, Wu F, Wang Y, Li Q. Binary V–Mo sulfides grown on CNTs with morphological and electronic modulation for enhanced hydrogen evolution. CrystEngComm 2021. [DOI: 10.1039/d1ce00938a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binary V–Mo sulfides on carbon nanotubes with superior electrocatalytic water splitting performance in acid media are successfully synthesized by a facile one-step sintering method.
Collapse
Affiliation(s)
- Xianpei Ren
- Laboratory of Micro-Nano Photoelectric Materials and Devices, School of Physics and Electronic Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
- Solar Energy Integration Technology Popularization and Application Key Laboratory of Sichuan Province, Panzhihua 617000, China
| | - Qingbo Wei
- Key Laboratory of Chemical Reaction Engineering of Shaanxi Province, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, China
| | - Fei Wu
- Laboratory of Micro-Nano Photoelectric Materials and Devices, School of Physics and Electronic Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Yonghua Wang
- Laboratory of Micro-Nano Photoelectric Materials and Devices, School of Physics and Electronic Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Qiang Li
- Laboratory of Micro-Nano Photoelectric Materials and Devices, School of Physics and Electronic Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| |
Collapse
|
20
|
Nanomaterials as electrocatalyst for hydrogen and oxygen evolution reaction: Exploitation of challenges and current progressions. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114871] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Lim KRG, Handoko AD, Johnson LR, Meng X, Lin M, Subramanian GS, Anasori B, Gogotsi Y, Vojvodic A, Seh ZW. 2H-MoS 2 on Mo 2CT x MXene Nanohybrid for Efficient and Durable Electrocatalytic Hydrogen Evolution. ACS NANO 2020; 14:16140-16155. [PMID: 33186028 DOI: 10.1021/acsnano.0c08671] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The development of highly efficient and durable earth-abundant hydrogen evolution reaction (HER) catalysts is crucial for the extensive implementation of the hydrogen economy. Members of the 2D MXenes family, particularly Mo2CTx, have recently been identified as promising HER catalysts. However, their inherent oxidative instability in air and aqueous electrolyte solutions is hindering their widespread use. Herein, we present a simple and scalable method to circumvent adventitious oxidation in Mo2CTx MXenes via in situ sulfidation to form a Mo2CTx/2H-MoS2 nanohybrid. The intimate epitaxial coupling at the Mo2CTx/2H-MoS2 nanohybrid interface afforded superior HER activities, requiring only 119 or 182 mV overpotential to yield -10 or -100 mA cm-2geom current densities, respectively. Density functional theory calculations reveal strongest interfacial adhesion was found within the nanohybrid structure as compared to the physisorbed nanohybrid, and the possibility to tune the HER overpotential through manipulating the extent of MXene sulfidation. Critically, the presence of 2H-MoS2 suppresses further oxidation of the MXene layer, enabling the nanohybrid to sustain industrially relevant current densities of over -450 mA cm-2geom with exceptional durability. Less than 30 mV overpotential degradation was observed after 10 continuous days of electrolysis at a fixed -10 mA cm-2geom current density or 100,000 successive cyclic voltammetry cycles. The exceptional HER durability of the Mo2CTx/2H-MoS2 nanohybrid presents a major step forward to realize practical implementation of MXenes as noble metal free catalysts for broad-based applications in water splitting and energy conversion.
Collapse
Affiliation(s)
- Kang Rui Garrick Lim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Albertus D Handoko
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Luke R Johnson
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xing Meng
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Ming Lin
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Gomathy Sandhya Subramanian
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Babak Anasori
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | | | - Aleksandra Vojvodic
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| |
Collapse
|
22
|
Lim KRG, Handoko AD, Nemani SK, Wyatt B, Jiang HY, Tang J, Anasori B, Seh ZW. Rational Design of Two-Dimensional Transition Metal Carbide/Nitride (MXene) Hybrids and Nanocomposites for Catalytic Energy Storage and Conversion. ACS NANO 2020; 14:10834-10864. [PMID: 32790329 DOI: 10.1021/acsnano.0c05482] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electro-, photo-, and photoelectrocatalysis play a critical role toward the realization of a sustainable energy economy. They facilitate numerous redox reactions in energy storage and conversion systems, enabling the production of chemical feedstock and clean fuels from abundant resources like water, carbon dioxide, and nitrogen. One major obstacle for their large-scale implementation is the scarcity of cost-effective, durable, and efficient catalysts. A family of two-dimensional transition metal carbides, nitrides, and carbonitrides (MXenes) has recently emerged as promising earth-abundant candidates for large-area catalytic energy storage and conversion due to their unique properties of hydrophilicity, high metallic conductivity, and ease of production by solution processing. To take full advantage of these desirable properties, MXenes have been combined with other materials to form MXene hybrids with significantly enhanced catalytic performances beyond the sum of their individual components. MXene hybridization tunes the electronic structure toward optimal binding of redox active species to improve intrinsic activity while increasing the density and accessibility of active sites. This review outlines recent strategies in the design of MXene hybrids for industrially relevant electrocatalytic, photocatalytic, and photoelectrocatalytic applications such as water splitting, metal-air/sulfur batteries, carbon dioxide reduction, and nitrogen reduction. By clarifying the roles of individual material components in the MXene hybrids, we provide design strategies to synergistically couple MXenes with associated materials for highly efficient and durable catalytic applications. We conclude by highlighting key gaps in the current understanding of MXene hybrids to guide future MXene hybrid designs in catalytic energy storage and conversion applications.
Collapse
Affiliation(s)
- Kang Rui Garrick Lim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Albertus D Handoko
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Srinivasa Kartik Nemani
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Brian Wyatt
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Hai-Ying Jiang
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Babak Anasori
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| |
Collapse
|
23
|
Unique advantages of 2D inorganic nanosheets in exploring high-performance electrocatalysts: Synthesis, application, and perspective. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213280] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Zhang X, Teng SY, Loy ACM, How BS, Leong WD, Tao X. Transition Metal Dichalcogenides for the Application of Pollution Reduction: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1012. [PMID: 32466377 PMCID: PMC7353444 DOI: 10.3390/nano10061012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/29/2023]
Abstract
The material characteristics and properties of transition metal dichalcogenide (TMDCs) have gained research interest in various fields, such as electronics, catalytic, and energy storage. In particular, many researchers have been focusing on the applications of TMDCs in dealing with environmental pollution. TMDCs provide a unique opportunity to develop higher-value applications related to environmental matters. This work highlights the applications of TMDCs contributing to pollution reduction in (i) gas sensing technology, (ii) gas adsorption and removal, (iii) wastewater treatment, (iv) fuel cleaning, and (v) carbon dioxide valorization and conversion. Overall, the applications of TMDCs have successfully demonstrated the advantages of contributing to environmental conversation due to their special properties. The challenges and bottlenecks of implementing TMDCs in the actual industry are also highlighted. More efforts need to be devoted to overcoming the hurdles to maximize the potential of TMDCs implementation in the industry.
Collapse
Affiliation(s)
- Xixia Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China;
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Sin Yong Teng
- Institute of Process Engineering & NETME Centre, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic;
| | - Adrian Chun Minh Loy
- Department of Chemical Engineering, Monash University, Clayton, Melbourne 3800, Australia;
| | - Bing Shen How
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, Kuching 93350, Malaysia;
| | - Wei Dong Leong
- Department of Chemical and Environmental Engineering, University of Nottingham, Semenyih 43500, Malaysia;
| | - Xutang Tao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China;
| |
Collapse
|