1
|
Bian JQ, Qin L, Fan LW, Fu J, Cheng YF, Zhang YF, Song Q, Wang PF, Li ZL, Gu QS, Yu P, Tang JB, Liu XY. Cu(I)-catalysed chemo-, regio-, and stereoselective radical 1,2-carboalkynylation with two different terminal alkynes. Nat Commun 2025; 16:4922. [PMID: 40425579 PMCID: PMC12117167 DOI: 10.1038/s41467-025-60012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Transition-metal-catalysed asymmetric multicomponent reactions with two similar substrates often suffer from the lack of strategies to control the chemo-, regio-, and stereoselectivity of these substrates due to the close similarity in the chemical structures and properties of each reagent. Here, we describe a Cu(I)-catalysed asymmetric radical 1,2-carboalkynylation of two different terminal alkynes and alkyl halides with high chemo-, regio-, and stereoselectivity by using sterically bulky chiral tridentate anionic N,N,P-ligands and modulating alkynes with different electronic properties to circumvent above-mentioned challenges. This method features good substrate scope, high functional group tolerance of two different terminal alkynes, and diverse alkyl halides, providing universal access to a series of useful axially chiral 1,3-enyne building blocks.
Collapse
Affiliation(s)
- Jun-Qian Bian
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, 518055, Shenzhen, China
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Li Qin
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Li-Wen Fan
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Jiajia Fu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yong-Feng Cheng
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yu-Feng Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Qiao Song
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Peng-Fei Wang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Zhong-Liang Li
- Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, 523000, Dongguan, China
| | - Qiang-Shuai Gu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Peng Yu
- Eastern Institute for Advanced Study Eastern Institute of Technology, 315200, Ningbo, Zhejiang, China
| | - Jun-Bin Tang
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, 518055, Shenzhen, China.
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China.
- Eastern Institute for Advanced Study Eastern Institute of Technology, 315200, Ningbo, Zhejiang, China.
| | - Xin-Yuan Liu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, 518055, Shenzhen, China.
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
2
|
Yuan Q, Wu C, Bao Y, Huang Z, Wang H, Wei Y, Wang S. Copper-catalyzed three-component radical aminoazolation of vinylarenes with N-fluorobenzenesulfonimide and trimethylsilylazole derivatives. Chem Commun (Camb) 2025. [PMID: 40421685 DOI: 10.1039/d5cc01080b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
A copper-catalyzed three-component radical aminoazolation of vinylarenes with N-fluorobenzenesulfonimide (NFSI) and trimethylsilylazole derivatives has been developed. This methodology provides an efficient and straightforward approach to generate various β-sulfoamino azoles in good to excellent yields. The protocol features exclusive chemo- and regioselectivity, and excellent functional group tolerance under mild conditions.
Collapse
Affiliation(s)
- Qingbing Yuan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
- Anhui Zhongtian New Materials Technology Co., Ltd., Wuhu, Anhui 241206, P. R. China
| | - Caiqiong Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Yonghu Bao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Zengming Huang
- Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China
| | - Hua Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
- Anhui Zhongtian New Materials Technology Co., Ltd., Wuhu, Anhui 241206, P. R. China
| | - Yun Wei
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Shaowu Wang
- Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China
| |
Collapse
|
3
|
Li S, Li J, Zhang H, Zhang G, Guo R. Photoinduced Copper-Catalyzed Regio- and Diastereoselective Multicomponent [3 + 2 + 1] Radical Cyclization To Access Tetrahydropyridines. Org Lett 2025; 27:5057-5062. [PMID: 40356429 DOI: 10.1021/acs.orglett.5c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The use of simple raw materials to construct complex piperidine scaffolds via multicomponent reactions is highly desirable from the perspectives of atom and step-economy. In this Letter, we present a photoinduced copper-catalyzed three- or four-component [3 + 2 + 1] radical cyclization, utilizing inexpensive and readily available feedstock amines, alkynes, and aldehydes, to synthesize multisubstituted bicyclic or spirocyclic tetrahydropyridines. This method is notable for its mild conditions, atom-economic approach, excellent regio- and diastereoselectivity, and the simultaneous activation of two α-amino C(sp3)-H bonds, resulting in the formation of three C-C bonds and one C-N bond in a single step. Mechanistic studies suggest that the α-aminoalkyl radical is the key intermediate in this reaction, which undergoes sequential radical addition, 1,5-HAT, and 6-exo-trig-type radical cyclization.
Collapse
Affiliation(s)
- Sijia Li
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Jianye Li
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - He Zhang
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Guozhu Zhang
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Rui Guo
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
4
|
Cai Y, Dawor M, Gaurav G, Ritter T. Kharasch-Type Haloalkylation of Alkenes by Photoinduced Copper Catalysis. J Am Chem Soc 2025. [PMID: 40392531 DOI: 10.1021/jacs.5c05699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The simultaneous construction of C-C and C-X bonds in a single step facilitates multistep synthesis through rapid carbon chain growth and subsequent transformations of halide functionalities. Traditional Kharasch addition requires simple polyhalogenated compounds or those with electron-withdrawing groups at the α-carbon. Herein, we present a Kharasch-type reaction utilizing a broad range of carboxylic acid-derived redox-active esters as the alkyl source, which enables the efficient introduction of highly functionalized alkyl groups. Our method produces α-halo carbonyls that enable versatile nucleophilic substitutions for synthesizing valuable compounds, such as unnatural α-amino acids.
Collapse
Affiliation(s)
- Yuan Cai
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Mahiob Dawor
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Gaurav Gaurav
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
5
|
Huang HM. Modern radical chemistry. Beilstein J Org Chem 2025; 21:945-946. [PMID: 40438308 PMCID: PMC12117212 DOI: 10.3762/bjoc.21.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Accepted: 05/05/2025] [Indexed: 06/01/2025] Open
Affiliation(s)
- Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
6
|
Zheng K, Chen C, Wang Y, Xu H, Ge K, Shen C. Heterogeneous g-C 3N 4/NaI Dual Catalytic Difunctionalization of Alkenes with Heteroarenes and Methyl Carbazate under Visible Light. Org Lett 2025; 27:4747-4752. [PMID: 40285730 DOI: 10.1021/acs.orglett.5c01200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Herein, a photoinduced heterogeneous catalytic system merging g-C3N4 and NaI has been established for the difunctionalization of alkenes in conjunction with heteroarenes and methyl carbazate. This approach is notable for its broad substrate tolerance, encompassing a wide range of alkenes and heteroarenes and leading to the formation of the corresponding esters with moderate to good yields. Additionally, the scalability of the synthetic process and the versatility of the product transformations have been illustrated, highlighting its potential for practical application in organic synthesis.
Collapse
Affiliation(s)
- Kai Zheng
- Zhejiang Collaborative Innovation Center for Full-Process Monitoring and Green Governance of Emerging Contaminants, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Chao Chen
- Zhejiang Collaborative Innovation Center for Full-Process Monitoring and Green Governance of Emerging Contaminants, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yacong Wang
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hao Xu
- Zhejiang Collaborative Innovation Center for Full-Process Monitoring and Green Governance of Emerging Contaminants, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Kai Ge
- Zhejiang Collaborative Innovation Center for Full-Process Monitoring and Green Governance of Emerging Contaminants, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Chao Shen
- Zhejiang Collaborative Innovation Center for Full-Process Monitoring and Green Governance of Emerging Contaminants, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
7
|
Chillal AS, Kumari V, Kshirsagar UA. NIS-promoted carbochalcogenation of styrenes: regioselective C-3 alkylation of pyrazolo[1,5- a]pyrimidines. Org Biomol Chem 2025; 23:4365-4370. [PMID: 40231581 DOI: 10.1039/d5ob00303b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
An N-iodosuccinimide (NIS) mediated transition metal and solvent-free, regioselective multicomponent cascade reaction is developed for the C-3 alkylation of pyrazolo[1,5-a]pyrimidines via a three-component reaction of styrenes, diaryl dichalcogenides and pyrazolo[1,5-a]pyrimidines. This operationally simple, cost-effective and rapid reaction furnishes C-3 functionalized pyrazolo[1,5-a]pyrimidines in good to excellent yields. The reaction is scalable and operates via an electrophilic substitution mechanism.
Collapse
Affiliation(s)
- Abhinay S Chillal
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India.
| | - Varsha Kumari
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India.
| | - Umesh A Kshirsagar
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India.
| |
Collapse
|
8
|
Chen YY, Dai L, Zhang XG, Zhou QL. Copper-Catalyzed Enantioselective Three-Component Carboamidation of Styrenes with Alkanes and Amides. J Am Chem Soc 2025; 147:12397-12404. [PMID: 40185646 DOI: 10.1021/jacs.5c02348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Efficient assembly of valuable chiral molecules from readily available and low-cost chemical feedstocks remains one of the most challenging tasks in synthetic chemistry today. Radical-mediated three-component carboamination of alkenes offers an attractive strategy for addressing this challenge. However, most existing reports focus on racemic examples and are largely limited to activated alkenes, preactivated alkylation reagents, or sufficiently active nucleophiles. Herein, we report a highly enantioselective three-component carboamidation of styrenes with unactivated alkanes and weakly nucleophilic amides. Enantioselective control is achieved by using chiral cationic copper catalysts. This method enables the synthesis of a variety of optically active amides with excellent enantioselectivity. Mechanistic studies reveal that the reaction proceeds via hydrogen atom transfer from the alkane followed by radical addition to the olefin.
Collapse
Affiliation(s)
- Ying-Ying Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Ling Dai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Xuan-Ge Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Guo B, Yan X, Wang Z, Shen C, Chen W, Cen S, Peng Q, Zhang Z. Enhanced Pyridine-Oxazoline Ligand-Enabled Pd(II)-Catalyzed Aminoacetoxylation of Alkenes for the Asymmetric Synthesis of Biaryl-Bridged 7-Membered N-Heterocycles and Atropisomers. J Am Chem Soc 2025; 147:12614-12626. [PMID: 40167529 DOI: 10.1021/jacs.5c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
A new class of binaphthyl unit-enhanced pyridine-oxazoline ligands was developed to promote the Pd-catalyzed enantioselective intramolecular 7-exo aminoacetoxylation of unactivated biaryl alkenes. Biaryl-bridged 7-membered N-heterocycles bearing a chiral center were obtained in good yields with excellent enantioselectivities (up to 99:1 er). Computational investigations on a series of biaryl-bridged 7-membered rings provided insights into the rotational barrier of the potentially chiral biaryl unit by the substituent effect including the heteroatom, the protecting group, and the chiral center. The kinetic resolution of racemic axially chiral biaryls via intramolecular enantioselective aminoacetoxylation of alkenes has also been achieved, affording previously inaccessible biaryl-bridged 7-membered N-heterocycles bearing both a chiral center and a chiral axis, as well as axially chiral biaryl amino alcohols.
Collapse
Affiliation(s)
- Beibei Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xiaoyang Yan
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zicong Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chen Shen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Weifu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Shouyi Cen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Zhipeng Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
10
|
Yao T, Wang S, Liu Y, Yin G, Li Y. Nickel-Catalyzed 1,1-Carboboration of Polysubstituted Internal Alkenes. Org Lett 2025; 27:3691-3696. [PMID: 40167445 DOI: 10.1021/acs.orglett.5c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Herein, we report a nickel-catalyzed 1,1-carboboration of di- and trisubstituted alkenyl boronates through a chain-walking strategy. This reaction effectively addresses the polarity-mismatch problem via ligand control, enabling the coupling of various carbon-based electrophiles while accommodating a broad range of functional groups. The approach yields diverse tetrasubstituted carbon gem-diboronate derivatives with exceptional regioselectivity. The synthetic utility of this method is further demonstrated through the concise synthesis of high-value bioactive molecules.
Collapse
Affiliation(s)
- Tong Yao
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Shiyang Wang
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Yu Liu
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Guoyin Yin
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Yangyang Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, P. R. China
| |
Collapse
|
11
|
Sahoo PK, Maiti R, Ren P, Delgado Jaén JJ, Dai X, Barcaro G, Monti S, Skorynina A, Rokicińska A, Jaworski A, Simonelli L, Kuśtrowski P, Rabeah J, Das S. An Atomically Dispersed Mn Photocatalyst for Vicinal Dichlorination of Nonactivated Alkenes. J Am Chem Soc 2025; 147:11829-11840. [PMID: 40130771 DOI: 10.1021/jacs.4c16413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
A novel Mn-based single-atom photocatalyst is disclosed in this study, designed for the dichlorination of alkenes to achieve vicinal dichlorinated products using N-chlorosuccinimide as a mild chlorinating agent, which have widespread applications as pest controlling agents, polymers, flame retardants, and pharmaceuticals. In developing this innovative catalyst, we achieved the atomic dispersion of Mn on aryl-amino-substituted graphitic carbon nitride (f-C3N4). This marks the first instance of a heterogeneous version, offering an operationally simple, sustainable, and efficient pathway for dichlorination of alkenes, including drugs, bioactive compounds, and natural products. This material was extensively characterized by using techniques such as UV-vis spectroscopy, X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), magic-angle spinning (MAS), and solid-state nuclear magnetic resonance (ssNMR) spectroscopy to understand it at the atomic level. Furthermore, mechanistic studies based on multiscale molecular modeling, combining classical reactive molecular dynamics (RMD) simulations and quantum chemistry (QC) calculations, illustrated that the controlled formation of Cl radicals from the in situ formed Mn-Cl bond is responsible for the dichlorination reaction of alkenes. In addition, gram-scale and reusability tests were also performed to demonstrate the applicability of this approach on an industrial scale.
Collapse
Affiliation(s)
| | - Rakesh Maiti
- Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
- University of Bayreuth, Universitätstr. 30, Bayreuth 95447 Germany
| | - Peng Ren
- Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
- University of Bayreuth, Universitätstr. 30, Bayreuth 95447 Germany
| | | | - Xingchao Dai
- Leibniz-Institut für Katalyse, Albert-Einstein-Str. 29A, Rostock 18059, Germany
| | - Giovanni Barcaro
- CNR-IPCF, Institute for Chemical and Physical Processes, Area della Ricerca, Pisa 56124, Italy
| | - Susanna Monti
- CNR-ICCOM, Institute of Chemistry of Organometallic Compounds, Area della Ricerca, Pisa 56124, Italy
| | - Alina Skorynina
- ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, Barcelona, Cerdanyola del Vallès 08290, Spain
| | - Anna Rokicińska
- Faculty of Chemistry, Jagiellonian University, Krakow 30-387, Poland
| | - Aleksander Jaworski
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Laura Simonelli
- ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, Barcelona, Cerdanyola del Vallès 08290, Spain
| | - Piotr Kuśtrowski
- Faculty of Chemistry, Jagiellonian University, Krakow 30-387, Poland
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse, Albert-Einstein-Str. 29A, Rostock 18059, Germany
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
- University of Bayreuth, Universitätstr. 30, Bayreuth 95447 Germany
| |
Collapse
|
12
|
Barreto S, Binette R, Murza A, Legault J, Pichette A, Boudreault PL, Couve-Bonnaire S, Castanheiro T. Cu-catalyzed photoredox chlorotrifluoromethylation of polysubstituted alkenes and pharmacological evaluation. Org Biomol Chem 2025; 23:3416-3422. [PMID: 40079070 DOI: 10.1039/d5ob00056d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
A visible-light-mediated chlorotrifluoromethylation catalyzed by a copper-based photo-redox catalyst of internal alkenes is reported. The reaction proceeds with complete regioselectivity under mild reaction conditions using commercially available F3CSO2Cl as both the trifluoromethyl and chlorine source, leading to the synthesis of added-value chemicals with atom-economy. A vast array of internal alkenes were functionalized in decent to good yields, highlighting a great tolerance to various functional groups. A radical process starting from a single electron reduction of F3CSO2Cl with an excited copper catalyst was evidenced, and the synthetic utility of our products was showcased by the synthesis of valuable molecules such as α-trifluoromethylated amides, α-trifluoromethylated-β-aminoamides, and trifluoromethyl alkenes. In addition, the library was evaluated in vitro for its cytotoxicity against lung carcinoma (A549) and colorectal adenocarcinoma (DLD-1) cell lines, and for its antifungal and antibacterial activities against C. albicans, E. coli and S. aureus strains, respectively. Compounds 2a, 2m, 2n, and 2o demonstrated anticancer activities, while compounds 2a, 6g, and 6h exhibited weak antibacterial activities, underscoring the therapeutic potential of this class of molecules and suggesting opportunities for further optimization.
Collapse
Affiliation(s)
- Shauna Barreto
- Univ Rouen Normandie, INSA Rouen Normandie, Univ Caen Normandie, ENSICAEN, CNRS, Institut CARMeN UMR 6064, F-76000 Rouen, France.
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrook, Sherbrooke, J1H5N4, QC, Canada.
| | - Renaud Binette
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrook, Sherbrooke, J1H5N4, QC, Canada.
| | - Alexandre Murza
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrook, Sherbrooke, J1H5N4, QC, Canada.
| | - Jean Legault
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, G7H2B1, QC, Canada
| | - André Pichette
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, G7H2B1, QC, Canada
| | - Pierre-Luc Boudreault
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrook, Sherbrooke, J1H5N4, QC, Canada.
| | - Samuel Couve-Bonnaire
- Univ Rouen Normandie, INSA Rouen Normandie, Univ Caen Normandie, ENSICAEN, CNRS, Institut CARMeN UMR 6064, F-76000 Rouen, France.
| | - Thomas Castanheiro
- Univ Rouen Normandie, INSA Rouen Normandie, Univ Caen Normandie, ENSICAEN, CNRS, Institut CARMeN UMR 6064, F-76000 Rouen, France.
| |
Collapse
|
13
|
Xu G, Zhu C, Li X, Zhu K, Xu H. Copper-catalyzed asymmetric [4+1] annulation of yne‑allylic esters with pyrazolones. CHINESE CHEM LETT 2025; 36:110114. [DOI: 10.1016/j.cclet.2024.110114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
|
14
|
Chen D, Wan JP, Liu Y. Rh-Catalyzed and Self-Directed Aromatic C-H Activation of Enaminones to Divergent Alkenylated and Annulated Compounds. Org Lett 2025; 27:2371-2376. [PMID: 40014020 DOI: 10.1021/acs.orglett.5c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
By means of simple Rh catalysis, the direct activation of the ortho-C-H bond in aryl enaminones has been realized with the enaminone structure as a traceless directing fragment. The products resulting from C-H alkenylation and further annulation via intramolecular C-H bond addition could be accessed depending upon the structure of alkenes. The annulated products could be used for the easy synthesis of valuable 2-aza-fluorenones in a one-pot operation by employing NH4OAc.
Collapse
Affiliation(s)
- Demao Chen
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
15
|
Zhang TT, Xue Q, Zhang WY, Zhong X, Liu YL, Li Y, Li JH. Electrochemical 1,2-Alkylarylation of Styrenes with Malonates and N-Heteroarenes via Direct C(sp 3)-H/C(sp 2)-H Functionalization. J Org Chem 2025; 90:3232-3242. [PMID: 40007314 DOI: 10.1021/acs.joc.4c02803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
A general and atom-economical electrochemical dehydrogenative method for the intermolecular 1,2-alkylarylation of styrenes with malonates and nucleophilic N-heteroarenes (including indoles and pyrroles) has been developed. This transformation provides a regioselective route to construct highly valuable 1,1-diarylalkanes enabled by C(sp3)-H/C(sp2)-H functionalization under mild conditions, and H2 is the only theoretical byproduct. Mechanistic studies indicated that the reaction proceeded through the oxidative of the C(sp3)-H bond to generate alkyl radical, radical addition across the C═C bond, single electron oxidation and C(sp2)-H functionalization cascades.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Hunan Engineering Laboratory for Preparation Technology of Poly(vinyl alcohol) (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China
| | - Qi Xue
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wen-Yu Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiao Zhong
- Hunan Engineering Laboratory for Preparation Technology of Poly(vinyl alcohol) (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China
| | - Yi-Lin Liu
- Hunan Engineering Laboratory for Preparation Technology of Poly(vinyl alcohol) (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China
| | - Yang Li
- Hunan Engineering Laboratory for Preparation Technology of Poly(vinyl alcohol) (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jin-Heng Li
- Hunan Engineering Laboratory for Preparation Technology of Poly(vinyl alcohol) (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
16
|
Liang Z, Wang W, Wang S. TBHP-Promoted Trifluoromethyl-difluoromethylthiolation of Unactivated Alkenes with CF 3SO 2Na and PhSO 2SCF 2H. Org Lett 2025; 27:2123-2127. [PMID: 39996505 DOI: 10.1021/acs.orglett.5c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
A TBHP-promoted trifluoromethyl-difluoromethylthiolation of alkenes was reported. Langlois' reagent was used as a stable and inexpensive trifluoromethyl source. In the presence of TBHP, the trifluoromethyl radical generated reacted with alkenes, achieving a new alkyl radical, which could be trapped by PhSO2SCF2H, forming C-C and C-S bonds in one step and incorporating trifluoromethyl and difluoromethylthio groups. The mild conditions and broad functional group tolerance endowed the reaction with great potential in the field of pharmaceuticals and agrochemicals.
Collapse
Affiliation(s)
- Zengrui Liang
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, China
| | - Wengui Wang
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, China
| | - Shoufeng Wang
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, China
| |
Collapse
|
17
|
Nanda T, Das A, Bera P, Patil NT. Gold-Catalyzed 1,2-Carboxyarylation of Alkenes. Org Lett 2025; 27:2228-2234. [PMID: 39992027 DOI: 10.1021/acs.orglett.5c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Herein, we disclose an unprecedented gold-catalyzed 1,2-carboxyarylation of alkenes through ligand-enabled Au(I)/Au(III) catalysis. Unlike other approaches for the arylative functionalization of C-C multiple bonds, attempts to utilize weak nucleophiles such as carboxylate anions were unsuccessful. The key to achieving this transformation is the use of a 1,3-diketone-appended alkene, which undergoes gold-catalyzed oxyarylation followed by retro-aldol reaction to afford the product. Detailed mechanistic investigations were conducted to support the proposed mechanism.
Collapse
Affiliation(s)
- Tanmayee Nanda
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri 462 066, India
| | - Avishek Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri 462 066, India
| | - Prafulla Bera
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri 462 066, India
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri 462 066, India
| |
Collapse
|
18
|
Yan SS, Jackstell R, Beller M. Copper-Catalyzed Selective Amino-alkoxycarbonylation of Unactivated Alkenes with CO. J Am Chem Soc 2025; 147:6464-6471. [PMID: 39961097 PMCID: PMC11869293 DOI: 10.1021/jacs.4c13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
1,2-Amino-difunctionalization reactions of alkenes allow the efficient introduction of different functional groups and the rapid construction of valuable functionalized amines. In this respect, we report a copper-catalyzed 1,2-amino-alkoxycarbonylation of unactivated alkenes with CO and alkylamine precursors in the presence of a Lewis acid additive. The novel protocol allows direct access to valuable β-amino acid derivatives from easily available starting materials. The presented methods feature high chemo- and regioselectivities, good functional group tolerance, and substrate scope including diverse bioactive compounds and drug-like molecules. Mechanistic studies indicate that the Lewis acid additive is the key to realizing the efficient umpolung addition of nucleophilic aminyl radicals to electron-rich alkenes, which represents an elegant activation strategy for aminyl radicals.
Collapse
Affiliation(s)
- Si-Shun Yan
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Ralf Jackstell
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Matthias Beller
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
19
|
Yu H, Yu X, Li X, Kou W, Fang F, Zhang G. Enantioselective Photoredox- and Cu-Catalyzed Cyanoalkylation of Styrenes via Deoxygenation of Alkoxyl Radicals with Organophosphorus Compounds(III). Org Lett 2025; 27:1750-1756. [PMID: 39935183 DOI: 10.1021/acs.orglett.5c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The enantioselective cyanoalkylation of styrenes by a cooperative photoredox and copper catalysis system has been established, providing straightforward access to structurally diverse enantioenriched alkyl nitriles in good yields with excellent enantioselectivities under mild conditions via deoxygenation of alkoxyl radicals with organophosphorus compounds(III). In addition, the reaction features a wide substrate scope and good functional group tolerance, and the resultant alkyl nitriles could be easily converted into a series of chiral carboxylic acids, amides, esters, etc.
Collapse
Affiliation(s)
- Hongzhou Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Xiang Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Xingyu Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Wanqing Kou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Fang Fang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Guoyu Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| |
Collapse
|
20
|
Hou M, Wang Y, Yang H, Zhang J, Wu XF. Carbon Monoxide and Alkoxycarbonyl Radical Enabled Migration Strategy for the Carbonylative Functionalization of Unactivated Alkenes. Chemistry 2025; 31:e202404113. [PMID: 39628124 DOI: 10.1002/chem.202404113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Herein we report a "carbonylative migration" strategy for the acylation-esterification type double functionalization of unactivated alkenes using alkyloxalkyl chlorides and CO as the reagents. The transformation is proceeded by the alkoxycarbonyl radical addition to unactivated alkenes, followed by the insertion of carbon monoxide to induce intramolecular migration of heteroaryl groups, which is different from the traditional reaction modes. The reaction conditions were mild and well tolerated with varieties of functional groups. A variety of 1,4-dicarbonyl compounds with different ester groups were produced easily which has high potential applications in biology, medicine, and other fields.
Collapse
Affiliation(s)
- Ming Hou
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| | - Yuanrui Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
| | - Hefei Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| | - Jiajun Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| |
Collapse
|
21
|
Gao Y, Xing J, Huo Y, Chen Q, Li X, Hashmi ASK, Zeng Z. Nickel-Catalyzed Three-Component Carboamination/Cyclization of Alkynes To Access 2,3-Disubstituted Quinolines. Org Lett 2025; 27:1204-1209. [PMID: 39848257 DOI: 10.1021/acs.orglett.4c04753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Presented herein is a nickel-catalyzed chemo- and regioselective three-component tandem carboamination and cyclization of terminal alkynes with organoboronic acids and anthranils for facile and modular access to 2,3-substituted quinolines. In this process, anthranil has dual roles: serving as an electrophilic aminating reagent and a redox buffer to suppress the generation of an off-cycle Ni(0) complex. Moreover, the anionic acetylacetonate (acac) ligand was found to be vital to ensure a productive Ni(I)-Ni(III)-Ni(I) catalytic cycle.
Collapse
Affiliation(s)
- Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang, Guangdong 515200, China
| | - Jiale Xing
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Zhongyi Zeng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
22
|
Zhang JL, Zhao XL, Liao YZ, Zhao Y, Pan F. Ruthenium-Catalyzed Remote Trifunctionalization of Non-Activated Alkenes via Cyano Migration and meta-C(sp 2)-H Functionalization. Org Lett 2025; 27:1106-1111. [PMID: 39874203 DOI: 10.1021/acs.orglett.4c04445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
A novel Ru-catalyzed radical-triggered trifunctionalization of hexenenitriles is presented, employing a strategy of remote cyano group migration and meta-C(sp2)-H functionalization. Through remote cyano migration, the alkenyl moiety undergoes difunctionalization to the formation of a benzylic radical intermediate. This intermediate facilitates para-selective C-H bond addition relative to the C-Ru bond within the Ru(III) complex, ultimately enabling trifunctionalization. This methodology provides an efficient route to a diverse array of nitrile-containing compounds with broad functional group compatibility.
Collapse
Affiliation(s)
- Jun-Lei Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| | - Xin-Lan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| | - You-Zhi Liao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| | - Yi Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| |
Collapse
|
23
|
Tang SY, Wang ZJ, Ao Y, Wang N, Huang HM. Photoredox/Cr-catalyzed enantioselective radical-polar crossover transformation via C-H functionalization. Nat Commun 2025; 16:1354. [PMID: 39904991 PMCID: PMC11794612 DOI: 10.1038/s41467-025-56372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Asymmetric multicomponent reactions that aim to control multiple chiral centers with high selectivity in a single step remain an on-gonging challenge. The realm of enantioselective radical-polar crossover transformation achieved through C-H Functionalization has yet to be fully explored. Herein, we present a successful description of a photoredox/Cr-catalyzed enantioselective three-component (hetero)arylalkylation of 1,3-dienes through C-H functionalization. A diverse array of chiral homoallylic alcohols could be obtained in good to excellent yields, accompanied by outstanding enantioselectivity. The asymmetric radical-polar crossover transformation could build two chiral centers simultaneously and demonstrates broad substrate tolerance, accommodating various drug-derived aldehydes, (hetero)aromatics, and 1,3-diene derivatives. Preliminary mechanistic studies indicate the involvement of a radical intermediate, with the chiral allylic chromium species reacting with various aliphatic and aromatic aldehydes through Zimmerman-Traxler transition states enabled by dual photoredox and chiral chromium catalysis.
Collapse
Affiliation(s)
- Si-Yuan Tang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhan-Jie Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yu Ao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ning Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
24
|
Zhang Y, Zhou ZL, Li JH, Li YT. Electrochemical Difunctionalization of Alkenes. CHEM REC 2025:e202400263. [PMID: 39901507 DOI: 10.1002/tcr.202400263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/21/2025] [Indexed: 02/05/2025]
Abstract
Owing to their wide utilizations in synthesis and their products prevalence in numerous natural products, pharmaceuticals and functional materials, the alkene difunctionalization methods for the selective transformations of the olefins are important and have attracted much attention form the synthetic chemists. Among them, the electrochemical alkene difunctionalization reaction is particularly promising and has becoming a potent and sustainable tool for the selective transformations of alkenes into vicinal difunctionalized structures in organic synthesis through simultaneous incorporation of two functional groups. Herein, we summarize recent progress in the electrochemical alkene difunctionalization reactions according to the alkene difunctionalization types as well as the category of the radicals over the past five years. By selecting the remarkable synthetic examples, we have elaborately discussed the substrate scope and the mechanisms for the electrochemical olefin difunctionalization reaction.
Collapse
Affiliation(s)
- Yin Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zi-Long Zhou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jin-Heng Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yan-Tao Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
25
|
Liu G, Shi Z, Guo C, Gu D, Wang Z. Metallaphotoredox Enabled Single Carbon Atom Insertion into Alkenes for Allene Synthesis. Angew Chem Int Ed Engl 2025; 64:e202418746. [PMID: 39779479 DOI: 10.1002/anie.202418746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
Efficient methods for synthesizing allenes from readily available starting materials pose a persistent challenge in organic chemistry. In this work, we present a novel two-stage protocol for allene synthesis involving the single-atom insertion into alkenes, facilitated by synergistic photoredox and cobalt catalysis. Diverging from conventional methods such as the Doering-LaFlamme reaction, this photochemical rearrangement approach operates efficiently under mild conditions in a radical-based manner. The protocol exhibits a broad substrate scope and demonstrates applicability in the late-stage diversification of alkene-containing natural products and bioactive molecules. Preliminary mechanistic studies and density functional theory (DFT) calculations offer insights into the reaction pathway, indicating a radical mechanism involving fleeting cyclopropyl carbene intermediates followed by rapid ring opening to form allenes.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou, 310030, Zhejiang Province, China
| | - Zhaoxin Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou, 310030, Zhejiang Province, China
| | - Chuning Guo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou, 310030, Zhejiang Province, China
| | - Danyu Gu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| | - Zhaobin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310030, Zhejiang Province, China
| |
Collapse
|
26
|
Gao C, Tang K, Yang X, Gao S, Zheng Q, Chen X, Liu J. Cu-Catalyzed Diastereo- and Enantioselective Synthesis of Borylated Cyclopropanes with Three Contiguous Stereocenters. J Am Chem Soc 2025; 147:3360-3370. [PMID: 39818822 DOI: 10.1021/jacs.4c14158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Direct synthesis of enantioenriched scaffolds with multiple adjacent stereocenters remains an important yet challenging task. Herein, we describe a highly diastereo- and enantioselective Cu-catalyzed alkylboration of cyclopropenes, with less reactive alkyl iodides as electrophiles, for the efficient synthesis of tetra-substituted borylated cyclopropanes bearing three consecutive stereocenters. This protocol features mild conditions, a broad substrate scope, and good functional group tolerance, affording an array of chiral borylated cyclopropanes in good to high yields with excellent diastereo- and enantioselectivities. Detailed mechanistic experiments and kinetic studies were conducted to elucidate the reaction pathway and the rate-determining step of the reaction. DFT calculations revealed that the π···π stacking interaction between the phenyl groups on the substrate and the phosphorus ligand, along with the smaller distortion in the CuL-Bpin part, contributed to the high diastereo- and enantioselectivities. The synthetic utility of the protocol was showcased by the facile synthesis of some valuable chiral cyclopropanes with multiple chiral centers.
Collapse
Affiliation(s)
- Chao Gao
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Kai Tang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Xi Yang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Shen Gao
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Qingshu Zheng
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Xiangyang Chen
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Jiawang Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| |
Collapse
|
27
|
Meng H, Jia JS, Yang PF, Li YL, Yu Q, Shu W. Ni-catalyzed regioselective and site-divergent reductive arylalkylations of allylic amines. Chem Sci 2025:d4sc07728h. [PMID: 39926709 PMCID: PMC11799853 DOI: 10.1039/d4sc07728h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/13/2025] [Indexed: 02/11/2025] Open
Abstract
Catalytic methods by switching the least parameters for regioselective and site-divergent transformations to construct different architectures from identical and readily available starting materials are among the most ideal catalytic protocols. However, the associated challenge to precisely control both regioselectivity and site diversity renders this strategy appealing yet challenging. Herein, Ni-catalyzed cross-electrophile regioselective and site-divergent 1,2- and 1,3-arylalkylations of N-acyl allylic amines have been developed. This Ni-catalyzed reductive three-component protocol enables 1,2-arylalkylation and 1,3-arylalkylation of allylic amines with aryl halides and alkyl halides with excellent chemo-, regio- and site-selectivity, representing the first example of controlled migratory difunctionalization of alkenes under reductive conditions. A wide range of terminal and internal unactivated allylic amines, aryl halides and alkyl precursors were tolerated, providing straightforward and efficient access to diverse C(sp3)-rich branched aliphatic amines from identical starting materials.
Collapse
Affiliation(s)
- Huan Meng
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Jun-Song Jia
- College of Chemistry and Environmental Engineering, Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, Sichuan University of Science and Engineering Zigong 643000 P. R. China
| | - Peng-Fei Yang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, Sichuan University of Science and Engineering Zigong 643000 P. R. China
| | - Qiong Yu
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Wei Shu
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| |
Collapse
|
28
|
Yin K, Zhang J, Pan D, Chen SH, Chen S, Shi Y, Huang G, Zhao D. Enantioselective construction of silicon-stereogenic vinylsilanes from simple alkenes. Nat Commun 2025; 16:797. [PMID: 39824834 PMCID: PMC11742057 DOI: 10.1038/s41467-025-56232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025] Open
Abstract
The diverse utility of acyclic vinylsilanes has driven the interest in the synthesis of enantioenriched vinylsilanes bearing a Si-stereogenic center. However, the predominant approaches for catalytic asymmetric generation of Si-stereogenic vinylsilanes have mainly relied on transition metal-catalyzed reactions of alkynes with different silicon sources. Here we successfully realize the enantioselective synthesis of linear silicon-stereogenic vinylsilanes with good yields and enantiomeric ratios from simple alkenes under rhodium catalysis. The significance of this transformation lies in its ability to achieve regioconvergent and enantioconvergent conversion, efficiently transforming petroleum-derived isomeric mixtures of olefin feedstocks into a single regio- and stereoisomer product. The practicality of this method is further exemplified by the diverse downstream transformations of these enantioenriched silicon-stereogenic vinylsilanes leveraging the olefin functionality and the leaving group nature of the aryl substituent on silicon as well as the development of chiral π-conjugated double bond systems.
Collapse
Affiliation(s)
- Kailin Yin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University 94 Weijin Road, Tianjin, China
| | - Jinyu Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University 94 Weijin Road, Tianjin, China
| | - Deng Pan
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Shu-Han Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University 94 Weijin Road, Tianjin, China
| | - Song Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University 94 Weijin Road, Tianjin, China
| | - Yufeng Shi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University 94 Weijin Road, Tianjin, China
| | - Genping Huang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China.
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University 94 Weijin Road, Tianjin, China.
| |
Collapse
|
29
|
Kim Y, Jang WJ. Recent advances in electrochemical copper catalysis for modern organic synthesis. Beilstein J Org Chem 2025; 21:155-178. [PMID: 39834892 PMCID: PMC11744695 DOI: 10.3762/bjoc.21.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
In recent decades, organic electrosynthesis has emerged as a practical, sustainable, and efficient approach that facilitates valuable transformations in synthetic chemistry. Combining electrochemistry with transition-metal catalysis is a promising and rapidly growing methodology for effectively forming challenging C-C and C-heteroatom bonds in complex molecules in a sustainable manner. In this review, we summarize the recent advances in the combination of electrochemistry and copper catalysis for various organic transformations.
Collapse
Affiliation(s)
- Yemin Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| | - Won Jun Jang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
30
|
Wan L, Guo S, Sun F, Du K, Zhang L, Xu Z. Nickel-Catalyzed Three-Component 1,1-Difunctionalization of Unactivated Alkenes with Quinoxaline/Naphthoquinone and Arylboronic Acids via Organometallic-Radical Relay. Org Lett 2024; 26:11040-11044. [PMID: 39652315 DOI: 10.1021/acs.orglett.4c04207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A nickel-catalyzed intermolecular three-component 1,1-difunctionalization of unactivated alkenes with quinoxaline/naphthoquinone and arylboronic acids via organometallic-radical relay is developed. This efficient protocol provides a new method to access a variety of arylalkanes in moderate to good yields with a broad substrate scope and excellent functional group tolerance. The mechanistic studies provide insights into the mechanism and origin of chemo- and regioselectivity as well as confirm the generation of functionalized benzylic radicals.
Collapse
Affiliation(s)
- Lingyu Wan
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, P. R. China
| | - Shankun Guo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, P. R. China
| | - Fanglu Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, P. R. China
| | - Ke Du
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, P. R. China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, Shandong, P. R. China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, P. R. China
| |
Collapse
|
31
|
Paveliev S, Segida OO, Dvoretskiy A, Terent’ev AO. Electrochemically Induced Synthesis of N-Allyloxyphthalimides via Cross-Dehydrogenative C-O Coupling of N-Hydroxyphthalimide with Alkenes Bearing the Allylic Hydrogen Atom. ACS OMEGA 2024; 9:49825-49831. [PMID: 39713684 PMCID: PMC11656238 DOI: 10.1021/acsomega.4c08532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
The electrochemically induced reaction between alkenes, bearing an allylic hydrogen atom, and N-hydroxyphthalimide was investigated. Cross-dehydrogenative C-O coupling with phthalimide-N-oxyl radical, derived from N-hydroxyphthalimide, occurs instead of oxidation of the allylic site, with the formation of a carbonyl group or functionalization of the double C=C bond. The discovered transformation proceeds in an undivided electrochemical cell equipped with a carbon felt anode and a platinum cathode. Coupling products were obtained with yields up to 79%. The developed process is based on the abstraction of hydrogen atom from the allylic position for functionalization while the C=C bond remains unreacted. The method exploits the ability of the phthalimide-N-oxyl radical to abstract hydrogen atoms with the following interception of the intermediate C-centered radical.
Collapse
Affiliation(s)
- Stanislav
A. Paveliev
- N. D. Zelinsky Institute of Organic Chemistry
of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian
Federation
| | - Oleg O. Segida
- N. D. Zelinsky Institute of Organic Chemistry
of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian
Federation
| | - Andrey Dvoretskiy
- N. D. Zelinsky Institute of Organic Chemistry
of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian
Federation
| | - Alexander O. Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry
of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian
Federation
| |
Collapse
|
32
|
Yang ZX, Xu XC, He BW, Meng YX, Zhao YL. Dual Photoredox/Copper-Catalyzed Three-Component Alkylcyanation of Alkenes and 1,4-Alkylcyanation of 1,3-Enynes Employing Sulfoxonium Ylides as the Carbon Radical Precursors. Org Lett 2024; 26:10576-10582. [PMID: 39625707 DOI: 10.1021/acs.orglett.4c03998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
A novel dual photoredox/copper-catalyzed three-component alkylcyanation of alkenes and 1,4-alkylcyanation of 1,3-enynes have been developed. In this radical cyanoalkylation reaction, the photoredox induced alkyl radical from sulfoxonium ylides adds to the carbon-carbon double bonds of styrenes or 1,3-enynes, and the generated benzylic or allenyl radicals couple with a Cu(II) cyanide complex to achieve selective cyanation. The reaction exhibits high chemo- and regioselectivity and a wide substrate scope, providing an efficient method for the synthesis of alkyl nitriles and allenyl nitriles in a single step.
Collapse
Affiliation(s)
- Zi-Xuan Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xue-Cen Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Bo-Wen He
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu-Xuan Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
33
|
Ruan X, Wu D, Jiang C, Chen C, Bai Y, Tao L, Chen C, Wang K, Li X, Jiang J. Photocatalytic EnT-Mediated Aminophosphorylation of Alkenes Using Oxime Esters as Bifunctional Reagents. Org Lett 2024; 26:10267-10272. [PMID: 39560617 DOI: 10.1021/acs.orglett.4c03790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
C-P bond formation has typically been achieved by a single-electron transfer process. Herein, a novel class of oxime ester bifunctionalization reagents were first applied to the photocatalytic β-aminophosphorylation of modular olefins. The bifunctional reagents generate two distinct radical species (imine and phosphoryl radicals) that exhibit excellent regioselectivity. Subsequently, these radicals are attached to the olefins through a single-step EnT catalytic process, establishing a novel synthetic pathway. This protocol is characterized by excellent regioselectivity, broad functional group tolerance, and mild reaction conditions, which would enrich the diversity and versatility to facilitate the diversity-oriented synthesis of β-aminophosphorylated complex molecule scaffolds.
Collapse
Affiliation(s)
- Xin Ruan
- School of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Di Wu
- School of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Chen Jiang
- School of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Cheng Chen
- School of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yuhongxu Bai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Tao
- School of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Caiyou Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Kai Wang
- School of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiang Li
- School of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Jun Jiang
- School of Health Science and Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
34
|
Shao CW, Wan PF, Xu Q, Yang ZN, Geng MY, Zhang Y, Zhang XH, Li XW. Phosphinothio(seleno)ation of alkynes/olefins and application on the late-stage functionalization of natural products. Commun Chem 2024; 7:290. [PMID: 39638940 PMCID: PMC11621678 DOI: 10.1038/s42004-024-01326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
Non-metallic catalysis has been known as a remarkable development strategy for hydrofunctionalization of unsaturated hydrocarbons. Herein, we report a unique chemically active method of BF3·OEt2 promoted multi-component, highly regioselective, and chemoselective hydrothio(seleo)phosphonylation of unsaturated hydrocarbons, which exhibits high yield and good substrate universality. The reaction mechanism was further elucidated to be Markovnikov addition by controlling experiments, 31P and 19F NMR spectra tracking experiments, X-ray diffraction analysis, and DFT calculations. Furthermore, the gram-scale attempt and the application of the reaction on the derivatization of natural products have been successfully conducted, leading to the discovery of 3as with potential anti-Parkinson's disease (PD) activities at 1 μM. This streamlined and efficient methodology has established a new platform for non-metallic Lewis acids-promoted hydrofunctionalization of unsaturated hydrocarbons and its application on new drug research.
Collapse
Affiliation(s)
- Chang-Wei Shao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Pei-Feng Wan
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Quan Xu
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Ze-Nan Yang
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Mei-Yu Geng
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Yu Zhang
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China.
| | - Xing-Hua Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China.
| | - Xu-Wen Li
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China.
| |
Collapse
|
35
|
Lan XC, Huang XJ, Meng YS, Li XT. Copper-Catalyzed Asymmetric Radical Oxysulfonylation of 2-Vinylbenzoic Acids to Access Chiral Sulfonyl Phthalides. Org Lett 2024; 26:10078-10084. [PMID: 39510811 DOI: 10.1021/acs.orglett.4c03530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
This study presents the development of a radical enantioselective alkene oxysulfonylation approach for the synthesis of enantioenriched sulfonyl phthalides via a catalyst system consisting of a copper salt and an OPPA ligand. The reaction proceeded under mild conditions with a wide range of substrates, good yields, and excellent enantioselectivities. Mechanistic studies suggested that the reaction proceeded through a radical-mediated process. Scalable synthesis and transformation experiments also demonstrated the applicable potential of this method.
Collapse
Affiliation(s)
- Xiao-Cui Lan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xue-Juan Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - You-Shuai Meng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xi-Tao Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
36
|
Li Z, Wang S, Chen SC, Zhu X, Lian Z, Xing D. Cu-Catalyzed Asymmetric Three-Component Radical Acylarylation of Vinylarenes with Aldehydes and Aryl Boronic Acids. J Am Chem Soc 2024; 146:32235-32242. [PMID: 39533487 DOI: 10.1021/jacs.4c08957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The direct use of readily available aldehydes as acyl radical precursors has facilitated diverse three-component acylative difunctionalization reactions of alkenes, offering a powerful route to synthesize β-branched ketones. However, asymmetric three-component acylative difunctionalization of alkenes with aldehydes still remains elusive. Here we report a copper-catalyzed asymmetric three-component radical acylarylation of vinylarenes with aldehydes and aryl boronic acids. This method begins with acyl radical formation from an aldehyde via hydrogen atom transfer. The acyl radical adds to the alkene, forming a new benzylic radical that then undergoes copper-catalyzed enantioselective arylation. A chiral binaphthyl-tethered bisoxazoline ligand is essential for achieving high stereocontrol. This strategy enables the direct synthesis of a range of synthetically valuable chiral β,β-diaryl ketones from aldehydes and vinylarenes.
Collapse
Affiliation(s)
- Zhiheng Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shang Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Si-Cong Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiangwen Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Zhengzhen Lian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
37
|
Wanderley TS, Buscemi R, Conboy Ó, Knight B, Crisenza GEM. General Alkene 1,2- syn-Cyano-Hydroxylation Procedure Via Electrochemical Activation of Isoxazoline Cycloadducts. J Am Chem Soc 2024; 146:32848-32858. [PMID: 39537202 PMCID: PMC11613428 DOI: 10.1021/jacs.4c13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Stereoselective alkene 1,2-difunctionalization is a privileged strategy to access three-dimensional C(sp3)-rich chiral molecules from readily available "flat" carbon feedstocks. State-of-the-art approaches exploit chiral transition metal-catalysts to enable high levels of regio- and stereocontrol. However, this is often achieved at the expense of a limited alkene scope and reduced generality. 1,3-Dipolar cycloadditions are routinely used to form heterocycles from alkenes with high levels of regioselectivity and stereospecificity. Nevertheless, methods for the ring-opening of cycloadducts to reveal synthetically useful functionalities require the use of hazardous reagents or forcing reaction conditions; thus limiting their synthetic applications. Herein, we describe the implementation of a practical, general and selective electrosynthetic strategy for olefin 1,2-syn-difunctionalization, which hinges on the design of novel reagents-consisting of a nitrile oxide 1,3-dipole precursor, equipped with a sulfonyl-handle. These can selectively difunctionalize alkenes via "click" 1,3-dipolar cycloadditions, and then facilitate the telescoped electrochemical single electron transfer activation of the ensuing isoxazoline intermediate. Cathodic reduction of the cycloadduct triggers a radical fragmentation pathway delivering sought-after stereodefined 1,2-syn-hydroxy nitrile derivatives. Our telescoped electrochemical procedure tolerates a wide range of functionalities, and─crucially─enables the difunctionalization of both electron-rich, electron-poor and unactivated olefins, with diverse degree of substitution; thus providing a robust, general and selective metal-free alternative to current alkene difunctionalization strategies. Capitalizing on these features, we employed our electrosynthetic method to enable the late-stage syn-hydroxy-cyanation of natural products and bioactive compounds, and streamline the de novo synthesis of pharmaceutical agents.
Collapse
Affiliation(s)
- Taciano
A. S. Wanderley
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Roberto Buscemi
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Órla Conboy
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Benjamin Knight
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Giacomo E. M. Crisenza
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
38
|
Fan H, Fang Y, Yu J. Direct alkene functionalization via photocatalytic hydrogen atom transfer from C(sp 3)-H compounds: a route to pharmaceutically important molecules. Chem Commun (Camb) 2024; 60:13796-13818. [PMID: 39526464 DOI: 10.1039/d4cc05026f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Direct functionalization of alkenes with C(sp3)-H substrates offers unique opportunities for the rapid construction of pharmaceuticals and natural products. Although significant progress has been made over the past decades, the development of green, high step-economy methods to achieve these transformations under mild conditions without the need for pre-functionalization of C(sp3)-H bonds remains a substantial challenge. Therefore, the pursuit of such methodologies is highly desirable. Recently, the direct activation of C(sp3)-H bonds via photocatalytic hydrogen atom transfer (HAT), especially from unactivated alkanes, has shown great promise. Given the potential of this approach to generate a wide range of pharmaceutically relevant compounds, this review highlights the recent advancements in the direct functionalization of alkenes through photocatalytic HAT from C(sp3)-H compounds, as well as their applications in the synthesis and diversification of drugs, natural products, and bioactive molecules, aiming to provide medicinal chemists with a practical set of tools.
Collapse
Affiliation(s)
- Hangqian Fan
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yuxin Fang
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jingbo Yu
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
39
|
Cao Z, Sun Y, Chen Y, Zhu C. Photoinduced Asymmetric Alkene Aminohetarylation with Chiral Sulfoximine Reagents. Angew Chem Int Ed Engl 2024; 63:e202408177. [PMID: 39143840 DOI: 10.1002/anie.202408177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/27/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Given the pivotal role of β-(het)arylethylamine moiety in bioactive molecules, the direct amino(het)arylation of alkenes occupies a privileged position in the construction of (het)arylethylamine derivatives. Herein we devise chiral sulfoximines as novel bifunctional reagents which exhibit remarkable efficiency in the challenging asymmetric alkene aminohetarylation reaction, particularly in terms of reactivity and stereo-control. The chiral reagents can be conveniently accessed in gram scale, and efficiently generate N-centered radicals under mild photochemical conditions. The transformation proceeds through enantioselective 1,4-hetaryl migration, ensuring precise chirality transfer from sulfur- to carbon-centers, rendering wide applicability to both aromatic and aliphatic alkenes. Furthermore, the method is straightforward to operate and does not require transition metals or photosensitizers, making it an attractive and practical option.
Collapse
Affiliation(s)
- Zhu Cao
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuqian Sun
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Yasu Chen
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chen Zhu
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
40
|
Kumar V, Bisoyi A, Beevi V F, Yatham VR. Light-Induced Difunctionalization of Alkenes with Polyhaloalkanes and Quinoxalin-2(1 H)-ones. J Org Chem 2024; 89:16964-16968. [PMID: 39484822 DOI: 10.1021/acs.joc.4c02119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Herein, we report a metal-free light-induced three-component reaction for the synthesis of polychloroalkyl-substituted quinoxalin-2(1H)-ones using commercially available alkenes, polyhalo alkanes, and quinoxalin-2(1H)-ones. Preliminary mechanistic studies suggested the generation of radical intermediates via an EDA-complex, single electron transfer, or halogen atom transfer pathway. Under mild reaction conditions, various alkenes and quinoxalin-2(1H)-ones containing different functional groups are compatible, providing the corresponding polychloroalkyl-substituted quinoxalin-2(1H)-ones in moderate to good yields.
Collapse
Affiliation(s)
- Vivek Kumar
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Akash Bisoyi
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Fathima Beevi V
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
41
|
Zhou ZL, Zhang Y, Cui PZ, Li JH. Photo-/Electrocatalytic Difunctionalization of Alkenes Enabled by C-H Radical Functionalization. Chemistry 2024; 30:e202402458. [PMID: 39126402 DOI: 10.1002/chem.202402458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/12/2024]
Abstract
The difunctionalization of alkenes represents a powerful tool to incorporate two functional groups into the alkene bones for increasing molecular complexity and has been widely utilizations in chemical synthesis. Upon the catalysis of the green, sustainable, mild photo-/electrochemistry technologies, much attentions have been attracted to the development of new tactics for the transformations of the important alkene and alkane feedstocks driven by C-H radical functionalization. Herein, we summarize recent advances in the photo-/electrocatalytic difunctionalization of alkenes enabled by C-H radical functionalization. We detailedly discuss the substrate scope and the mechanisms of the photo-/electrocatalytic alkene difunctionalization reactions by selecting impressive synthetic examples, which are divided into four sections based on the final terminated step, including oxidative radical-polar crossover coupling, reductive radical-polar crossover coupling, radical-radical coupling, and transition-metal-catalyzed coupling.
Collapse
Affiliation(s)
- Zi-Long Zhou
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yin Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Pei-Zhe Cui
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
42
|
Tu JL. Recent advances in photocatalytic and transition metal-catalyzed synthesis of disulfide compounds. Org Biomol Chem 2024. [PMID: 39498810 DOI: 10.1039/d4ob01362j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Disulfide bonds are essential in protein folding, cellular redox balance, materials science, and drug development. Despite existing synthetic methods, the efficient and selective synthesis of unsymmetrical disulfides remains challenging. This review highlights innovative approaches in visible light photocatalysis, including decarboxylation, deoxydisulfidation of alcohols, and direct C-H disulfidation, showcasing broad substrate applicability and functional group tolerance under mild conditions. Additionally, it explores transition metal-catalyzed systems with copper, nickel, palladium, chromium, Iridium, Rhodium molybdenum, and scandium, offering effective strategies for unsymmetrical disulfide bond formation and late-stage functionalization of complex molecules through reductive coupling, selective oxidation, and novel insertion reactions.
Collapse
Affiliation(s)
- Jia-Lin Tu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
43
|
Xu J, Zhou Y, Liu B. Dicarbofunctionalization of Vinylarenes with Pyridine and Aldehydes via Photocatalytic Hydrogen Atom Transfer. J Org Chem 2024; 89:15877-15883. [PMID: 39397537 DOI: 10.1021/acs.joc.4c02016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
We describe a metal-free and mild three-component reaction utilizing vinylarenes, alkyl aldehydes, and 4-cyanopyridine. In this reaction, the scope of vinylarenes and alkyl aldehydes includes over 40 examples, generating a variety of β-pyridinyl ketones. Moreover, potential applications of this method have been demonstrated by the functionalization of pharmaceutical molecules. An acyl radical is proposed to be produced via a polarity-matched hydrogen atom transfer between alkyl aldehydes and a triplet-state diradical from benzophenone.
Collapse
Affiliation(s)
- Junhua Xu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Yiting Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| |
Collapse
|
44
|
Wang AL, Jiang HW, Han XY, Luo YC, Xu PF. Photosensitized Three-Component Carboimination of Alkenes Based on the Relay of Oxy Radicals to Carbon Radicals. Org Lett 2024; 26:9263-9268. [PMID: 39432583 DOI: 10.1021/acs.orglett.4c03247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Here, we present a metal-free photosensitized three-component reaction for the carboimination of alkenes based on oxime carbonates. Homolysis of oxime carbonates via light-mediated energy transfer enables the simultaneous generation of iminyl radicals and alkoxycarbonyloxyl radicals. The alkoxycarbonyloxyl and alkoxy radicals can act as an effective hydrogen atom transfer reagent, abstracting hydrogen atoms from alkanes and aldehydes, silanes, and phosphine oxide. This strategy exhibits broad functional group tolerance under mild reaction conditions, further broadening the diversity of alkene carboimination.
Collapse
Affiliation(s)
- Ai-Lian Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Hao-Wen Jiang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Xu-Yan Han
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Yong-Chun Luo
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
45
|
Jankins TC, Blank PM, Brugnetti A, Boehm P, Aouane FA, Morandi B. Shuttle HAT for mild alkene transfer hydrofunctionalization. Nat Commun 2024; 15:9397. [PMID: 39477933 PMCID: PMC11525564 DOI: 10.1038/s41467-024-53281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Hydrogen atom transfer (HAT) from a metal-hydride is a reliable and powerful method for functionalizing unsaturated C-C bonds in organic synthesis. Cobalt hydrides (Co-H) have garnered significant attention in this field, where the weak Co-H bonds are most commonly generated in a catalytic fashion through a mixture of stoichiometric amounts of peroxide oxidant and silane reductant. Here we show that the reverse process of HAT to an alkene, i.e. hydrogen atom abstraction of a C-H adjacent to a radical, can be leveraged to generate catalytically active Co-H species in an application of shuttle catalysis coined shuttle HAT. This method obviates the need for stoichiometric reductant/oxidant mixtures thereby greatly simplifying the generation of Co-H. To demonstrate the generality of this shuttle HAT platform, five different reaction manifolds are shown, and the reaction can easily be scaled up to 100 mmol.
Collapse
Affiliation(s)
- Tanner C Jankins
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Philip M Blank
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Andrea Brugnetti
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Philip Boehm
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Françoise A Aouane
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland.
| |
Collapse
|
46
|
Zhao X, Wang C, Yin L, Liu W. Highly Enantioselective Decarboxylative Difluoromethylation. J Am Chem Soc 2024; 146:29297-29304. [PMID: 39404447 PMCID: PMC11975424 DOI: 10.1021/jacs.4c11257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Organofluorine molecules that contain difluoromethyl groups (CF2H) at stereogenic centers have gained importance in pharmaceuticals due to the unique ability of CF2H groups to act as lipophilic hydrogen bond donors. Despite their potential, the enantioselective installation of CF2H groups into readily available starting materials remains a challenging and underdeveloped area. In this study, we report a nickel-catalyzed decarboxylative difluoromethylation reaction that converts alkyl carboxylic acids into difluoromethylated products with exceptional enantioselectivity. This Ni-catalyzed protocol exhibits broad functional group tolerance and is applicable for synthesizing fluorinated bioisosteres of biologically relevant molecules.
Collapse
Affiliation(s)
- Xian Zhao
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Chao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
47
|
Wang PZ, Zhang Z, Jiang M, Chen JR, Xiao WJ. A General Copper-Box System for the Asymmetric Arylative Functionalization of Benzylic, Propargylic or Allenylic Radicals. Angew Chem Int Ed Engl 2024; 63:e202411469. [PMID: 39073195 DOI: 10.1002/anie.202411469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Radical-involved arylative cross-coupling reactions have recently emerged as an attractive strategy to access valuable aryl-substituted motifs. However, there still exist several challenges such as limited scope of radical precursors/acceptors, and lack of general asymmetric catalytic systems, especially regarding the multicomponent variants. Herein, we reported a general copper-Box system for asymmetric three-component arylative radical cross-coupling of vinylarenes and 1,3-enynes, with oxime carbonates and aryl boronic acids. The reactions proceed under practical conditions in the absence or presence of visible-light irradiation, affording chiral 1,1-diarylalkanes, benzylic alkynes and allenes with good enantioselectivities. Mechanistic studies imply that the copper/Box complexes play a dual role in both radical generation and ensuing asymmetric cross-coupling. In the cases of 1,3-enynes, visible-light irradiation could improve the activity of copper/Box complex toward the initial radical generation, enabling better efficiency match between radical formation and cross-coupling.
Collapse
Affiliation(s)
- Peng-Zi Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Zhihan Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China
| | - Jia-Rong Chen
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei, 430083, China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei, 430083, China
| |
Collapse
|
48
|
Xin S, Liao J, Tang Q, Feng X, Liu X. Photoinduced copper-catalyzed asymmetric cyanoalkylalkynylation of alkenes, terminal alkynes, and oximes. Chem Sci 2024:d4sc05642f. [PMID: 39444560 PMCID: PMC11494415 DOI: 10.1039/d4sc05642f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
The asymmetric dicarbofunctionalization of alkenes via a radical relay process can provide routes to diverse hydrocarbon derivatives. Three-component carboalkynylation, limited to particular alkyl halides and using readily available cycloketone oxime esters as redox-active precursors, is restricted by the available pool of suitable chiral ligands for broadening the redox potential window of copper complexes and simultaneously creating the enantiocontrol environment. Herein, we report a new hybrid tridentate ligand bearing a guanidine-amide-pyridine unit for photoinduced copper-catalyzed cyanoalkylalkynylation of alkenes. Leveraging the copper catalyst's redox capability is achieved via merging the electron-rich ligand with a readily organized configuration and enhanced absorption in the visible light range, which also facilitates the enantioselectivity. The generality of the catalyst system is exemplified by the efficacy across a number of alkenes, terminal alkynes and cycloketone oxime esters, working smoothly to give alkyne-bearing nitriles with good yields and excellent enantioselectivity. A mechanistic study reveals that the chiral copper catalyst meets the requirements of possessing sufficient reduction ability, good light absorption properties, and appropriate steric hindrance.
Collapse
Affiliation(s)
- Shuang Xin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Jibang Liao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Qi Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
49
|
Li L, Rawal VH. Transition Metal-Free Difunctionalization of Unactivated Alkenes: Arylation/Azidation, Arylation/Chlorination, and Arylation/Cyanation. Chem 2024; 10:3243-3253. [PMID: 39677497 PMCID: PMC11637411 DOI: 10.1016/j.chempr.2024.07.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Arylethylamines represent a privileged scaffold in pharmaceutical compounds and form the backbone of many medical drugs, including those used for treating neurological diseases and pain. Their biomedical significance has inspired new synthetic methods that rely on transition metal-catalyzed aminoarylation reaction to an alkene, often in conjunction with a photoredox catalyst or a photosensitizer, and guided by a directing or stabilizing group. Here, we introduce a simple and effective method for azidoarylation of unactivated alkenes under transition metal-free conditions. Visible or near-UV light irradiation of readily available triarylbismuth dichlorides generates an aryl radical that selectively adds to the alkene, and the resulting homobenzyl radical is intercepted by an amine equivalent. This method offers a broad substrate scope and also enables aryl chlorination and arylcyanation of unactivated alkenes.
Collapse
Affiliation(s)
- Li Li
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Viresh H. Rawal
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
50
|
Li H, Hu K, Zhang J, Jiang H. Cu 0-Promoted Truce-Smiles Rearrangement for Aryl-Difluoromethylenation of C═C Bonds via a Reductive Radical-Polar Crossover Process. J Org Chem 2024; 89:13947-13952. [PMID: 39279455 DOI: 10.1021/acs.joc.4c01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
An efficient Cu0-promoted Truce-Smiles rearrangement for the aryl-difluoromethylenation of C═C bonds by the reaction of N-alkyl-N-(arylsulfonyl)methacrylamide and 2-bromodifluoromethyl-1,3-benzodiazole via a reductive radical-polar crossover process under mild reaction conditions is presented. The protocol enables practical access to a variety of single regioisomer α-aryl-β-difluoromethylene amides in good to excellent yields through consecutive difluoromethylenation, radical-polar crossover, 1,4-aryl migration, SO2 extrusion, and N-H bond formation cascade reaction.
Collapse
Affiliation(s)
- Hongxiao Li
- Department of Chemistry, Shanghai University, Shanghai 200444, PR China
| | - Kaiji Hu
- Department of Chemistry, Shanghai University, Shanghai 200444, PR China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai 200072, PR China
| | - Haizhen Jiang
- Department of Chemistry, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|