1
|
Liu Y, Li B, Yang R, Shang C, Bai Y, Zheng B, Zhao L. Ultrasound-triggered lysosomal alkalinization to block autophagy in tumor therapy. Biomaterials 2025; 320:123250. [PMID: 40081223 DOI: 10.1016/j.biomaterials.2025.123250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 02/26/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Lysosomes play a crucial role in regulating cancer progression and drug resistance. However, there is a pressing need for the development of drugs that can safely and effectively modulate the pH of cancerous lysosomes in a controlled manner. In this study, we propose a novel strategy for lysosomal alkalinization triggered by piezoelectricity. Our findings indicate that the electrons generated by (BaTiO3/Zr/Ca) BCZT under sonication effectively alkalinize the lysosomes. Molecular dynamics simulations further demonstrate that alterations in lysosomal pH lead to modifications in the conformation of V-ATPase (proton pump), enhancing its interaction with sodium ions while partially excluding hydrogen ions from entering the lysosomes. This mechanism helps maintain lysosomal alkalization, resulting in reduced hydrolase activity and preventing the degradation of proteins and damaged organelles. The accumulation of nanoparticles within the lysosomes causes swelling and gradual destruction of the lysosomal membrane. Consequently, this lysosomal dysfunction hampers the fusion with autophagosomes, inhibiting autophagy in tumor cells and promoting apoptosis in various tumor types. Our strategy significantly inhibited tumor volume growth in mice during animal studies. In conclusion, our piezoelectric-triggered lysosomal alkalinization strategy holds promise for innovative breakthroughs in the treatment of multiple cancers.
Collapse
Affiliation(s)
- Yong Liu
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P R China; Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Bowen Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Run Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Chenxu Shang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yang Bai
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; Department of Stomatology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Bin Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, China; FANGZHOU Biotechnology (Tianjin) Co. Ltd (FZBio), Building 5, Tianjin Science and Technology Square, East Research Road, Nankai District, Tianjin, 300192, China.
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P R China; Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, 121000, China; Collaborative Innovation Center for Age-related Disease, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
2
|
Zhou Y, Xiong K, Feng T, Wu X, Liang J, Chen Y, Chao H. A Nucleus-Targeting Ruthenium(II) Complex Induces DNA Condensation in Cisplatin-Resistant Tumor Cells. Angew Chem Int Ed Engl 2025; 64:e202504970. [PMID: 40169373 DOI: 10.1002/anie.202504970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/03/2025]
Abstract
One of the conventional ways to eradicate tumor cells is to utilize chemotherapy agents, e.g., cisplatin, to induce DNA damage. However, DNA damage repair mechanisms can significantly limit the therapeutic efficacy of cisplatin. These mechanisms enable tumor cells to repair the DNA damage caused by the drug, leading to resistance. Cisplatin and similar drugs bind to specific DNA sites without significantly altering their conformation. As a result, DNA repair enzymes can still attach to and repair the damaged DNA. To address this issue, we designed four Ru(II) complexes (RuC3, RuC6, RuC9, and RuC12) with high positive charges of +8 valence and regulated their nuclear accumulation levels by adjusting the length of alkyl chains. RuC9 exhibits the highest nucleus accumulation level. DNA conformation was significantly altered by inducing DNA condensation through indiscriminately neutralizing the negative charge of the DNA backbone. This significant change prevents DNA-related enzymes from binding to DNA, ultimately leading to the efficient eradication of various tumor cell lines. To the best of our knowledge, it is the first work that kills tumor cells and overcomes cisplatin resistance through inducing DNA condensation.
Collapse
Affiliation(s)
- Ying Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Tao Feng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xianbo Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jinzhe Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R. China
| |
Collapse
|
3
|
Ruiz-Martínez S, Ribas X, Costas M, Landberg G, Puig T. Characterization and targeting of chemoresistant triple-negative breast cancer subtypes using amino-pyridine compounds. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167899. [PMID: 40350044 DOI: 10.1016/j.bbadis.2025.167899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 03/25/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous disease with limited treatment options and high relapse rates due to chemoresistance and the presence of cancer stem cells (CSCs). This study explores the molecular profile and invasive properties of two TNBC cell lines, MDA-MB-231 (Basal-Like 1; BL1 subtype) and HCC1806 (BL2 subtype), as well as their chemotherapy-resistant derivatives (doxorubicin and paclitaxel). Both cell lines exhibited CD44+ and CD24-/low profiles with significant differences in epithelial-mesenchymal transition (EMT) markers. Chemoresistant variants exhibited significant changes in CSC markers, EMT genes, and ALDH activity, particularly the upregulation of CD133, suggesting its role in chemoresistance. Analysis of embryonic pathways revealed a prominent role of Sonic Hedgehog signaling, particularly in the BL2 subtype. Resistant models also exhibited increased Notch receptor expression. This study also examined novel polyamine compounds with an amino-pyridine structure. These compounds showed significant cytotoxicity against both sensitive and resistant TNBC cells, enhancing the efficacy of standard chemotherapeutics (paclitaxel and doxorubicin). Additionally, they reduced stem-like properties and self-renewal capacity of CSCs. This comprehensive characterization of TNBC cell lines and their chemoresistant variants underscores the molecular heterogeneity of TNBC and highlights potential therapeutic targets and strategies to enhance treatment efficacy and overcome resistance.
Collapse
Affiliation(s)
- Santiago Ruiz-Martínez
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, Spain; Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Sweden.
| | - Xavi Ribas
- QBIS-CAT Research Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Spain.
| | - Miquel Costas
- QBIS-CAT Research Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Spain.
| | - Göran Landberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Sweden.
| | - Teresa Puig
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, Spain.
| |
Collapse
|
4
|
Xu L, Cao X, Deng Y, Zhang B, Li X, Liu W, Ren W, Tang X, Kong X, Zhang D. Cuproptosis-related genes and agents: implications in tumor drug resistance and future perspectives. Front Pharmacol 2025; 16:1559236. [PMID: 40406488 PMCID: PMC12095339 DOI: 10.3389/fphar.2025.1559236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/23/2025] [Indexed: 05/26/2025] Open
Abstract
In the field of tumor treatment, drug resistance remains a significant challenge requiring urgent intervention. Recent developments in cell death research have highlighted cuproptosis, a mechanism of cell death induced by copper, as a promising avenue for understanding tumor biology and addressing drug resistance. Cuproptosis is initiated by the dysregulation of copper homeostasis, which in turn triggers mitochondrial metabolic disruptions and induces proteotoxic stress. This process specifically entails the accumulation of lipoylated proteins and the depletion of iron-sulfur cluster proteins within the context of the tricarboxylic acid cycle. Simultaneously, it is accompanied by the activation of distinct signaling pathways that collectively lead to cell death. Emerging evidence highlights the critical role of cuproptosis in addressing tumor drug resistance. However, the core molecular mechanisms of cuproptosis, regulation of the tumor microenvironment, and clinical translation pathways still require further exploration. This review examines the intersection of cuproptosis and tumor drug resistance, detailing the essential roles of cuproptosis-related genes and exploring the therapeutic potential of copper ionophores, chelators, and nanodelivery systems. These mechanisms offer promise for overcoming resistance and advancing tumor precision medicine. By elucidating the molecular mechanisms underlying cuproptosis, this study aims to identify novel therapeutic strategies and targets, thereby paving the way for the development of innovative anti-cancer drugs.
Collapse
Affiliation(s)
- Lingwen Xu
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xiaolan Cao
- Department of Radiotherapy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Yuxiao Deng
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Bin Zhang
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xinzhi Li
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Wentao Liu
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Wenjie Ren
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xuan Tang
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xiangyu Kong
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Daizhou Zhang
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| |
Collapse
|
5
|
Kong J, Liu AA, Xu X, Tang B, Chen YY, Zhao W, Jia J, Yang LL, Li G, Pang DW. Making Cells as a "Nirvana Phoenix": Precise Coupling of Precursors Prior to ROS Bursts for Intracellular Synthesis of Quantum Dots. J Am Chem Soc 2025; 147:15645-15653. [PMID: 40259718 DOI: 10.1021/jacs.5c02861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Rationally coupling natural biochemical reactions for live-cell synthesis of inorganic nanocrystals with fluorescence, such as quantum dots (QDs) especially near-infrared (NIR), holds significant potential for in situ labeling and bioimaging. However, the introduced exogenous reactants and intracellularly produced species, e.g., reactive oxygen species (ROS), often cause cell damage, decreasing the fluorescence of the QDs. Herein, we have found that cell-adaptable selenocystine ((Cys-Se)2) can be reduced to biocompatible low-valence Se precursors, which could be subsequently hijacked by timely added Ag-glutathione (AgSG) to be transformed into NIR Ag2Se QDs. Such a comprehensive control strategy can inhibit the production of cytotoxic Se species and ROS bursts, significantly increasing the cell viability from 4 to 80% and enhancing the fluorescence of intracellularly synthesized Ag2Se QDs by over 8.7 times. Notably, the proliferative and in vivo tumorigenic capacities of the cells with strong NIR fluorescence-emitting functions could be maintained, enabling long-term tracking of cell division and disease progression. This work has provided new insights into fully excavating the potential of cells for the synthesis of inorganic nanocrystals by designing biocompatible precursors and also opened a new window for conventional synthetic biology from organic to inorganic.
Collapse
Affiliation(s)
- Juan Kong
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, and Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| | - Xia Xu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, and Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| | - Bo Tang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Yan-Yan Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, and Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, and Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| | - Jianhong Jia
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, and Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| | - Ling-Ling Yang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Gongyu Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, and Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, and Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
6
|
Boruah JLH, Gogoi M, Famhawite V, Barman D, Das DJ, Puro KN, Biswas A, Mridha P, Gogoi P, Gajbhiye R, Baishya R. Phytochemical Characterization, Prooxidant, Antiproliferative and Anti-Inflammatory Potential of Meyna spinosa Roxb. Ex Link Ripe Fruit. Chem Biodivers 2025; 22:e202402342. [PMID: 39715024 DOI: 10.1002/cbdv.202402342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
This study highlights the prooxidant, antiproliferative and anti-inflammatory potential of ripe Meyna spinosa Roxb. Ex Link fruit extracts. Chemical analysis by high-resolution mass spectrometry and AAS identified compounds like ursolic acid, oleanolic acid, lupeol, betulin, scopoletin, phloroglucinol and secoxyloganin and micro-elements like iron, copper, zinc and manganese. Antioxidant assays (DPPH, FRAP, metal chelation, reaction oxygen species) revealed that the M. spinosa ethyl acetate extract (MSEA) had higher phenolic (37.83 mg GAE/g DW) and flavonoid (60.22 mg QE/g DW) content, showing strong antioxidant activity (IC50 of 7.5 µg/mL), while the M. spinosa methanolic extract (MSM) exhibited higher FRAP activity (39.666 µg AAE/g DW). Prooxidant activity was demonstrated through Trolox and NADH oxidation. Both extracts exhibited antiproliferative effects in A549 and MCF7 cancer cells with an increase in concentration and time. Anti-inflammatory effects were observed by reductions in nitric oxide, COX-2, IL-6 and TNF-α levels in lipopolysaccharides-stimulated RAW 264.7 and THP-1 cells. Nitrite levels reduced from 23.778 to 5.222 µM, COX-2 levels from 51.136 to 9.581 µg/mL, IL-6 levels from 62.728 ng/mL to 13.463 pg/mL and TNF-α level from 474.890 to 143.115 pg/mL. In vivo, MSEA reduced carrageenan-induced paw oedema by 23.45%.
Collapse
Affiliation(s)
- Jyoti Lakshmi Hati Boruah
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Moloya Gogoi
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, India
| | - Vanlalhruaii Famhawite
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Dipankar Barman
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Deep Jyoti Das
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - K Nusalu Puro
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, India
| | - Anupam Biswas
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Prosenjit Mridha
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Parishmita Gogoi
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, India
| | - Rahul Gajbhiye
- Central Instrument Division, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Rinku Baishya
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
7
|
Roy J, Mouawad R, Kyani A, Hanafi M, Xu Y, Wen B, Sun D, Neamati N. Copper-KRAS-COX2 Axis: A Therapeutic Vulnerability in Pancreatic Cancer. J Med Chem 2025; 68:8400-8428. [PMID: 40135521 DOI: 10.1021/acs.jmedchem.4c03159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
KRAS mutations are a hallmark of pancreatic ductal adenocarcinoma (PDAC), occurring in over 90% of tumors. Tumors with these mutations are highly dependent on copper, making the targeting of copper homeostasis an attractive strategy for treating PDAC due to the higher copper requirement of cancer cells compared to normal cells. Herein, we present the discovery, lead optimization, and structure-activity relationship study of a series of novel quinolyl pyrazinamides for the treatment PDAC. These compounds induce cell death through copper-mediated apoptosis and necroptosis. Our optimized compounds, 39 and 52, are potent, water-soluble and metabolically stable. Compound 52 exhibits 55% oral bioavailability and demonstrates significant in vivo efficacy without obvious toxicity in syngeneic models of PDAC. Additionally, compound 52 showed significant synergy with celecoxib, a selective COX2 inhibitor, both in vitro and in vivo. Our data suggest that compound 52 is a promising candidate for further development in KRAS-mutated cancers.
Collapse
Affiliation(s)
- Joyeeta Roy
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Rima Mouawad
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Armita Kyani
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Maha Hanafi
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Yibin Xu
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Li Y, Han L, Hu H. Research progress on cuproptosis and copper related anti-tumor therapy. Discov Oncol 2025; 16:584. [PMID: 40257639 PMCID: PMC12011693 DOI: 10.1007/s12672-025-02335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/08/2025] [Indexed: 04/22/2025] Open
Abstract
Copper is a trace element which is essential for biological organisms, and its homeostatic balance is important for living organisms to maintain the normal function. When the copper homeostasis is disordered, the cellular function and structure will be disrupted. Excess copper cause oxidative stress and DNA damage in cells, thereby inducing regulated cell death such as apoptosis and necroptosis. Excess copper in mitochondria can bind to lipoylated proteins in the tricarboxylic acid (TCA) cycle and cause them to aggregate, resulting in proteotoxic stress and eliciting a novel cell death modality: cuproptosis. Cancer cells have a greater demand for copper compared to normal tissue, and high levels of copper ions are closely associated with tumour proliferation and metastasis. The anti-tumor mechanisms of copper include the production of oxidative stress, inhibition of the ubiquitin-proteasome system, suppression of angiogenesis, and induction of copper-dependent cell death. Targeting copper is one of the current directions in oncology research, including the use of copper ion carriers to increase intracellular copper levels to induce oxidative stress and cuproptosis, as well as the use of copper ion chelators to reduce copper bioavailability. However, copper complexes have certain toxicity, so their biosafety needs to be improved. Emerging nanotechnology is expected to solve this problem by utilizing copper-based nanomaterials (Cu-based NMs) to deliver copper ions and a variety of drugs with different functions, thereby improving the anti-tumor efficacy and reducing the side effects. Therefore, a thorough understanding of copper metabolic processes and the mechanism of cuproptosis will greatly benefit anti-tumor therapy. This review summarizes the processes of copper metabolism and the mechanism of cuproptosis. In addition, we discuss the current anti-tumor paradigms related to copper, we also discuss current nanotherapeutic approaches to copper mortality and provide prospective insights into the future copper-mediated cancer therapy.
Collapse
Affiliation(s)
- Yichen Li
- School of Medicine, Southeast University, No. 87, Dingjiaqiao, Hunan Road, Gulou District, Nanjing, 210009, China
| | - Lifei Han
- Breast Disease Diagnosis and Treatment Center, Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, China
| | - Haolin Hu
- Breast Disease Diagnosis and Treatment Center, Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Zhang R, Tan Y, Xu K, Huang N, Wang J, Liu M, Wang L. Cuproplasia and cuproptosis in hepatocellular carcinoma: mechanisms, relationship and potential role in tumor microenvironment and treatment. Cancer Cell Int 2025; 25:137. [PMID: 40205387 PMCID: PMC11983883 DOI: 10.1186/s12935-025-03683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 02/08/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the main phenotype of liver cancer with a poor prognosis. Copper is vital in liver function, and HCC cells rely on it for growth and metastasis, leading to cuproplasia. Excessive copper can induce cell death, termed cuproptosis. Tumor microenvironment (TME) is pivotal in HCC, especially in immunotherapy, and copper is closely related to the TME pathogenesis. However, how these two mechanisms contribute to the TME is intriguing. MAIN BODY We conducted the latest progress literature on cuproplasia and cuproptosis in HCC, and summarized their specific roles in TME and treatment strategies. The mechanisms of cuproplasia and cuproptosis and their relationship and role in TME have been deeply summarized. Cuproplasia fosters TME formation, angiogenesis, and metastasis, whereas cuproptosis may alleviate mitochondrial dysfunction and hypoxic conditions in the TME. Inhibiting cuproplasia and enhancing cuproptosis in HCC are essential for achieving therapeutic efficacy in HCC. CONCLUSION An in-depth analysis of cuproplasia and cuproptosis mechanisms within the TME of HCC unveils their opposing nature and their impact on copper regulation. Grasping the equilibrium between these two factors is crucial for a deeper understanding of HCC mechanisms to shed light on novel directions in treating HCC.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China
| | - Yunfei Tan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ke Xu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China
| | - Ning Huang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, P.O. Box 2258, 100021, Beijing, People's Republic of China.
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
10
|
Liu S, Yan W, Zhang W, Zhang J, Li Z, Guo Y, Chen H, Xu J. Nanoenhanced-Cuproptosis Results From the Synergy of Calcium Overload and GSH Depletion with the Increasing of Intracellular Ca/Mn/Cu Ions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412067. [PMID: 39928524 PMCID: PMC11967785 DOI: 10.1002/advs.202412067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/12/2025] [Indexed: 02/12/2025]
Abstract
Cuproptosis is a newly discovered copper-dependent form of cell death. Intracellular glutathione (GSH) acts as a copper chelator to inhibit cuproptosis, so the reduction of GSH concentration is conducive to enhancing the cuproptosis of cells. In order to reduce GSH content and interfere with mitochondrial metabolism, a strategy based on calcium overload and GSH depletion to enhance cuproptosis is proposed in this study. Containing manganese (Mn) and copper (Cu) elements, CaCO3 nanoparticles (NPs) are modified with MCF-7 cell aptamer (CaCO3/Mn/Cu@lip-Apt). When entering the cell, CaCO3/Mn/Cu@lip-Apt decomposed and released Mn* (Mn2+/Mn3+/Mn4+), Cu2+ and Ca2+. The high valence Mn ion in Mn* can effectively consume GSH to produce Mn2+ which catalyzed H2O2 to produce reactive oxygen species (ROS), while reducing the GSH concentration. The production of ROS promoted the influx of exogenous Ca2+. The large accumulation of Ca2+ led to intracellular calcium overload, resulting in mitochondrial dysfunction and metabolism disorders. The depletion of GSH promoted the accumulation of Cu2+, which in turn triggered cuproptosis. This strategy showed excellent antitumor effects and provided a new way to study disease treatment.
Collapse
Affiliation(s)
- Shiwei Liu
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Wennan Yan
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Wenyue Zhang
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Ji Zhang
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Ziyi Li
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Yingshu Guo
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry andChemical EngineeringNanjing UniversityNanjing210023China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry andChemical EngineeringNanjing UniversityNanjing210023China
| |
Collapse
|
11
|
Sahoo SS, Manna D. Nanomaterial-Triggered Ferroptosis and Cuproptosis in Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412462. [PMID: 40018870 DOI: 10.1002/smll.202412462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Cancer remains one of the leading causes of the death of individuals globally. Conventional treatment techniques like chemotherapy and radiation often suffer various drawbacks like toxicity and drug resistance. The study of cell death has been predominantly focused on classical forms like apoptosis, but the role of metal ions in governing controlled cell death is a fascinating and less explored area. Metal-mediated controlled cell death is a process where metal triggers cell death via a unique mechanism. Nanomaterial-based strategies have gained attention for their ability to deliver precise therapeutic agents while also triggering Regulated Cell Death (RCD) mechanisms in cancer cells. The recently discovered metal-mediated controlled cell death techniques like cuproptosis and ferroptosis can be used in cancer treatment as they can be used selectively for the treatment of drug-resistant cancer. Nano material-based delivery system can also be used for the precise delivery of the drug to the targeted sites. In this review, we have given some idea about the mechanism of metal-mediated controlled cell death techniques (ferroptosis and cuproptosis) and how we can initiate controlled cell deaths using nanomaterials for cancer treatment.
Collapse
Affiliation(s)
- Suman Sekhar Sahoo
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Debasish Manna
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
12
|
Zhu B, Yang C, Hua S, Li K, Shang P, Li Z, Qian W, Xue S, Zhi Q, Hua Z. Decoding the Implications of Zinc in the Development and Therapy of Leukemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412225. [PMID: 39887881 PMCID: PMC11884550 DOI: 10.1002/advs.202412225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/04/2025] [Indexed: 02/01/2025]
Abstract
Zinc plays a central role in the hematological development. Therapeutic interventions with zinc are shown to improve the health status of patients with malignancies by stimulating the immune system and reducing side effects. Despite the abnormal zinc homeostasis in leukemia, the role and mechanisms of zinc signaling in leukemia development remain poorly understood. Recently, some important breakthroughs are made in laboratory and clinical studies of zinc in leukemia, such as the role of zinc in regulating ferroptosis and the effects of zinc in immunotherapy. Zinc-based strategies are urgently needed to refine the current zinc intervention regimen for side-effect free therapy in chemotherapy-intolerant patients. This review provides a comprehensive overview of the role of zinc homeostasis in leukemia patients and focuses on the therapeutic potential of zinc signaling modulation in leukemia.
Collapse
Affiliation(s)
- Bo Zhu
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Chunhao Yang
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Siqi Hua
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
- Changzhou High‐tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.Changzhou213164China
| | - Kaiqiang Li
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
- Changzhou High‐tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.Changzhou213164China
| | - Pengyou Shang
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
- Changzhou High‐tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.Changzhou213164China
| | - Zhonghua Li
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Wei Qian
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Shunkang Xue
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Qi Zhi
- Department of RadiologyAffiliated Hospital of Nanjing University of Chinese MedicineNanjing210029China
| | - Zichun Hua
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
- Changzhou High‐tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.Changzhou213164China
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjing210023China
- Faculty of Pharmaceutical SciencesXinxiang Medical UniversityXinxiang453003China
| |
Collapse
|
13
|
Leuci R, Brunetti L, Tufarelli V, Cerini M, Paparella M, Puvača N, Piemontese L. Role of copper chelating agents: between old applications and new perspectives in neuroscience. Neural Regen Res 2025; 20:751-762. [PMID: 38886940 PMCID: PMC11433910 DOI: 10.4103/nrr.nrr-d-24-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 06/20/2024] Open
Abstract
The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays an important role in the central nervous system, where it is associated with glutamatergic signaling, and it is widely involved in inflammatory processes. Thus, diseases involving copper (II) dyshomeostasis often have neurological symptoms, as exemplified by Alzheimer's and other diseases (such as Parkinson's and Wilson's diseases). Moreover, imbalanced copper ion concentrations have also been associated with diabetes and certain types of cancer, including glioma. In this paper, we propose a comprehensive overview of recent results that show the importance of these metal ions in several pathologies, mainly Alzheimer's disease, through the lens of the development and use of copper chelators as research compounds and potential therapeutics if included in multi-target hybrid drugs. Seeing how copper homeostasis is important for the well-being of animals as well as humans, we shortly describe the state of the art regarding the effects of copper and its chelators in agriculture, livestock rearing, and aquaculture, as ingredients for the formulation of feed supplements as well as to prevent the effects of pollution on animal productions.
Collapse
Affiliation(s)
- Rosalba Leuci
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Bari, Italy
| | - Leonardo Brunetti
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Bari, Italy
| | - Marco Cerini
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Bari, Italy
| | - Marco Paparella
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Bari, Italy
| | - Nikola Puvača
- Department of Engineering Management in Biotechnology, Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Novi Sad, Serbia
| | - Luca Piemontese
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
14
|
Pellei M, Santini C, Caviglia M, Del Gobbo J, Battocchio C, Meneghini C, Amatori S, Donati C, Zampieri E, Gandin V, Marzano C. Anticancer potential of copper(i) complexes based on isopropyl ester derivatives of bis(pyrazol-1-yl)acetate ligands. RSC Med Chem 2025; 16:849-861. [PMID: 39618961 PMCID: PMC11605304 DOI: 10.1039/d4md00610k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/07/2024] [Indexed: 02/21/2025] Open
Abstract
In this paper, the isopropyl ester derivatives LOiPr and L2OiPr of bis(pyrazol-1-yl)acetic acid and bis(3,5-dimethyl-pyrazol-1-yl)acetic acid were used as chelators for the preparation of new Cu(i) phosphane complexes 1-4. They were synthesized by the reaction of [Cu(CH3CN)4]PF6 and triphenylphosphine or 1,3,5-triaza-7-phosphaadamantane with LOiPr and L2OiPr ligands, in acetonitrile or acetonitrile/methanol solution. The authenticity of the compounds was confirmed by CHN analysis, 1H-, 13C- and 31P-NMR, FT-IR spectroscopy, and electrospray ionization mass spectrometry (ESI-MS). Furthermore, the electronic and molecular structures of the selected Cu(i) coordination compound 3 were investigated by synchrotron radiation-induced X-ray photoelectron spectroscopy (SR-XPS), and the local structure around the copper ion site was studied combining X-ray absorption fine structure (XAFS) spectroscopy techniques and DFT modelling. Triphenylphosphine as a coligand confers to [Cu(LOiPr)(PPh3)]PF6 (1) and [Cu(L2OiPr)(PPh3)]PF6 (3) a significant antitumor activity in 3D spheroidal models of human colon cancer cells. Investigations focused on the mechanism of action evidenced protein disulfide-isomerase (PDI) as an innovative molecular target for this class of phosphane copper(i) complexes. By hampering PDI activity, copper(i) complexes were able to cause an imbalance in cancer cell redox homeostasis thus leading to cancer cell death - a non-apoptotic programmed cell death.
Collapse
Affiliation(s)
- Maura Pellei
- School of Science and Technology, Chemistry Division, University of Camerino Via Madonna delle Carceri (ChIP) 62032 Camerino Italy
| | - Carlo Santini
- School of Science and Technology, Chemistry Division, University of Camerino Via Madonna delle Carceri (ChIP) 62032 Camerino Italy
| | - Miriam Caviglia
- School of Science and Technology, Chemistry Division, University of Camerino Via Madonna delle Carceri (ChIP) 62032 Camerino Italy
| | - Jo' Del Gobbo
- School of Science and Technology, Chemistry Division, University of Camerino Via Madonna delle Carceri (ChIP) 62032 Camerino Italy
| | - Chiara Battocchio
- Department of Science, Roma Tre University Via della Vasca Navale 79 00146 Roma Italy
| | - Carlo Meneghini
- Department of Science, Roma Tre University Via della Vasca Navale 79 00146 Roma Italy
| | - Simone Amatori
- Department of Science, Roma Tre University Via della Vasca Navale 79 00146 Roma Italy
| | - Chiara Donati
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova Via Marzolo 5 35131 Padova Italy
| | - Eleonora Zampieri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova Via Marzolo 5 35131 Padova Italy
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova Via Marzolo 5 35131 Padova Italy
| | - Cristina Marzano
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova Via Marzolo 5 35131 Padova Italy
| |
Collapse
|
15
|
Rodriguez R, Müller S, Colombeau L, Solier S, Sindikubwabo F, Cañeque T. Metal Ion Signaling in Biomedicine. Chem Rev 2025; 125:660-744. [PMID: 39746035 PMCID: PMC11758815 DOI: 10.1021/acs.chemrev.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases. Specifically, nongenetic chemical events orchestrate cell metabolism and transcriptional programs that govern functional cell identity. Thus, imbalances in cell signaling, which broadly defines the conversion of extracellular signals into intracellular biochemical changes, can also contribute to the acquisition of diseased cell states. Metal ions exhibit unique chemical properties that can be exploited by the cell. For instance, metal ions maintain the ionic balance within the cell, coordinate amino acid residues or nucleobases altering folding and function of biomolecules, or directly catalyze specific chemical reactions. Thus, metals are essential cell signaling effectors in normal physiology and disease. Deciphering metal ion signaling is a challenging endeavor that can illuminate pathways to be targeted for therapeutic intervention. Here, we review key cellular processes where metal ions play essential roles and describe how targeting metal ion signaling pathways has been instrumental to dissecting the biochemistry of the cell and how this has led to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sebastian Müller
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Ludovic Colombeau
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Stéphanie Solier
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Université
Paris-Saclay, UVSQ, 78180 Montigny-le-Bretonneux, France
| | | | - Tatiana Cañeque
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
16
|
Imam M, Ji J, Zhang Z, Yan S. Targeting the initiator to activate both ferroptosis and cuproptosis for breast cancer treatment: progress and possibility for clinical application. Front Pharmacol 2025; 15:1493188. [PMID: 39867656 PMCID: PMC11757020 DOI: 10.3389/fphar.2024.1493188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/12/2024] [Indexed: 01/28/2025] Open
Abstract
Breast cancer is the most commonly diagnosed cancer worldwide. Metal metabolism is pivotal for regulating cell fate and drug sensitivity in breast cancer. Iron and copper are essential metal ions critical for maintaining cellular function. The accumulation of iron and copper ions triggers distinct cell death pathways, known as ferroptosis and cuproptosis, respectively. Ferroptosis is characterized by iron-dependent lipid peroxidation, while cuproptosis involves copper-induced oxidative stress. They are increasingly recognized as promising targets for the development of anticancer drugs. Recently, compelling evidence demonstrated that the interplay between ferroptosis and cuproptosis plays a crucial role in regulating breast cancer progression. This review elucidates the converging pathways of ferroptosis and cuproptosis in breast cancer. Moreover, we examined the value of genes associated with ferroptosis and cuproptosis in the clinical diagnosis and treatment of breast cancer, mainly outlining the potential for a co-targeting approach. Lastly, we delve into the current challenges and limitations of this strategy. In general, this review offers an overview of the interaction between ferroptosis and cuproptosis in breast cancer, offering valuable perspectives for further research and clinical treatment.
Collapse
Affiliation(s)
| | | | | | - Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Chen Y, Wang Y, Zhang R, Wang F, Lin X, Wang T, Zhang W, Deng F, Wu B, Shang H, Cheng W, Zhang L. In Situ Transformable Fibrillar Clusters Disrupt Intracellular Copper Metabolic Homeostasis by Comprehensive Blockage of Cuprous Ions Efflux. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406802. [PMID: 39491511 DOI: 10.1002/smll.202406802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/15/2024] [Indexed: 11/05/2024]
Abstract
Dysregulation of copper metabolism is intricately associated with the occurrence and therapeutic management of colorectal cancer. Previous studies have attempted to induce cuproptosis by delivering lethal doses of copper ions into tumor cells, often with systemic safety risks. In vivo, transformable peptide is modular and designed for various tumor-related proteins, which can affect protein function and distribution. Here, a fibrillar transformation peptidic (FTP) nanoparticle is synthesized, which can bind ATP7B membrane proteins (cuprous ions transporter) and transform into nanofibrils/ATP7B clusters, inducing "copper-free cuproptosis" in vivo. Without adding exogenous copper ions, the spherical FTP nanoparticles bound the high distribution regions of ATP7B membrane proteins, transforming into fibrillar networks in situ with prolonged retention. The cage-like fibrillar network would further capture unbound or newly generated free ATP7B membrane proteins, thereby significantly and consistently preventing cuprous ions efflux. The FTP nanoparticles would not undergo in situ fibrillar transformation on the low expression region of ATP7B membrane proteins but enter the cell for safe degradation, which exhibited high specificity and safety in vivo. By disrupting intracellular copper homeostasis, the transformable fibrillar clusters displayed a long-term anti-tumor effect on subcutaneous transplantation and liver metastatic CRC models.
Collapse
Affiliation(s)
- Yichi Chen
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yijun Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ruotian Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fengyi Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Lin
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tong Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenyuan Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fuan Deng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haitao Shang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
18
|
Ntanzi N, Khan RB, Nxumalo MB, Kumalo HM. Mechanisms of H2pmen-Induced cell death: Necroptosis and apoptosis in MDA cells, necrosis in MCF7 cells. Heliyon 2024; 10:e40654. [PMID: 39660197 PMCID: PMC11629215 DOI: 10.1016/j.heliyon.2024.e40654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
Breast cancer is the second leading cause of cancer-related deaths in women around the world. Several cancer therapeutics have already been discovered and are being used to treat breast cancer. However, most of them cause severe side effects. H2pmen, a tetradentate ligand, was used in this study to investigate its cytotoxic effects on growth, viability, and induction of cell death in MCF7 and MDA cells. The cell viability was determined by treating cells with different concentrations of H2pmen. MTT assay was used to obtain an IC50, and the cells were then assayed for membrane damage, apoptotic induction, and metabolism. Protein expression of Bax, p53, Bcl2, and xIAP was identified using Western blot analysis. The gene expression of RIPK1, RIPK3, and MKLK was determined using qPCR. In MDA cells, H2pmen increases cytotoxicity, as evidenced by upregulated LDH and JC-10, and enhances apoptosis, indicated by upregulated caspase-3/7 and Bax. In contrast, MCF7 cells exhibit a more stable profile with downregulated LDH and Annexin V Activity. MCF7 cells also show reduced necroptosis and increased necrosis. These findings highlight that H2pmen induces varied cytotoxic effects across MDA and MCF7 cells, with MDA cells exhibiting more pronounced apoptosis and necroptosis alongside complex anti-apoptotic responses.
Collapse
Affiliation(s)
- Nosipho Ntanzi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rene B. Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mthokozisi B. Nxumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hezekiel M. Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
19
|
Yao Y, Chen Y, Zhou C, Zhang Q, He X, Dong K, Yang C, Chu B, Qian Z. Bioorthogonal chemistry-based prodrug strategies for enhanced biosafety in tumor treatments: current progress and challenges. J Mater Chem B 2024; 12:10818-10834. [PMID: 39352785 DOI: 10.1039/d4tb01413h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Cancer is a significant global health challenge, and while chemotherapy remains a widely used treatment, its non-specific toxicity and broad distribution can lead to systemic side effects and limit its effectiveness against tumors. Therefore, the development of safer chemotherapy alternatives is crucial. Prodrugs hold great promise, as they remain inactive until they reach the cancer site, where they are selectively activated by enzymes or specific factors, thereby reducing side effects and improving targeting. However, subtle differences in the microenvironments between tumors and normal tissue may still result in unintended cytotoxicity. Bioorthogonal reactions, known for their selectivity and precision without interfering with natural biochemical processes, are gaining attention. When combined with prodrug strategies, these reactions offer the potential to create highly effective chemotherapy drugs. This review examines the safety and efficacy of prodrug strategies utilizing various bioorthogonal reactions in cancer treatment.
Collapse
Affiliation(s)
- Yongchao Yao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ying Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
| | - Chang Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Quanzhi Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xun He
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Kai Dong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Chengli Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Bingyang Chu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
20
|
Hati Boruah JL, Puro KN, Das DJ, Gogoi P, Gogoi M, Biswas A, Famhawite V, Barman D, Mridha P, Gajbhiye R, Baishya R. Prooxidant and anti-inflammatory potential of Garcinia xanthochymus fruit and its phytochemical characterisation by UHPLC-Q-Orbitrap HRMS. Nat Prod Res 2024:1-11. [PMID: 39446993 DOI: 10.1080/14786419.2024.2419492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Pro-oxidants play a crucial role in cancer by causing oxidative stress that leads to apoptosis. The present study demonstrates the prooxidant and anti-inflammatory potential of ethyl acetate and methanolic extracts of Garcinia xanthochymus fruit. Oxidation of Trolox and NADH activity indicated the pro-oxidant capacity of the extracts. Significant decrease in cell viability in B16F10 and MDA-MB-231 cancer cell lines and significant increase in caspase 3 activity after treatment with extracts indicated pro-oxidant induced apoptosis. Pre-treatment with the extracts significantly inhibited ROS, reduced NO production, inhibited LPS-induced COX-2 and suppressed IL-6 and TNF-α expression. HRMS analysis showed the presence of compounds like biflavonoids, xanthones, phloroglucinols, benzophenones, etc. The fruit is rich in total phenolic and flavonoid contents, and have DPPH radical scavenging, ferric reducing antioxidant and metal chelating potential. This study report for the first time about the anticancer and anti-inflammatory properties of G. xanthochymus whole fruit.
Collapse
Affiliation(s)
- Jyoti Lakshmi Hati Boruah
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST) Jorhat, Assam, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - K Nusalu Puro
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST) Jorhat, Assam, India
| | - Deep Jyoti Das
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST) Jorhat, Assam, India
| | - Parishmita Gogoi
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST) Jorhat, Assam, India
| | - Moloya Gogoi
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST) Jorhat, Assam, India
| | - Anupam Biswas
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST) Jorhat, Assam, India
| | - Vanlalhruaii Famhawite
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST) Jorhat, Assam, India
| | - Dipankar Barman
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST) Jorhat, Assam, India
| | - Prosenjit Mridha
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST) Jorhat, Assam, India
| | - Rahul Gajbhiye
- Central Instrument Division, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar
| | - Rinku Baishya
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST) Jorhat, Assam, India
| |
Collapse
|
21
|
Noh D, Lee H, Lee S, Sun IC, Yoon HY. Copper-Based Nanomedicines for Cuproptosis-Mediated Effective Cancer Treatment. Biomater Res 2024; 28:0094. [PMID: 39430913 PMCID: PMC11486892 DOI: 10.34133/bmr.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
The recent discovery of cuproptosis, a novel copper-ion-induced cell death pathway, has suggested the novel therapeutic potential for treating heterogeneous and drug-resistant cancers. Currently, copper ionophore-based therapeutics have been designed to treat cancers, utilizing copper ions as a strategic tool to impede tumor proliferation and promote cellular demise. However, limitations of copper ionophore-based therapies include nontargeted delivery of copper ions, low tumor accumulation, and short half-life. Strategies to enhance specificity involve targeting intracellular cuproptosis mechanisms using nanotechnology-based drugs. Additionally, the importance of exploring combination therapies cannot be overstated, as they are a key strategy in improving the efficacy of cancer treatments. Recent studies have reported the anticancer effects of nanomedicines that can induce cuproptosis of cancer both in vitro and in vivo. These cuproptosis-targeted nanomedicines could improve delivery efficiency with the pharmacokinetic properties of copper ion, resulting in increasing cuproptosis-based anticancer effects. This review will summarize the intricate nexus between copper ion and carcinogenesis, examining the pivotal roles of copper homeostasis and its dysregulation in cancer progression and fatality. Furthermore, we will introduce the latest advances in cuproptosis-targeted nanomedicines for cancer treatment. Finally, the challenges in cuproptosis-based nanomedicines will be discussed for future development directions.
Collapse
Affiliation(s)
- Dahye Noh
- Medicinal Materials Research Center, Biomedical Research Institute,
Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School,
University of Science and Technology (UST), Hwarang-ro14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hokyung Lee
- Medicinal Materials Research Center, Biomedical Research Institute,
Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, College of Pharmacy,
Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sangmin Lee
- Department of Fundamental Pharmaceutical Sciences, College of Pharmacy,
Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - In-Cheol Sun
- Medicinal Materials Research Center, Biomedical Research Institute,
Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Institute,
Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School,
University of Science and Technology (UST), Hwarang-ro14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
22
|
K R G, Balenahalli Narasingappa R, Vishnu Vyas G. Unveiling mechanisms of antimicrobial peptide: Actions beyond the membranes disruption. Heliyon 2024; 10:e38079. [PMID: 39386776 PMCID: PMC11462253 DOI: 10.1016/j.heliyon.2024.e38079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Antimicrobial peptides (AMPs) are a critical component of the innate immune system, playing a key role in defending against a variety of pathogenic microorganisms. While many AMPs act primarily on the cell membrane of target pathogens, leading to lysis and subsequent cell death, less is known about their nonlytic membrane activity. This nonlytic activity allows AMPs to target and disrupt bacterial cells without causing lysis, leading to bacterial death through alternative mechanisms.Understanding these nonlytic properties of AMPs is crucial, as they present a promising alternative to traditional antibiotics, which can induce bacterial resistance and have adverse effects on human health and the environment. The mechanisms by which AMPs exhibit nonlytic membrane activity are still being explored. However, it is believed that AMPs penetrate the bacterial membrane and interact directly with internal cellular components such as DNA, RNA, and various enzymes essential for microbial survival and replication. This interaction disrupts metabolic homeostasis, ultimately resulting in bacterial death.The nonlytic activity of AMPs also results in minimal damage to host cells and tissues, making them attractive candidates for the development of new, more effective antibiotics. This review emphasizes the mechanisms by which AMPs nonlytically target cellular components, including DNA, proteins, RNA, and other biomolecules, and discusses their clinical significance. Understanding these mechanisms may pave the way for developing alternatives to conventional antibiotics, offering a solution to the growing issue of antibiotic resistance.
Collapse
Affiliation(s)
- Gagandeep K R
- Department of Plant Biotechnology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, Karnataka, 560065, India
| | - Ramesh Balenahalli Narasingappa
- Department of Plant Biotechnology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, Karnataka, 560065, India
| | - Gatta Vishnu Vyas
- Department of Plant Biotechnology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, Karnataka, 560065, India
- ICAR-AICRP On Post Harvest Engineering and Technology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, 560065, India
| |
Collapse
|
23
|
Chen Y, Zhang M, Liu Z, Zhang N, Wang Q. Ursodeoxycholic Acid Platinum(IV) Conjugates as Antiproliferative and Antimetastatic Agents: Remodel the Tumor Microenvironment through Suppressing JAK2/STAT3 Signaling. J Med Chem 2024; 67:17551-17567. [PMID: 39292635 DOI: 10.1021/acs.jmedchem.4c01549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Tumor microenvironment (TME) is a pivotal factor driving the tumor metastasis and leading to the failure of tumor therapy. Here, a series of ursodeoxycholic acid platinum(IV) conjugates with potency in remodeling the TME through suppressing JAK2/STAT3 signaling was developed. A candidate was screened out, which displayed potent antiproliferative and antimetastatic performance both in vitro and in vivo. It displayed superior pharmacokinetic properties compared to cisplatin. Serious DNA injury was induced, and then mitochondria-mediated apoptosis was initiated through the Bcl-2/Bax/Caspase3 pathway. The JAK2/STAT3 and TGF-β1 signaling pathways were remarkably inhibited, and pro-death autophagy was subsequently promoted. The inflammatory and hypoxic TME was suppressed by downregulating COX-2, MMP9, and HIF-1α, which resulted in inhibited angiogenesis in tumors by inhibiting the HIF-1α/VEGFA axis. Additionally, the immunosuppressive TME was reversed by blocking the immune checkpoint PD-L1, further improving the density of CD3+ and CD8+ tumor-infiltrating lymphocytes, and promoting macrophage polarization from M2- to M1-type.
Collapse
Affiliation(s)
- Yan Chen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Ming Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| |
Collapse
|
24
|
Ren X, Luo X, Wang F, Wan L, Wang X, Xiong J, Ye M, Rui S, Liu Z, Wang S, Zhao Q. Recent advances in copper homeostasis-involved tumor theranostics. Asian J Pharm Sci 2024; 19:100948. [PMID: 39474127 PMCID: PMC11513462 DOI: 10.1016/j.ajps.2024.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/19/2024] [Accepted: 06/06/2024] [Indexed: 01/05/2025] Open
Abstract
As the third essential trace element in the human body, copper plays a crucial role in various physiological processes, which lays the foundation for its broad applications in cancer treatments. The overview of copper, including pharmacokinetics, signaling pathways, and homeostasis dysregulation, is hereby discussed. Additionally, cuproptosis, as a newly proposed cell death mechanism associated with copper accumulation, is analyzed and further developed for efficient cancer treatment. Different forms of Cu-based nanoparticles and their advantages, as well as limiting factors, are introduced. Moreover, the unique characteristics of Cu-based nanoparticles give rise to their applications in various imaging modalities. In addition, Cu-based nanomaterials are featured by their excellent photothermal property and ROS-associated tumor-killing potential, which are widely explored in diverse cancer therapies and combined therapies. Reducing the concentration of Cu2+/Cu+ is another cancer-killing method, and chelators can meet this need. More importantly, challenges and future prospects are identified for further research.
Collapse
Affiliation(s)
- Xinghua Ren
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinyi Luo
- Wuya College of innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fuchang Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Long Wan
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xiaofan Wang
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110001, China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Jinya Xiong
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengwei Ye
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shiqiao Rui
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
25
|
Man X, Li W, Zhu M, Li S, Xu G, Zhang Z, Liang H, Yang F. Rational Design of a Hetero-multinuclear Gadolinium(III)-Copper(II) Complex: Integrating Magnetic Resonance Imaging, Photoacoustic Imaging, Mild Photothermal Therapy, Chemotherapy and Immunotherapy of Cancer. J Med Chem 2024; 67:15606-15619. [PMID: 39143701 DOI: 10.1021/acs.jmedchem.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
For more accurate diagnosis and effective treatment of cancer, we proposed to develop a hetero-multinuclear metal complex based on the property of apoferritin (AFt) for targeting tumor theranostics by integrating dual-modality imaging diagnosis and multimodality therapy. To this end, we rational designed and synthesized a trinuclear Gd(III)-Cu(II) thiosemicarbazone complex (Gd-2Cu) and then constructed a Gd-2Cu@AFt nanoparticle (NP) delivery system. Gd-2Cu/Gd-2Cu@AFt NPs not only had significant T1-weighted magnetic resonance imaging and photoacoustic imaging of the tumor but also effectively inhibited tumor growth through a combination of mild photothermal therapy, chemotherapy, and immunotherapy. Gd-2Cu@AFt NPs optimized the behavior of imaging diagnosis and therapy of Gd-2Cu, improved its targeting ability, and reduced the side effects in vivo. Besides, we revealed and clarified the anticancer mechanism of Gd-2Cu: interrupting energy metabolism of the tumor cell, inducing apoptosis of the tumor cell, and activating a systemic immune response by inducing immunogenic cell death of cancer cells.
Collapse
Affiliation(s)
- Xueyu Man
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| |
Collapse
|
26
|
Ongey EL, Banerjee A. In vitro reconstitution of transition metal transporters. J Biol Chem 2024; 300:107589. [PMID: 39032653 PMCID: PMC11381811 DOI: 10.1016/j.jbc.2024.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Transition metal ions are critically important across all kingdoms of life. The chemical properties of iron, copper, zinc, manganese, cobalt, and nickel make them very attractive for use as cofactors in metalloenzymes and/or metalloproteins. Their versatile chemistry in aqueous solution enables them to function both as electron donors and acceptors, and thus participate in both reduction and oxidation reactions respectively. Transition metal ions can also function as nonredox multidentate coordination sites that play essential roles in macromolecular structure and function. Malfunction in transition metal transport and homeostasis has been linked to a wide number of human diseases including cancer, diabetes, and neurodegenerative disorders. Transition metal transporters are central players in the physiology of transition metals whereby they move transition metals in and out of cellular compartments. In this review, we provide a comprehensive overview of in vitro reconstitution of the activity of integral membrane transition metal transporters and discuss strategies that have been successfully implemented to overcome the challenges. We also discuss recent advances in our understanding of transition metal transport mechanisms and the techniques that are currently used to decipher the molecular basis of transport activities of these proteins. Deep mechanistic insights into transition metal transport systems will be essential to understand their malfunction in human diseases and target them for potential therapeutic strategies.
Collapse
Affiliation(s)
- Elvis L Ongey
- Cell Biology and Neurobiology Branch, National Institutes of Child Health and Human, Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Anirban Banerjee
- Cell Biology and Neurobiology Branch, National Institutes of Child Health and Human, Development, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
27
|
He QL, Jia BX, Luo ZR, Wang YK, Zhang B, Liao T, Guang XY, Feng YF, Zhang Z, Zhou B. Programmable "triple attack" cancer therapy through in situ activation of disulfiram toxification combined with phototherapeutics. Chem Sci 2024; 15:11633-11642. [PMID: 39055020 PMCID: PMC11268515 DOI: 10.1039/d3sc05300h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/06/2024] [Indexed: 07/27/2024] Open
Abstract
Effectively and completely eliminating residual tumor cells is the key to reducing the risk of tumor metastasis and recurrence. Designing an "ideal" nanoplatform for programmable cancer therapy has great prospects for completely eliminating residual tumor cells. Herein, an intelligent nanoplatform of disulfiram (DSF)-loaded CuS-tannic acid nanohexahedrons (denoted as "DSF-CuS@TA") with thermal- and pH-sensitive degradation, as well as near-infrared (NIR-II) phototherapeutics properties, was constructed. And then, it was employed for in situ DSF toxification activation programmable "triple attack" cancer therapy. After accumulating in the tumor, DSF-CuS@TA first releases the loaded Cu(DTC)2, and simultaneously degrades and releases Cu2+ and DSF under mildly acidic stimulation to trigger instant intratumoral Cu(DTC)2 chelation, thereby achieving the "first strike." Next, under irradiation by a NIR-II laser, light energy is converted into heat to generate NIR-II photothermal therapy, thereby achieving the second strike. Subsequently, under thermal stimulation, DSF-CuS@TA degrades further, triggering the chelation of Cu(DTC)2 for a second time to reach the third strike. As expected, in vitro and in vivo studies showed that the synergistic integration of DSF-based programmed chemotherapy and NIR-II phototherapeutics could achieve effective tumor removal. Therefore, we propose a novel type of programmed therapy against cancer by designing a nanoplatform via "nontoxicity-to-toxicity" chemical chelation transformation.
Collapse
Affiliation(s)
- Qiu-Ling He
- School of Pharmacy, Guilin Medical University Guilin Guangxi 541199 People's Republic of China
| | - Ben-Xu Jia
- School of Pharmacy, Guilin Medical University Guilin Guangxi 541199 People's Republic of China
- Scientific Research Center, Guilin Medical University Guilin Guangxi 541199 People's Republic of China
| | - Zhi-Rong Luo
- College of Chemistry and Environmental Engineering, Baise University Baise Guangxi 533000 People's Republic of China
| | - Yu-Kun Wang
- Scientific Research Center, Guilin Medical University Guilin Guangxi 541199 People's Republic of China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University Guilin Guangxi 541199 People's Republic of China
| | - Tao Liao
- School of Pharmacy, Guilin Medical University Guilin Guangxi 541199 People's Republic of China
| | - Xuan-Yi Guang
- Scientific Research Center, Guilin Medical University Guilin Guangxi 541199 People's Republic of China
| | - Yan-Fang Feng
- School of Pharmacy, Guilin Medical University Guilin Guangxi 541199 People's Republic of China
| | - Zhen Zhang
- College of Intelligent Medicine and Biotechnology, Guilin Medical University Guilin Guangxi 541199 People's Republic of China
| | - Bo Zhou
- School of Pharmacy, Guilin Medical University Guilin Guangxi 541199 People's Republic of China
- Scientific Research Center, Guilin Medical University Guilin Guangxi 541199 People's Republic of China
| |
Collapse
|
28
|
Vo TTT, Peng TY, Nguyen TH, Bui TNH, Wang CS, Lee WJ, Chen YL, Wu YC, Lee IT. The crosstalk between copper-induced oxidative stress and cuproptosis: a novel potential anticancer paradigm. Cell Commun Signal 2024; 22:353. [PMID: 38970072 PMCID: PMC11225285 DOI: 10.1186/s12964-024-01726-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
Copper is a crucial trace element that plays a role in various pathophysiological processes in the human body. Copper also acts as a transition metal involved in redox reactions, contributing to the generation of reactive oxygen species (ROS). Under prolonged and increased ROS levels, oxidative stress occurs, which has been implicated in different types of regulated cell death. The recent discovery of cuproptosis, a copper-dependent regulated cell death pathway that is distinct from other known regulated cell death forms, has raised interest to researchers in the field of cancer therapy. Herein, the present work aims to outline the current understanding of cuproptosis, with an emphasis on its anticancer activities through the interplay with copper-induced oxidative stress, thereby providing new ideas for therapeutic approaches targeting modes of cell death in the future.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- Faculty of Dentistry, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Tzu-Yu Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Thi Hong Nguyen
- Faculty of Dentistry, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Trang Ngoc Huyen Bui
- Faculty of Dentistry, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Ching-Shuen Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Wei-Ju Lee
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, 110301, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Yang-Che Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
| |
Collapse
|
29
|
D’Amico M, De Amicis F. Challenges of Regulated Cell Death: Implications for Therapy Resistance in Cancer. Cells 2024; 13:1083. [PMID: 38994937 PMCID: PMC11240625 DOI: 10.3390/cells13131083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Regulated cell death, a regulatory form of cell demise, has been extensively studied in multicellular organisms. It plays a pivotal role in maintaining organismal homeostasis under normal and pathological conditions. Although alterations in various regulated cell death modes are hallmark features of tumorigenesis, they can have divergent effects on cancer cells. Consequently, there is a growing interest in targeting these mechanisms using small-molecule compounds for therapeutic purposes, with substantial progress observed across various human cancers. This review focuses on summarizing key signaling pathways associated with apoptotic and autophagy-dependent cell death. Additionally, it explores crucial pathways related to other regulated cell death modes in the context of cancer. The discussion delves into the current understanding of these processes and their implications in cancer treatment, aiming to illuminate novel strategies to combat therapy resistance and enhance overall cancer therapy.
Collapse
Affiliation(s)
- Maria D’Amico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
30
|
Sung YS, Tomat E. Quinoline-based tetrazolium prochelators: formazan release, iron sequestration, and antiproliferative efficacy in cancer cells. Chem Commun (Camb) 2024; 60:6150-6153. [PMID: 38804255 PMCID: PMC11568512 DOI: 10.1039/d4cc01523a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Iron-binding strategies in anticancer drug design target the key role of iron in cancer growth. The incorporation of a quinoline moiety in the design of tetrazolium-based prochelators facilitates their intracellular reduction/activation to iron-binding formazans. The new prochelators are antiproliferative at submicromolar levels, induce apoptosis and cell cycle arrest, and impact iron signaling in cancer cells.
Collapse
Affiliation(s)
- Yu-Shien Sung
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721-0041, USA.
| | - Elisa Tomat
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721-0041, USA.
| |
Collapse
|
31
|
Ban W, Chen Z, Zhang T, Du T, Huo D, Zhu G, He Z, Sun J, Sun M. Boarding pyroptosis onto nanotechnology for cancer therapy. J Control Release 2024; 370:653-676. [PMID: 38735396 DOI: 10.1016/j.jconrel.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Pyroptosis, a non-apoptotic programmed cellular inflammatory death mechanism characterized by gasdermin (GSDM) family proteins, has gathered significant attention in the cancer treatment. However, the alarming clinical trial data indicates that pyroptosis-mediated cancer therapeutic efficiency is still unsatisfactory. It is essential to integrate the burgeoning biomedical findings and innovations with potent technology to hasten the development of pyroptosis-based antitumor drugs. Considering the rapid development of pyroptosis-driven cancer nanotherapeutics, here we aim to summarize the recent advances in this field at the intersection of pyroptosis and nanotechnology. First, the foundation of pyroptosis-based nanomedicines (NMs) is outlined to illustrate the reliability and effectiveness for the treatment of tumor. Next, the emerging nanotherapeutics designed to induce pyroptosis are overviewed. Moreover, the cross-talk between pyroptosis and other cell death modalities are discussed, aiming to explore the mechanistic level relationships to provide guidance strategies for the combination of different types of antitumor drugs. Last but not least, the opportunities and challenges of employing pyroptosis-based NMs in potential clinical cancer therapy are highlighted.
Collapse
Affiliation(s)
- Weiyue Ban
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Zhichao Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Tao Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Tengda Du
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Dianqiu Huo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Guorui Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| | - Mengchi Sun
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.
| |
Collapse
|
32
|
Yang Y, Fan H, Guo Z. Modulation of Metal Homeostasis for Cancer Therapy. Chempluschem 2024; 89:e202300624. [PMID: 38315756 DOI: 10.1002/cplu.202300624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/16/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Metal ions such as iron, zinc, copper, manganese, and calcium are essential for normal cellular processes, including DNA synthesis, enzyme activity, cellular signaling, and oxidative stress regulation. When the balance of metal homeostasis is disrupted, it can lead to various pathological conditions, including cancer. Thus, understanding the role of metal homeostasis in cancer has led to the development of anti-tumor strategies that specifically target the metal imbalance. Up to now, diverse small molecule-based chelators, ionophores, metal complexes, and metal-based nanomaterials have been developed to restore the normal balance of metals or exploit the dysregulation for therapeutic purposes. They hold great promise in inhibiting tumor growth, preventing metastasis, and enhancing the effectiveness of existing cancer therapies. In this review, we aim to provide a comprehensive summary of the strategies employed to modulate the homeostasis of iron, zinc, copper, manganese, and calcium for cancer therapy. Their modulation mechanisms for metal homeostasis are succinctly described, and their recent applications in the field of cancer therapy are discussed. At the end, the limitations of these approaches are addressed, and potential avenues for future developments are explored.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, Jiangsu, P. R. China
| | - Huanhuan Fan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, Jiangsu, P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
33
|
Feng R, Li H, Meng T, Fei M, Yang C. Bioinformatics analysis and experimental validation of m6A and cuproptosis-related lncRNA NFE4 in clear cell renal cell carcinoma. Discov Oncol 2024; 15:187. [PMID: 38797784 PMCID: PMC11128431 DOI: 10.1007/s12672-024-01023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
PURPOSE This study aimed to construct an m6A and cuproptosis-related long non-coding RNAs (lncRNAs) signature to accurately predict the prognosis of kidney clear cell carcinoma (KIRC) patients using the information acquired from The Cancer Genome Atlas (TCGA) database. METHODS First, the co-expression analysis was performed to identify lncRNAs linked with N6-methyladenosine (m6A) and cuproptosis in ccRCC. Then, a model encompassing four candidate lncRNAs was constructed via univariate, least absolute shrinkage together with selection operator (LASSO), and multivariate regression analyses. Furthermore, Kaplan-Meier, principal component, functional enrichment annotation, and nomogram analyses were performed to develop a risk model that could effectively assess medical outcomes for ccRCC cases. Moreover, the cellular function of NFE4 in Caki-1/OS-RC-2 cultures was elucidated through CCK-8/EdU assessments and Transwell experiments. Dataset outcomes indicated that NFE4 can have possible implications in m6A and cuproptosis, and may promote ccRCC progression. RESULTS We constructed a panel of m6A and cuproptosis-related lncRNAs to construct a prognostic prediction model. The Kaplan-Meier and ROC curves showed that the feature had acceptable predictive validity in the TCGA training, test, and complete groups. Furthermore, the m6A and cuproptosis-related lncRNA model indicated higher diagnostic efficiency than other clinical features. Moreover, the NFE4 function analysis indicated a gene associated with m6A and cuproptosis-related lncRNAs in ccRCC. It was also revealed that the proliferation and migration of Caki-1 /OS-RC-2 cells were inhibited in the NFE4 knockdown group. CONCLUSION Overall, this study indicated that NFE4 and our constructed risk signature could predict outcomes and have potential clinical value.
Collapse
Affiliation(s)
- Rui Feng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Haolin Li
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Tong Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Mingtian Fei
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Cheng Yang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
34
|
Xu S, Hao Y, Xu X, Huang L, Liang Y, Liao J, Yang JR, Zhou Y, Huang M, Du KZ, Zhang C, Xu P. Antitumor Activity and Mechanistic Insights of a Mitochondria-Targeting Cu(I) Complex. J Med Chem 2024; 67:7911-7920. [PMID: 38709774 DOI: 10.1021/acs.jmedchem.3c02018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Using copper-ionophores to translocate extracellular copper into mitochondria is a clinically validated anticancer strategy that has been identified as a new type of regulated cell death termed "cuproptosis." This study reports a mitochondria-targeting Cu(I) complex, Cu(I)Br(PPh3)3 (CBP), consisting of a cuprous ion coordinated by three triphenylphosphine moieties and a Br atom. CBP exhibited antitumor and antimetastatic efficacy in vitro and in vivo by specifically targeting mitochondria instigating mitochondrial dysfunction. The cytotoxicity of CBP could only be reversed by a copper chelator rather than inhibitors of the known cell death, indicating copper-dependent cytotoxicity. Furthermore, CBP induced the oligomerization of lipoylated proteins and the loss of Fe-S cluster proteins, consistent with characteristic features of cuproptosis. Additionally, CBP induced remarkable intracellular generation of reactive oxygen species (ROS) through a Fenton-like reaction, indicating a complex antitumor mechanism. This is a proof-of-concept study exploiting the antitumor activity and mechanism of the Cu(I)-based mitochondria-targeting therapy.
Collapse
Affiliation(s)
- Siyu Xu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P. R. China
| | - Yashuai Hao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Xinyi Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Lu Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Yuqiong Liang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Jia Liao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Jie-Ru Yang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P. R. China
| | - Yang Zhou
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Mingdong Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P. R. China
| | - Cen Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
35
|
Yi H, Chen T, He G, Liu L, Zhao J, Guo K, Cao Y, Sun P, Zhou X, Zhang B, Li C, Wang H. Retinoic acid mitigates the NSC319726-induced spermatogenesis dysfunction through cuproptosis-independent mechanisms. Cell Biol Toxicol 2024; 40:26. [PMID: 38691186 PMCID: PMC11062974 DOI: 10.1007/s10565-024-09857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/25/2024] [Indexed: 05/03/2024]
Abstract
Copper ionophore NSC319726 has attracted researchers' attention in treating diseases, particularly cancers. However, its potential effects on male reproduction during medication are unclear. This study aimed to determine whether NSC319726 exposure affected the male reproductive system. The reproductive toxicity of NSC319726 was evaluated in male mice following a continuous exposure period of 5 weeks. The result showed that NSC319726 exposure caused testis index reduction, spermatogenesis dysfunction, and architectural damage in the testis and epididymis. The exposure interfered with spermatogonia proliferation, meiosis initiation, sperm count, and sperm morphology. The exposure also disturbed androgen synthesis and blood testis barrier integrity. NSC319726 treatment could elevate the copper ions in the testis to induce cuproptosis in the testis. Copper chelator rescued the elevated copper ions in the testis and partly restored the spermatogenesis dysfunction caused by NSC319726. NSC319726 treatment also decreased the level of retinol dehydrogenase 10 (RDH10), thereby inhibiting the conversion of retinol to retinoic acid, causing the inability to initiate meiosis. Retinoic acid treatment could rescue the meiotic initiation and spermatogenesis while not affecting the intracellular copper ion levels. The study provided an insight into the bio-safety of NSC319726. Retinoic acid could be a potential therapy for spermatogenesis impairment in patients undergoing treatment with NSC319726.
Collapse
Affiliation(s)
- Haisheng Yi
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun, 130012, China
| | - Tong Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Guitian He
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Lingyun Liu
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun, 130012, China
| | - Jiantao Zhao
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun, 130012, China
| | - Kaimin Guo
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun, 130012, China
| | - Yin Cao
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun, 130012, China
| | - Penghao Sun
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun, 130012, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Boqi Zhang
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Hongliang Wang
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun, 130012, China.
| |
Collapse
|
36
|
Feng Y, Yang Z, Wang J, Zhao H. Cuproptosis: unveiling a new frontier in cancer biology and therapeutics. Cell Commun Signal 2024; 22:249. [PMID: 38693584 PMCID: PMC11064406 DOI: 10.1186/s12964-024-01625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024] Open
Abstract
Copper plays vital roles in numerous cellular processes and its imbalance can lead to oxidative stress and dysfunction. Recent research has unveiled a unique form of copper-induced cell death, termed cuproptosis, which differs from known cell death mechanisms. This process involves the interaction of copper with lipoylated tricarboxylic acid cycle enzymes, causing protein aggregation and cell death. Recently, a growing number of studies have explored the link between cuproptosis and cancer development. This review comprehensively examines the systemic and cellular metabolism of copper, including tumor-related signaling pathways influenced by copper. It delves into the discovery and mechanisms of cuproptosis and its connection to various cancers. Additionally, the review suggests potential cancer treatments using copper ionophores that induce cuproptosis, in combination with small molecule drugs, for precision therapy in specific cancer types.
Collapse
Affiliation(s)
- Ying Feng
- Department of Emergency, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China
| | - Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, 723000, Shaanxi, China
| | - Jianpeng Wang
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China.
| |
Collapse
|
37
|
Wang C, Wang R, Zhao L, Wang S, Liu Y, Zhao J, Dong Y, Liu L, Wei P, Wu ZY, Yi T. Constructing "smart" chelators by using an activatable prochelator strategy for the treatment of Wilson's disease. Redox Biol 2024; 70:103076. [PMID: 38340635 PMCID: PMC10869257 DOI: 10.1016/j.redox.2024.103076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
Wilson's disease (WD) is a genetic disorder that primarily leads to the pathological accumulation of copper (Cu) in the liver, causing an abnormal increase in reactive oxygen species (ROS). The prevailing clinical therapy for WD involves lifelong use of Cu chelation drugs to facilitate Cu excretion in patients. However, most available drugs exert severely side-effects due to their non-specific excretion of Cu, unsuitable for long-term use. In this study, we construct a prochelator that enables precise and controlled delivery of Cu chelator drugs to the liver in WD model, circumventing toxic side effects on other organs and normal tissues. This innovative prochelator rapidly releases the chelator and the fluorescent molecule methylene blue (MB) upon activation by ROS highly expressed in the liver of WD. The released chelator coordinates with Cu, efficiently aiding in Cu removal from the body and effectively inhibiting the pathological progression of WD.
Collapse
Affiliation(s)
- Chengcheng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Roumin Wang
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Shasha Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Yan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yi Dong
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Lingyan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| | - Zhi-Ying Wu
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
38
|
Qin Z, Yang B, Jin X, Zhao H, Liu N. Cuproptosis in glioblastoma: unveiling a novel prognostic model and therapeutic potential. Front Oncol 2024; 14:1359778. [PMID: 38606090 PMCID: PMC11007140 DOI: 10.3389/fonc.2024.1359778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Glioblastoma, a notably aggressive brain tumor, is characterized by a brief survival period and resistance to conventional therapeutic approaches. With the recent identification of "Cuproptosis," a copper-dependent apoptosis mechanism, this study aimed to explore its role in glioblastoma prognosis and potential therapeutic implications. A comprehensive methodology was employed, starting with the identification and analysis of 65 cuproptosis-related genes. These genes were subjected to differential expression analyses between glioblastoma tissues and normal counterparts. A novel metric, the "CP-score," was devised to quantify the cuproptosis response in glioblastoma patients. Building on this, a prognostic model, the CP-model, was developed using Cox regression techniques, designed to operate on both bulk and single-cell data. The differential expression analysis revealed 31 genes with distinct expression patterns in glioblastoma. The CP-score was markedly elevated in glioblastoma patients, suggesting an intensified cuproptosis response. The CP-model adeptly stratified patients into distinct risk categories, unveiling intricate associations between glioblastoma prognosis, immune response pathways, and the tumor's immunological environment. Further analyses indicated that high-risk patients, as per the CP-model, exhibited heightened expression of certain immune checkpoints, suggesting potential therapeutic targets. Additionally, the model hinted at the possibility of personalized therapeutic strategies, with certain drugs showing increased efficacy in high-risk patients. The CP-model offers a promising tool for glioblastoma prognosis and therapeutic strategy development, emphasizing the potential of Cuproptosis in cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Naijie Liu
- Neurosurgery Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
39
|
Moison C, Gracias D, Schmitt J, Girard S, Spinella JF, Fortier S, Boivin I, Mendoza-Sanchez R, Thavonekham B, MacRae T, Mayotte N, Bonneil E, Wittman M, Carmichael J, Ruel R, Thibault P, Hébert J, Marinier A, Sauvageau G. SF3B1 mutations provide genetic vulnerability to copper ionophores in human acute myeloid leukemia. SCIENCE ADVANCES 2024; 10:eadl4018. [PMID: 38517966 PMCID: PMC10959413 DOI: 10.1126/sciadv.adl4018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/20/2024] [Indexed: 03/24/2024]
Abstract
In a phenotypical screen of 56 acute myeloid leukemia (AML) patient samples and using a library of 10,000 compounds, we identified a hit with increased sensitivity toward SF3B1-mutated and adverse risk AMLs. Through structure-activity relationship studies, this hit was optimized into a potent, specific, and nongenotoxic molecule called UM4118. We demonstrated that UM4118 acts as a copper ionophore that initiates a mitochondrial-based noncanonical form of cell death known as cuproptosis. CRISPR-Cas9 loss-of-function screen further revealed that iron-sulfur cluster (ISC) deficiency enhances copper-mediated cell death. Specifically, we found that loss of the mitochondrial ISC transporter ABCB7 is synthetic lethal to UM4118. ABCB7 is misspliced and down-regulated in SF3B1-mutated leukemia, creating a vulnerability to copper ionophores. Accordingly, ABCB7 overexpression partially rescued SF3B1-mutated cells to copper overload. Together, our work provides mechanistic insights that link ISC deficiency to cuproptosis, as exemplified by the high sensitivity of SF3B1-mutated AMLs. We thus propose SF3B1 mutations as a biomarker for future copper ionophore-based therapies.
Collapse
Affiliation(s)
- Céline Moison
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Deanne Gracias
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Julie Schmitt
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Simon Girard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Jean-François Spinella
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Simon Fortier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Isabel Boivin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | | | - Bounkham Thavonekham
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Tara MacRae
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Nadine Mayotte
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Mark Wittman
- Research and Development, Bristol Myers Squibb Company, Cambridge, MA, USA
| | - James Carmichael
- Research and Development, Bristol Myers Squibb Company, Cambridge, MA, USA
| | - Réjean Ruel
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Department of Chemistry, Université de Montréal, Montréal, Canada
| | - Josée Hébert
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Division of Hematology-Oncology and Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Anne Marinier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Department of Chemistry, Université de Montréal, Montréal, Canada
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Division of Hematology-Oncology and Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| |
Collapse
|
40
|
Xu X, Zhu Z, Chen S, Fu Y, Zhang J, Guo Y, Xu Z, Xi Y, Wang X, Ye F, Chen H, Yang X. Synthesis and biological evaluation of novel benzothiazole derivatives as potential anticancer and antiinflammatory agents. Front Chem 2024; 12:1384301. [PMID: 38562527 PMCID: PMC10982501 DOI: 10.3389/fchem.2024.1384301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: Cancer, a significant global health concern, necessitates innovative treatments. The pivotal role of chronic inflammation in cancer development underscores the urgency for novel therapeutic strategies. Benzothiazole derivatives exhibit promise due to their distinctive structures and broad spectrum of biological effects. This study aims to explore new anti-tumor small molecule drugs that simultaneously anti-inflammatory and anticancer based on the advantages of benzothiazole frameworks. Methods: The compounds were characterized by nuclear magnetic resonance (NMR), liquid chromatograph-mass spectrometer (LC-MS) and high performance liquid chromatography (HPLC) for structure as well as purity and other related physicochemical properties. The effects of the compounds on the proliferation of human epidermoid carcinoma cell line (A431) and human non-small cell lung cancer cell lines (A549, H1299) were evaluated by MTT method. The effect of compounds on the expression levels of inflammatory factors IL-6 and TNF-α in mouse monocyte macrophages (RAW264.7) was assessed using enzyme-linked immunosorbent assay (ELISA). The effect of compounds on apoptosis and cell cycle of A431 and A549 cells was evaluated by flow cytometry. The effect of compounds on A431 and A549 cell migration was evaluated by scratch wound healing assay. The effect of compounds on protein expression levels in A431 and A549 cells was assessed by Western Blot assay. The physicochemical parameters, pharmacokinetic properties, toxicity and drug similarity of the active compound were predicted using Swiss ADME and admetSAR web servers. Results: Twenty-five novel benzothiazole compounds were designed and synthesized, with their structures confirmed through spectrogram verification. The active compound 6-chloro-N-(4-nitrobenzyl) benzo[d] thiazol-2-amine (compound B7) was screened through a series of bioactivity assessments, which significantly inhibited the proliferation of A431, A549 and H1299 cancer cells, decreased the activity of IL-6 and TNF-α, and hindered cell migration. In addition, at concentrations of 1, 2, and 4 μM, B7 exhibited apoptosis-promoting and cell cycle-arresting effects similar to those of the lead compound 7-chloro-N-(2, 6-dichlorophenyl) benzo[d] thiazole-2-amine (compound 4i). Western blot analysis confirmed that B7 inhibited both AKT and ERK signaling pathways in A431 and A549 cells. The prediction results of ADMET indicated that B7 had good drug properties. Discussion: This study has innovatively developed a series of benzothiazole derivatives, with a focus on compound B7 due to its notable dual anticancer and anti-inflammatory activities. B7 stands out for its ability to significantly reduce cancer cell proliferation in A431, A549, and H1299 cell lines and lower the levels of inflammatory cytokines IL-6 and TNF-α. These results position B7B7 as a promising candidate for dual-action cancer therapy. The study's mechanistic exploration, highlighting B7's simultaneous inhibition of the AKT and ERK pathways, offers a novel strategy for addressing both the survival mechanisms of tumor cells and the inflammatory milieu facilitating cancer progression.
Collapse
Affiliation(s)
- Xuemei Xu
- Department of Pharmacy, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Zhaojingtao Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Siyu Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yanneng Fu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jinxia Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yangyang Guo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zhouyang Xu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yingying Xi
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Xuebao Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Faqing Ye
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Huijun Chen
- Department of Pharmacy, The First People’s Hospital of Taizhou, Taizhou, China
| | - Xiaojiao Yang
- Scientific Research Center, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
41
|
Abdullah K, Kaushal JB, Takkar S, Sharma G, Alsafwani ZW, Pothuraju R, Batra SK, Siddiqui JA. Copper metabolism and cuproptosis in human malignancies: Unraveling the complex interplay for therapeutic insights. Heliyon 2024; 10:e27496. [PMID: 38486750 PMCID: PMC10938126 DOI: 10.1016/j.heliyon.2024.e27496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
Copper, a vital trace element, orchestrates diverse cellular processes ranging from energy production to antioxidant defense and angiogenesis. Copper metabolism and cuproptosis are closely linked in the context of human diseases, with a particular focus on cancer. Cuproptosis refers to a specific type of copper-mediated cell death or copper toxicity triggered by disruptions in copper metabolism within the cells. This phenomenon encompasses a spectrum of mechanisms, such as oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, and perturbations in metal ion equilibrium. Mechanistically, cuproptosis is driven by copper binding to the lipoylated enzymes within the tricarboxylic acid (TCA) cycle. This interaction participates in protein aggregation and proteotoxic stress, ultimately culminating in cell death. Targeting copper metabolism and its associated pathways in cancer cells hold therapeutic potential by selectively targeting and eliminating cancerous cells. Strategies to modulate copper levels, enhance copper excretion, or interfere with cuproptotic pathways are being explored to identify novel therapeutic targets for cancer therapy and improve patient outcomes. Understanding the relationship between cuproptosis and copper metabolism in human malignancies remains an active area of research. This review provides a comprehensive overview of the association among copper metabolism, copper homeostasis, and carcinogenesis, explicitly emphasizing the cuproptosis mechanism and its implications for cancer pathogenesis. Additionally, we emphasize the therapeutic aspects of targeting copper and cuproptosis for cancer treatment.
Collapse
Affiliation(s)
- K.M. Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jyoti B. Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Simran Takkar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Zahraa W. Alsafwani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
42
|
Li W, Xin H, Gao W, Yuan P, Ni F, Ma J, Sun J, Xiao J, Tian G, Liu L, Zhang G. NIR-IIb fluorescence antiangiogenesis copper nano-reaper for enhanced synergistic cancer therapy. J Nanobiotechnology 2024; 22:73. [PMID: 38374027 PMCID: PMC10877799 DOI: 10.1186/s12951-024-02343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024] Open
Abstract
The formation of blood vessel system under a relatively higher Cu2+ ion level is an indispensable precondition for tumor proliferation and migration, which was assisted in forming the tumor immune microenvironment. Herein, a copper ions nano-reaper (LMDFP) is rationally designed not only for chelating copper ions in tumors, but also for combination with photothermal therapy (PTT) to improve antitumor efficiency. Under 808 nm laser irradiation, the fabricated nano-reaper converts light energy into thermal energy to kill tumor cells and promotes the release of D-penicillamine (DPA) in LMDFP. Photothermal properties of LMDFP can cause tumor ablation in situ, which further induces immunogenic cell death (ICD) to promote systematic antitumor immunity. The released DPA exerts an anti-angiogenesis effect on the tumor through chelating copper ions, and inhibits the expression of programmed death ligand 1 (PD-L1), which synergizes with PTT to enhance antitumor immunity and inhibit tumor metastasis. Meanwhile, the nanoplatform can emit near-infrared-IIb (NIR-IIb) fluorescence under 980 nm excitation, which can be used to track the nano-reaper and determine the optimal time point for PTT. Thus, the fabricated nano-reaper shows powerful potential in inhibiting tumor growth and metastasis, and holds great promise for the application of copper nanochelator in precise tumor treatment.
Collapse
Affiliation(s)
- Wenling Li
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Huan Xin
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Wenjuan Gao
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Pengjun Yuan
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Feixue Ni
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Jingyi Ma
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Jingrui Sun
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Jianmin Xiao
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Geng Tian
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China.
| | - Lu Liu
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China.
| | - Guilong Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China.
| |
Collapse
|
43
|
Liu Y, He J, Li M, Ren K, Zhao Z. Inflammation-Driven Nanohitchhiker Enhances Postoperative Immunotherapy by Alleviating Prostaglandin E2-Mediated Immunosuppression. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6879-6893. [PMID: 38300288 DOI: 10.1021/acsami.3c17357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Inflammation contributes to the immunosuppressive microenvironment and leads to the recurrence of surgically resected tumors. The COX-2/PGE2 axis is considered a key player in shaping the immunosuppression microenvironment. However, targeted modulation of the postoperative tumor microenvironment is challenging. To specifically curb the inflammation and alleviate immunosuppression, here, we developed a PGE2 inhibitor celecoxib (CXB)-loaded bionic nanoparticle (CP@CM) coated with activated murine vascular endothelial cell (C166 cells) membrane to target postoperative melanoma and inhibit its recurrence. CP@CM adhered to inflammatory white blood cells (WBCs) through the adhesion molecules, including ICAM-1, VCAM-1, E-selectin, and P-selection, expressed on the surface of C166 cells. Leveraging the natural tropism of the WBC to the inflammatory postoperative tumor site, CP@CM efficiently targeted postoperative tumors. In melanoma postoperative recurrence models, CXB significantly reduced PGE2 secretion and the recruitment of immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Treg) by inhibiting the activity of COX-2. This was followed by an increase in the infiltration of CD8+ T cells and CD4+ T cells in tumor tissues. Additionally, the immune responses were further enhanced by combining a PD-L1 monoclonal antibody. Ultimately, this immunotherapeutic strategy reversed the tumor immunosuppressive microenvironment and inhibited tumor recurrence, demonstrating a promising potential for postoperative immunotherapy for melanoma.
Collapse
Affiliation(s)
- Yingke Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| | - Jiao He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Kebai Ren
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| |
Collapse
|
44
|
Grcic L, Leech G, Kwan K, Storr T. Targeting misfolding and aggregation of the amyloid-β peptide and mutant p53 protein using multifunctional molecules. Chem Commun (Camb) 2024; 60:1372-1388. [PMID: 38204416 DOI: 10.1039/d3cc05834d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Biomolecule misfolding and aggregation play a major role in human disease, spanning from neurodegeneration to cancer. Inhibition of these processes is of considerable interest, and due to the multifactorial nature of these diseases, the development of drugs that act on multiple pathways simultaneously is a promising approach. This Feature Article focuses on the development of multifunctional molecules designed to inhibit the misfolding and aggregation of the amyloid-β (Aβ) peptide in Alzheimer's disease (AD), and the mutant p53 protein in cancer. While for the former, the goal is to accelerate the removal of the Aβ peptide and associated aggregates, for the latter, the goal is reactivation via stabilization of the active folded form of mutant p53 protein and/or aggregation inhibition. Due to the similar aggregation pathway of the Aβ peptide and mutant p53 protein, a common therapeutic approach may be applicable.
Collapse
Affiliation(s)
- Lauryn Grcic
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Grace Leech
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Kalvin Kwan
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
45
|
Xiong K, Lin X, Kou J, Wei F, Shen J, Chen Y, Ji L, Chao H. Apoferritin-Cu(II) Nanoparticles Induce Oncosis in Multidrug-Resistant Colon Cancer Cells. Adv Healthc Mater 2024; 13:e2302564. [PMID: 38073257 DOI: 10.1002/adhm.202302564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/03/2023] [Indexed: 12/19/2023]
Abstract
Multidrug resistance (MDR) limits the application of clinical chemotherapeutic drugs. There is an urgent need to develop non-apoptosis-inducing agents that circumvent drug resistance. Herein, four therapeutic copper complexes encapsulated in natural nanocarrier apoferritin (AFt-Cu1-4) are reported. Although they are isomers, they exhibit significantly different organelle distributions and cell death mechanisms. AFt-Cu1 and AFt-Cu3 accumulate in the cytoplasm and induce autophagy, whereas AFt-Cu2 and AFt-Cu4 can quickly enter the nucleus and trigger oncosis. Excitedly, AFt-Cu2 and AFt-Cu4 show a strong tumor growth inhibition effect in mice models bearing multidrug-resistant colon xenograft via intravenous injection. To the best of the authors' knowledge, this is the first example of metal-based nucleus-targeted oncosis inducers overcoming multidrug resistance in vivo.
Collapse
Affiliation(s)
- Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xinlin Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Junfeng Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jinchao Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R. China
| |
Collapse
|
46
|
Bendellaa M, Lelièvre P, Coll JL, Sancey L, Deniaud A, Busser B. Roles of zinc in cancers: From altered metabolism to therapeutic applications. Int J Cancer 2024; 154:7-20. [PMID: 37610131 DOI: 10.1002/ijc.34679] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Zinc (Zn) is a crucial trace element involved in various cellular processes, including oxidative stress, apoptosis and immune response, contributing to cellular homeostasis. Dysregulation of Zn homeostasis occurs in certain cancers. This review discusses the role of Zn in cancer and its associated components, such as Zn-related proteins, their potential as biomarkers and the use of Zn-based strategies for tumor treatment. ZIP and ZnT proteins regulate Zn metabolism under normal conditions, but their expression is aberrant in cancer. These Zn proteins can serve as prognostic or diagnostic biomarkers, aiding in early cancer detection and disease monitoring. Moreover, targeting Zn and its pathways offers potential therapeutic approaches for cancer treatment. Modulating Zn biodistribution within cells using metal-binding agents allows for the control of downstream signaling pathways. Direct utilization of zinc as a therapeutic agent, including Zn supplementation or Zn oxide nanoparticle administration, holds promise for improving the prognosis of cancer patients.
Collapse
Affiliation(s)
- Mohamed Bendellaa
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Pierre Lelièvre
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Jean-Luc Coll
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Lucie Sancey
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Aurélien Deniaud
- Grenoble Alpes University, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Grenoble, France
| | - Benoit Busser
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
- Department of Laboratory Medicine, Grenoble Alpes University Hospital, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
47
|
Wang Y, Chen Y, Zhang J, Yang Y, Fleishman JS, Wang Y, Wang J, Chen J, Li Y, Wang H. Cuproptosis: A novel therapeutic target for overcoming cancer drug resistance. Drug Resist Updat 2024; 72:101018. [PMID: 37979442 DOI: 10.1016/j.drup.2023.101018] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
Cuproptosis is a newly identified form of cell death driven by copper. Recently, the role of copper and copper triggered cell death in the pathogenesis of cancers have attracted attentions. Cuproptosis has garnered enormous interest in cancer research communities because of its great potential for cancer therapy. Copper-based treatment exerts an inhibiting role in tumor growth and may open the door for the treatment of chemotherapy-insensitive tumors. In this review, we provide a critical analysis on copper homeostasis and the role of copper dysregulation in the development and progression of cancers. Then the core molecular mechanisms of cuproptosis and its role in cancer is discussed, followed by summarizing the current understanding of copper-based agents (copper chelators, copper ionophores, and copper complexes-based dynamic therapy) for cancer treatment. Additionally, we summarize the emerging data on copper complexes-based agents and copper ionophores to subdue tumor chemotherapy resistance in different types of cancers. We also review the small-molecule compounds and nanoparticles (NPs) that may kill cancer cells by inducing cuproptosis, which will shed new light on the development of anticancer drugs through inducing cuproptosis in the future. Finally, the important concepts and pressing questions of cuproptosis in future research that should be focused on were discussed. This review article suggests that targeting cuproptosis could be a novel antitumor therapy and treatment strategy to overcome cancer drug resistance.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, PR China.
| | - Yongming Chen
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Junjing Zhang
- Department of Hepato-Biliary Surgery, Department of Surgery, Huhhot First Hospital, Huhhot 010030, PR China
| | - Yihui Yang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yan Wang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, PR China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, PR China
| | - Yuanfang Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, PR China.
| | - Hongquan Wang
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| |
Collapse
|
48
|
Crowell LL, Yakisich JS, Aufderheide B, Adams TNG. Phenotypic Characterization of 2D and 3D Prostate Cancer Cell Systems Using Electrical Impedance Spectroscopy. BIOSENSORS 2023; 13:1036. [PMID: 38131796 PMCID: PMC10742279 DOI: 10.3390/bios13121036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Prostate cancer is the second leading cause of death in men. A challenge in treating prostate cancer is overcoming cell plasticity, which links cell phenotype changes and chemoresistance. In this work, a microfluidic device coupled with electrical impedance spectroscopy (EIS), an electrode-based cell characterization technique, was used to study the electrical characteristics of phenotype changes for (1) prostate cancer cell lines (PC3, DU145, and LNCaP cells), (2) cells grown in 2D monolayer and 3D suspension cell culture conditions, and (3) cells in the presence (or absence) of the anti-cancer drug nigericin. To validate observations of phenotypic change, we measured the gene expression of two epithelial markers, E-cadherin (CDH1) and Tight Junction Protein 1 (ZO-1). Our results showed that PC3, DU145, and LNCaP cells were discernible with EIS. Secondly, moderate phenotype changes based on differences in cell culture conditions were detected with EIS and supported by the gene expression of CDH1. Lastly, we showed that EIS can detect chemoresistant-related cell phenotypes with nigericin drug treatment. EIS is a promising label-free tool for detecting cell phenotype changes associated with chemoresistance. Further development will enable the detection and characterization of many other types of cancer cells.
Collapse
Affiliation(s)
- Lexi L. Crowell
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697, USA;
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Juan Sebastian Yakisich
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA;
| | - Brian Aufderheide
- Department of Chemical Engineering, Hampton University, Hampton, VA 23668, USA;
| | - Tayloria N. G. Adams
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697, USA;
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
49
|
Behar AE, Maayan G. A Peptoid-Chelator Selective to Cu 2+ That Can Extract Copper from Metallothionein-2 and Lead to the Production of ROS. Antioxidants (Basel) 2023; 12:2031. [PMID: 38136151 PMCID: PMC10741037 DOI: 10.3390/antiox12122031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Copper is an essential metal ion that is involved in critical cellular processes, but which can also exhibit toxic effects through its ability to catalyze reactive oxygen species (ROS) formation. Dysregulation of copper homeostasis has been implicated in the progression of several diseases, including cancer. A novel therapeutic approach, extensively studied in recent years, is to capitalize on the increased copper uptake and dependency exhibited by cancer cells and to promote copper-associated ROS production within the tumor microenvironment, leading to the apoptosis of cancer cells. Such an effect can be achieved by selectively chelating copper from copper-bearing metalloproteins in cancer cells, thereby forming a copper-chelator complex that produces ROS and, through this, induces oxidative stress and initiates apoptosis. Herein, we describe a peptoid chelator, TB, that is highly suitable to carry this task. Peptoids are N-substituted glycine oligomers that can be efficiently synthesized on a solid support and are also biocompatible; thus, they are considered promising drug candidates. We show, by rigorous spectroscopic techniques, that TB is not only selective for Cu(II) ions, but can also effectively extract copper from metallothionein-2, and the formed complex CuTB can promote ROS production. Our findings present a promising first example for the future development of peptoid-based chelators for applications in anti-cancer chelation therapy, highlighting the potential for the prospect of peptoid chelators as therapeutics.
Collapse
Affiliation(s)
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Technion City, Haifa 3200008, Israel
| |
Collapse
|
50
|
Yang Y, Li M, Chen G, Liu S, Guo H, Dong X, Wang K, Geng H, Jiang J, Li X. Dissecting copper biology and cancer treatment: ‘Activating Cuproptosis or suppressing Cuproplasia’. Coord Chem Rev 2023; 495:215395. [DOI: 10.1016/j.ccr.2023.215395] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|