1
|
Qin W, Tian H, Feng X, Tang Z. Iron and copper codoped carbon nanodots as oxidase mimics and fluorescent probes for detection of phenol and dimethoate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 331:125794. [PMID: 40023614 DOI: 10.1016/j.saa.2025.125794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 03/04/2025]
Abstract
Fluorescent nanozymes represent a class of dual-functional nanomaterials that exhibit inherent enzyme-like catalytic properties alongside fluorescent emission, making them suitable for multiple detection applications. However, the number of publications on this subject is limited, primarily due to potential interference between the two processes. In this study, oxidase-like fluorescent iron and copper codoped carbon dots (Fe,Cu-CDs) were synthesized via a one-pot pyrolysis reaction. The results demonstrated that the carbon dots could catalyze the oxidative coupling reaction between phenol and 4-aminoantipyrine, while their fluorescence emission was enhanced upon coordination with thiol compounds. By integrating the dimethoate-mediated, acetylcholinesterase-catalyzed hydrolysis of thiocholine, a dual-detection platform was developed for the colorimetric detection of phenol and the fluorometric detection of dimethoate, achieving detection limits of 0.103 μM and 1.94 × 10-5 µg/mL, respectively. This method was subsequently applied to detect these two pollutants in real water and vegetable samples, and the results demonstrated favorable recovery rates and good reproducibility. This work not only presents a novel strategy for the synthesis and application of dual-functional carbon dots in pollutant analysis but also offers new insights into the design of dual-functional carbon dots for efficient and cost-effective multidetection.
Collapse
Affiliation(s)
- Weidong Qin
- College of Chemistry, Beijing Normal University, Beijing 100875 China.
| | - Hongyuan Tian
- College of Chemistry, Beijing Normal University, Beijing 100875 China
| | - Xinyi Feng
- College of Chemistry, Beijing Normal University, Beijing 100875 China
| | - Zhanqiu Tang
- College of Chemistry, Beijing Normal University, Beijing 100875 China
| |
Collapse
|
2
|
Rinn N, Rojas-León I, Peerless B, Gowrisankar S, Ziese F, Rosemann NW, Pilgrim WC, Sanna S, Schreiner PR, Dehnen S. Adamantane-type clusters: compounds with a ubiquitous architecture but a wide variety of compositions and unexpected materials properties. Chem Sci 2024; 15:9438-9509. [PMID: 38939157 PMCID: PMC11206280 DOI: 10.1039/d4sc01136h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/01/2024] [Indexed: 06/29/2024] Open
Abstract
The research into adamantane-type compounds has gained momentum in recent years, yielding remarkable new applications for this class of materials. In particular, organic adamantane derivatives (AdR4) or inorganic adamantane-type compounds of the general formula [(RT)4E6] (R: organic substituent; T: group 14 atom C, Si, Ge, Sn; E: chalcogenide atom S, Se, Te, or CH2) were shown to exhibit strong nonlinear optical (NLO) properties, either second-harmonic generation (SHG) or an unprecedented type of highly-directed white-light generation (WLG) - depending on their respective crystalline or amorphous nature. The (missing) crystallinity, as well as the maximum wavelengths of the optical transitions, are controlled by the clusters' elemental composition and by the nature of the organic groups R. Very recently, it has been additionally shown that cluster cores with increased inhomogeneity, like the one in compounds [RSi{CH2Sn(E)R'}3], not only affect the chemical properties, such as increased robustness and reversible melting behaviour, but that such 'cluster glasses' form a conceptually new basis for their use in light conversion devices. These findings are likely only the tip of the iceberg, as beside elemental combinations including group 14 and group 16 elements, many more adamantane-type clusters (on the one hand) and related architectures representing extensions of adamantane-type clusters (on the other hand) are known, but have not yet been addressed in terms of their opto-electronic properties. In this review, we therefore present a survey of all known classes of adanmantane-type compounds and their respective synthetic access as well as their optical properties, if reported.
Collapse
Affiliation(s)
- Niklas Rinn
- Institute of Nanotechnology, Karlsruhe Institute of Technology Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Irán Rojas-León
- Institute of Nanotechnology, Karlsruhe Institute of Technology Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Benjamin Peerless
- Institute of Nanotechnology, Karlsruhe Institute of Technology Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Saravanan Gowrisankar
- Department of Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Materials Research, Justus Liebig University Giessen Germany
| | - Ferdinand Ziese
- Department of Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Materials Research, Justus Liebig University Giessen Germany
| | - Nils W Rosemann
- Light Technology Institute, Karlsruhe Institute of Technology Engesserstr. 13 76131 Karlsruhe Germany
| | - Wolf-Christian Pilgrim
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps University Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Simone Sanna
- Department of Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Materials Research, Justus Liebig University Giessen Germany
| | - Peter R Schreiner
- Department of Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Materials Research, Justus Liebig University Giessen Germany
| | - Stefanie Dehnen
- Institute of Nanotechnology, Karlsruhe Institute of Technology Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
3
|
Niu Q, Huang Q, Yu TY, Liu J, Shi JW, Dong LZ, Li SL, Lan YQ. Achieving High Photo/Thermocatalytic Product Selectivity and Conversion via Thorium Clusters with Switchable Functional Ligands. J Am Chem Soc 2022; 144:18586-18594. [PMID: 36191239 DOI: 10.1021/jacs.2c08258] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural exploration and functional application of thorium clusters are still very rare on account of their difficult synthesis caused by the susceptible hydrolysis of thorium element. In this work, we elaborately designed and constructed four stable thorium clusters modified with different functionalized capping ligands, Th6-MA, Th6-BEN, Th6-C8A, and Th6-Fcc, which possessed nearly the same hexanuclear thorium-oxo core but different capabilities in light absorption and charge separation. Consequently, for the first time, these new thorium clusters were treated as model catalysts to systematically investigate the light-induced oxidative coupling reaction of benzylamine and thermodriven oxidation of aniline, achieving >90% product selectivity and approximately 100% conversion, respectively. Concurrently, we found that thorium clusters modified by switchable functional ligands can effectively modulate the selectivity and conversion of catalytic reaction products. Moreover, catalytic characterization and density functional theory calculations consistently indicated that these thorium clusters can activate O2/H2O2 to generate active intermediates O2·-/HOO· and then improved the conversion of amines efficiently. Significantly, this work represents the first report of stable thorium clusters applied to photo/thermotriggered catalytic reactions and puts forward a new design avenue for the construction of more efficient thorium cluster catalysts.
Collapse
Affiliation(s)
- Qian Niu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Qing Huang
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Tao-Yuan Yu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jiang Liu
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Jing-Wen Shi
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Long-Zhang Dong
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Ya-Qian Lan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.,School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
4
|
Tsantis ST, Lada ZG, Tzimopoulos DI, Bekiari V, Psycharis V, Raptopoulou CP, Perlepes SP. Two different coordination modes of the Schiff base derived from ortho-vanillin and 2-(2-aminomethyl)pyridine in a mononuclear uranyl complex. Heliyon 2022; 8:e09705. [PMID: 35721682 PMCID: PMC9204727 DOI: 10.1016/j.heliyon.2022.e09705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022] Open
Abstract
This work describes the reaction of the potentially tetradentate Schiff-base ligand N-(2-pyridylmethy)-3-methoxysalicylaldimine (HL) with UO2(O2CMe)2·2H2O and UO2(NO3)2· 6H2O in MeOH in the absence or presence of an external base, respectively. The product from these reactions is the mononuclear complex [UO2(L)2] (1). Its structure has been determined by single-crystal, X-ray crystallography. The anionic ligand adopts two different coordination modes (1.1011, 1.1010; Harris notation) in the complex. The new compound was fully characterized by solid-state (IR, Raman and Photoluminescence spectroscopies) and solution (UV-Vis and 1H NMR spectra, conductivity measurements) techniques.
Collapse
Affiliation(s)
- Sokratis T. Tsantis
- Department of Chemistry, University of Patras, 26504 Patras, Greece
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (Forth/ICE-HT), Platani, P.O. Box 1414, 26504 Patras, Greece
| | - Zoi G. Lada
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (Forth/ICE-HT), Platani, P.O. Box 1414, 26504 Patras, Greece
| | | | - Vlasoula Bekiari
- Department of Crop Science, University of Patras, 30200 Messolonghi, Greece
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 15310 Aghia Paraskevi Attikis, Greece
| | - Catherine P. Raptopoulou
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 15310 Aghia Paraskevi Attikis, Greece
| | - Spyros P. Perlepes
- Department of Chemistry, University of Patras, 26504 Patras, Greece
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (Forth/ICE-HT), Platani, P.O. Box 1414, 26504 Patras, Greece
| |
Collapse
|
5
|
Tsantis ST, Danelli P, Tzimopoulos DI, Raptopoulou CP, Psycharis V, Perlepes SP. Pentanuclear Thorium(IV) Coordination Cluster from the Use of Di(2-pyridyl) Ketone. Inorg Chem 2021; 60:11888-11892. [PMID: 34351755 DOI: 10.1021/acs.inorgchem.1c01800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Th(NO3)4·5H2O/di(2-pyridyl) ketone [(py)2CO] reaction system gives a pentanuclear cluster containing the doubly deprotonated form of the gem-diol derivative of the ligand. The cluster consists of a tetrahedral arrangement of four ThIV ions centered on the fifth ion, which is the first characterized ThIV5 complex. The analysis of its structure reveals that this is a Kuratowski-type coordination compound.
Collapse
Affiliation(s)
- Sokratis T Tsantis
- Department of Chemistry, University of Patras, 26504 Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), P.O Box 144, 26504 Platani, Greece
| | | | | | - Catherine P Raptopoulou
- Institute of Nanoscience and Nanotechnology NCSR "Demokritos", 15310 Aghia Paraskevi, Attikis, Greece
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology NCSR "Demokritos", 15310 Aghia Paraskevi, Attikis, Greece
| | - Spyros P Perlepes
- Department of Chemistry, University of Patras, 26504 Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), P.O Box 144, 26504 Platani, Greece
| |
Collapse
|
6
|
Hylland KT, Gerz I, Wragg DS, Øien‐Ødegaard S, Tilset M. The Reactivity of Multidentate Schiff Base Ligands Derived from Bi‐ and Terphenyl Polyamines towards M(II) (M=Ni, Cu, Zn, Cd) and M(III) (M=Co, Y, Lu). Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Knut Tormodssønn Hylland
- Department of Chemistry University of Oslo P. O. Box 1033 Blindern 0315 Oslo Norway
- Centre for Materials Science and Nanotechnology University of Oslo P.O. Box 1126 Blindern 0316 Oslo Norway
| | - Isabelle Gerz
- Department of Chemistry University of Oslo P. O. Box 1033 Blindern 0315 Oslo Norway
- Centre for Materials Science and Nanotechnology University of Oslo P.O. Box 1126 Blindern 0316 Oslo Norway
| | - David S. Wragg
- Department of Chemistry University of Oslo P. O. Box 1033 Blindern 0315 Oslo Norway
- Centre for Materials Science and Nanotechnology University of Oslo P.O. Box 1126 Blindern 0316 Oslo Norway
| | - Sigurd Øien‐Ødegaard
- Department of Chemistry University of Oslo P. O. Box 1033 Blindern 0315 Oslo Norway
- Centre for Materials Science and Nanotechnology University of Oslo P.O. Box 1126 Blindern 0316 Oslo Norway
| | - Mats Tilset
- Department of Chemistry University of Oslo P. O. Box 1033 Blindern 0315 Oslo Norway
- Centre for Materials Science and Nanotechnology University of Oslo P.O. Box 1126 Blindern 0316 Oslo Norway
| |
Collapse
|
7
|
Synthesis, characterization and theoretical investigations of new uranium (VI) and thorium (IV) complexes with 1-furfurylaldehyde-derived Schiff bases as ligands. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Oligonuclear Actinoid Complexes with Schiff Bases as Ligands-Older Achievements and Recent Progress. Int J Mol Sci 2020; 21:ijms21020555. [PMID: 31952278 PMCID: PMC7027032 DOI: 10.3390/ijms21020555] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/09/2023] Open
Abstract
Even 155 years after their first synthesis, Schiff bases continue to surprise inorganic chemists. Schiff-base ligands have played a major role in the development of modern coordination chemistry because of their relevance to a number of interdisciplinary research fields. The chemistry, properties and applications of transition metal and lanthanoid complexes with Schiff-base ligands are now quite mature. On the contrary, the coordination chemistry of Schiff bases with actinoid (5f-metal) ions is an emerging area, and impressive research discoveries have appeared in the last 10 years or so. The chemistry of actinoid ions continues to attract the intense interest of many inorganic groups around the world. Important scientific challenges are the understanding the basic chemistry associated with handling and recycling of nuclear materials; investigating the redox properties of these elements and the formation of complexes with unusual metal oxidation states; discovering materials for the recovery of trans-{UVIO2}2+ from the oceans; elucidating and manipulating actinoid-element multiple bonds; discovering methods to carry out multi-electron reactions; and improving the 5f-metal ions’ potential for activation of small molecules. The study of 5f-metal complexes with Schiff-base ligands is a currently “hot” topic for a variety of reasons, including issues of synthetic inorganic chemistry, metalosupramolecular chemistry, homogeneous catalysis, separation strategies for nuclear fuel processing and nuclear waste management, bioinorganic and environmental chemistry, materials chemistry and theoretical chemistry. This almost-comprehensive review, covers aspects of synthetic chemistry, reactivity and the properties of dinuclear and oligonuclear actinoid complexes based on Schiff-base ligands. Our work focuses on the significant advances that have occurred since 2000, with special attention on recent developments. The review is divided into eight sections (chapters). After an introductory section describing the organization of the scientific information, Sections 2 and 3 deal with general information about Schiff bases and their coordination chemistry, and the chemistry of actinoids, respectively. Section 4 highlights the relevance of Schiff bases to actinoid chemistry. Sections 5–7 are the “main menu” of the scientific meal of this review. The discussion is arranged according the actinoid (only for Np, Th and U are Schiff-base complexes known). Sections 5 and 7 are further arranged into parts according to the oxidation states of Np and U, respectively, because the coordination chemistry of these metals is very much dependent on their oxidation state. In Section 8, some concluding comments are presented and a brief prognosis for the future is attempted.
Collapse
|