1
|
Chen B, He H, Wang X, Wu S, Wang Q, Zhang J, Qiao Y, Liu H. Research Progress on Shrimp Allergens and Allergenicity Reduction Methods. Foods 2025; 14:895. [PMID: 40077598 PMCID: PMC11899471 DOI: 10.3390/foods14050895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Shrimp are highly favored by consumers for their delicious taste and rich nutritional value. However, reports of allergic reactions caused by shrimp and its derivatives have been increasing, significantly impacting consumer health and posing a growing global food safety concern. This article introduces the structure and biochemical characteristics of major allergenic proteins in shrimp, including tropomyosin (TM), arginine kinase, sarcoplasmic calcium-binding protein, myosin light chain, troponin C, and hemocyanin. Currently, there is no effective treatment for shrimp allergies, and prevention is mainly achieved by avoiding consumption. The study of shrimp allergen sensitization reduction technology is of great significance to the development of hypoallergenic or desensitized products. The article provides a detailed overview of the effects of common processing techniques, including physical, chemical, biological, and combined methods, on the allergenicity of shrimp allergens; for instance, the binding rate to immunoglobulin E (IgE) was reduced by 73.59% after treating TM with high pressure (500 MPa) at 55 °C for 10 min and the recognition rate of TM to IgE decreased by 89.4% on average after treating TM with pepsin (30 μg/mL, pH 2) for 2 h. These techniques provide references for the development of hypoallergenic aquatic products or desensitized foods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongjin Qiao
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.H.); (X.W.); (S.W.); (Q.W.); (J.Z.)
| | - Hongru Liu
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.H.); (X.W.); (S.W.); (Q.W.); (J.Z.)
| |
Collapse
|
2
|
Pretzler M, Rompel A. Tyrosinases: a family of copper-containing metalloenzymes. CHEMTEXTS 2024; 10:12. [PMID: 39624788 PMCID: PMC11608171 DOI: 10.1007/s40828-024-00195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/15/2024] [Indexed: 12/08/2024]
Abstract
Tyrosinases (TYRs) are a family of copper-containing metalloenzymes that are present in all domains of life. TYRs catalyze the reactions that start the biosynthesis of melanin, the main pigment of the animal kingdom, and are also involved in the formation of the bright colors seen on the caps of mushrooms and in the petals of flowers. TYRs catalyze the ortho-hydroxylation and oxidation of phenols and the oxidation of catechols to the respective o-quinones. They only need molecular oxygen to do that, and the products of TYRs-o-quinones-are highly reactive and will usually react with the next available nucleophile. This reactivity can be harnessed for pharmaceutical applications as well as in environmental and food biotechnology. The majority of both basic and applied research on TYRs utilizes "mushroom tyrosinase", a crude enzyme preparation derived from button mushroom (Agaricus bisporus) fruiting bodies. Access to pure TYR preparations comes almost exclusively from the production of recombinant TYRs as the purification of these enzymes from the natural source is usually very laborious and plagued by low yields. In this text an introduction into the biochemistry of the enzyme TYR will be given, followed by an overview of available structural data of TYRs, the current model for the catalytic mechanism, a survey of reports on the recombinant production of this important metalloenzyme family, and a review of the applications of TYRs for the synthesis of catechols, as biosensors, in bioremediation, for the cross-linking of proteins and medical hydrogels as well as for melanoma treatment. Graphical Abstract
Collapse
Affiliation(s)
- Matthias Pretzler
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Annette Rompel
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
3
|
Wang N, Liu Q, Shi Q, Wang F, Xu C, Ren H, Yu Q. Effects of the covalent conjugation between caffeic acid and peanut allergen protein Ara h1 on the antigenicity and structure of Ara h1. J Food Sci 2024; 89:5559-5575. [PMID: 39150685 DOI: 10.1111/1750-3841.17276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024]
Abstract
Ara h1 was the highest content of peanut allergen protein, identified as a biomarker of peanut allergen. In this study, Ara h1 was covalently complexed with caffeic acid (CA) to research the effects of covalent conjugation on the antigenicity and protein structural properties of Ara h1. After the covalent complexing of Ara h1 and CA, the IgG-binding capacity of Ara h1 was reduced compared with that of control Ara h1. Moreover, the structure of Ara h1 changed from ordered to disordered, the number of intermolecular hydrogen bonds decreased, and some hydrophobic groups were exposed or hydrophobic peptides were released. The carboxyl group in CA reacted with the amino group in Ara h1. The digestibility of Ara h1-CA was increased. The antigenicity of Ara h1-CA was undetectable after 30 min of digestion in vitro. These findings can serve as a reference for further research on hypoallergenic peanut products.
Collapse
Affiliation(s)
- Na Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center for Animal ImmunologyHenan Agricultural University, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Nutrition and Healthy Food, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Staple Grain Processing Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qingqing Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center for Animal ImmunologyHenan Agricultural University, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Nutrition and Healthy Food, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qilei Shi
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Nutrition and Healthy Food, Henan Agricultural University, Zhengzhou, Henan, China
| | - Fan Wang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Nutrition and Healthy Food, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chao Xu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Nutrition and Healthy Food, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hongtao Ren
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Nutrition and Healthy Food, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Staple Grain Processing Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qiuying Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center for Animal ImmunologyHenan Agricultural University, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Nutrition and Healthy Food, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Xie Q, Xu K, Sang Z, Luo D, Chen C, Fu W, Xue W. Allergenicity Modulation of Casein with the Modifications of Linearization, Cross-Linking, and Glycation via the Regulation of Th1/Th2 Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10031-10045. [PMID: 38629959 DOI: 10.1021/acs.jafc.3c09962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Casein (CN) is the primary allergenic protein in cow's milk, contributing to the worldwide escalating prevalence of food allergies. However, there remains limited knowledge regarding the effect of structural modifications on CN allergenicity. Herein, we prepared three modified CNs (mCN), including sodium dodecyl sulfate and dithiothreitol-induced linear CN (LCN), transglutaminase-cross-linked CN (TCN), and glucose-glycated CN (GCN). The electrophoresis results indicated widespread protein aggregation among mCN, causing variations in their molecular weights. The unique internal and external structural characteristics of mCN were substantiated by disparities in surface microstructure, alterations in the secondary structure, variations in free amino acid contents, and modifications in functional molecular groups. Despite the lower digestibility of TCN and GCN compared to LCN, they significantly suppressed IL-8 production in Caco-2 cells without significantly promoting their proliferation. Moreover, GCN showed the weakest capacity to induce LAD2 cell degranulation. Despite the therapeutic effect of TCN, GCN-treated mice displayed the most prominent attenuation of allergic reactions and a remarkably restored Th1/Th2 imbalance, while LCN administration resulted in severe allergic phenotypes and endotypes in both cellular and murine models. This study highlighted the detrimental effect of linear modifications and underscored the significance of glycation in relation to CN allergenicity.
Collapse
Affiliation(s)
- Qiang Xie
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| | - Ke Xu
- Zhejiang Academy of Science & Technology for Inspection & Quarantine, Hangzhou, Zhejiang Province 311200, P. R. China
| | - Ziqing Sang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| | - Dan Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| | - Chen Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| | - Wenhui Fu
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| |
Collapse
|
5
|
Gil MV, Fernández-Rivera N, Pastor-Vargas C, Cintas P. Food Allergens: When Friends Become Foes-Caveats and Opportunities for Oral Immunotherapy Based on Deactivation Methods. Nutrients 2023; 15:3650. [PMID: 37630840 PMCID: PMC10458749 DOI: 10.3390/nu15163650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Food allergies represent a serious health concern and, since the 1990s, they have risen gradually in high-income countries. Unfortunately, the problem is complex because genetic, epigenetic, and environmental factors may be collectively involved. Prevention and diagnoses have not yet evolved into efficacious therapies. Identification and control of allergens present in edible substances hold promise for multi-purpose biomedical approaches, including oral immunotherapy. This review highlights recent studies and methods to modify the otherwise innocuous native proteins in most subjects, and how oral treatments targeting immune responses could help cancel out the potential risks in hypersensitive individuals, especially children. We have focused on some physical methods that can easily be conducted, along with chemo-enzymatic modifications of allergens by means of peptides and phytochemicals in particular. The latter, accessible from naturally-occurring substances, provide an added value to hypoallergenic matrices employing vegetal wastes, a point where food chemistry meets sustainable goals as well.
Collapse
Affiliation(s)
- M. Victoria Gil
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Nuria Fernández-Rivera
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Carlos Pastor-Vargas
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pedro Cintas
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
6
|
Yang J, Zhou S, Kuang H, Tang C, Song J. Edible insects as ingredients in food products: nutrition, functional properties, allergenicity of insect proteins, and processing modifications. Crit Rev Food Sci Nutr 2023; 64:10361-10383. [PMID: 37341655 DOI: 10.1080/10408398.2023.2223644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Edible insect products contain high-quality protein and other nutrients, including minerals and fatty acids. The consumption of insect food products is considered a future trend and a potential strategy that could greatly contribute to meeting food needs worldwide. However, insect proteins have the potential to be allergenic to insect consumers. In this review, the nutritional value and allergy risk of insect-derived foods, and the immune responses elicited by insect allergens are summarized and discussed. Tropomyosin and arginine kinase are the most important and widely known insect allergens, which induce Th2-biased immune responses and reduced the activity of CD4+T regulatory cells. Besides, food processing methods have been effectively improving the nutrients and characteristics of insect products. However, limited reviews systematically address the immune reactions to allergens present in edible insect proteins following treatment with food processing technologies. The conventional/novel food processing techniques and recent advances in reducing the allergenicity of insect proteins are discussed in this review, focusing on the structural changes of allergens and immune regulation.
Collapse
Affiliation(s)
- Jing Yang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
- School of Food Nutrition and Health (Hotpot) Modern Industry, Chongqing Technology and Business University, Chongqing, China
| | - Shuling Zhou
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Hong Kuang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Chunhong Tang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
- School of Food Nutrition and Health (Hotpot) Modern Industry, Chongqing Technology and Business University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Zhao J, Li Y, Xu L, Ji Y, Zeng J, Timira V, Zhang Z, Chen G, Lin H, Li Z. Insight into IgG/IgE binding ability, in vitro digestibility and structural changes of shrimp (Litopenaeus vannamei) soluble extracts with thermal processing. Food Chem 2022; 381:132177. [PMID: 35121318 DOI: 10.1016/j.foodchem.2022.132177] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/27/2021] [Accepted: 01/14/2022] [Indexed: 11/20/2022]
Abstract
The effects of six kinds of thermal processing on soluble protein recovery, potential allergenicity, in vitro digestibility and structural characteristics of shrimp soluble proteins were evaluated. Obtained results confirmed soluble protein recovery and IgG/IgE reactivity of shrimp soluble extracts were markedly suppressed by various thermal treatments with enhanced digestibility depended on the extent and type of heating applied, which correlated well with the structural alterations and modification. The maximum reduction of IgG/IgE-binding capacity and digestive stability were observed in the autoclaved shrimps because of unfolding of protein and hydrophobic residues exposed. Notably, tropomyosin (TM) and sarcoplasmic calcium-binding protein (SCP) were still IgG/IgE-reactive in various heat-processed shrimps, even higher IgG reactivity were found in heat-treated shrimps TM according to TM antiserum western-blotting and indirect ELISA results. Shrimp TM and SCP maintains its IgE/IgG-binding capacity after various cooking methods, thus most probably initiating allergic sensitization to both raw and cooked shrimps.
Collapse
Affiliation(s)
- Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Yonghong Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China; HOB Biotech Group Corp., Ltd., No. 218, Xinghu Road, Suzhou City, Jiangsu Province 215000, PR China
| | - Lili Xu
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Yu Ji
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Jianhua Zeng
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Vaileth Timira
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Guanzhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, No.16, Jiangsu Road, Qingdao City, Shandong Province 266071, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China.
| |
Collapse
|
8
|
Zhang Z, Li Z, Lin H. Reducing the Allergenicity of Shrimp Tropomyosin and Allergy Desensitization Based on Glycation Modification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14742-14750. [PMID: 34427086 DOI: 10.1021/acs.jafc.1c03953] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Shrimp is a major allergic food that could trigger severe food allergy, with the most significant and potent allergen of shrimp referred to as tropomyosin (TM). Glycation modification (Maillard reaction) could reportedly weaken the allergenicity of TM and generate hypoallergenic TM, while up to now, there is still a lack of investigations on the hypoallergenic glycated tropomyosin (GTM) as a candidate immunotherapy for desensitizing the shrimp TM-induced allergy. This study analyzed the effects of glycation modification on decreasing the allergenicity of TM and generated hypoallergenic GTM and how GTM absorbed to the Al(OH)3 function as a candidate immunotherapy for desensitizing allergy. As the results, in comparison to TM, the saccharides of smaller molecular sizes could lead to more advanced glycation end products in GTMs than saccharides of greater molecular sizes, and TM glycated by saccharides of different molecular sizes (glucose, maltose, maltotriose, maltopentaose, and maltoheptaose) exhibited lower allergenicity as a hypoallergen upon activating the allergic reactions of the mast cell and mouse model, while TM glycated by maltose had insignificant allergenicity changes upon activating the allergic reactions of the mast cell and mouse model. In addition, the hypoallergenic GTM + Al(OH)3 was efficient as a candidate immunotherapy; this work intended to offer preclinical data to promote GTM + Al(OH)3 as a candidate allergen-specific immunotherapy for desensitizing the allergy reactions for patients allergic to shrimp food.
Collapse
Affiliation(s)
- Ziye Zhang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Zhenxing Li
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Hong Lin
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| |
Collapse
|
9
|
Ahmed I, Chen H, Li J, Wang B, Li Z, Huang G. Enzymatic crosslinking and food allergenicity: A comprehensive review. Compr Rev Food Sci Food Saf 2021; 20:5856-5879. [PMID: 34653307 DOI: 10.1111/1541-4337.12855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022]
Abstract
Food allergy has become a major global public health concern. In the past decades, enzymatic crosslinking technique has been employed to mitigate the immunoreactivity of food allergens. It is an emerging non-thermal technique that can serve as a great alternative to conventional food processing approaches in developing hypoallergenic food products, owing to their benefits of high specificity and selectivity. Enzymatic crosslinking via tyrosinase (TYR), laccase (LAC), peroxidase (PO), and transglutaminase (TG) modifies the structural and biochemical properties of food allergens that subsequently cause denaturation and masking of the antigenic epitopes. LAC, TYR, and PO catalyze the oxidation of tyrosine side chains to initiate protein crosslinking, while TG initiates isopeptide bonding between lysine and glutamine residues. Enzymatic treatment produces a high molecular weight crosslinked polymer with reduced immunoreactivity and IgE-binding potential. Crosslinked allergens further inhibit mast cell degranulation due to the lower immunostimulatory potential that assists in the equilibration of T-helper (Th)1/Th2 immunobalance. This review provides an updated overview of the studies carried out in the last decade on the potential application of enzymatic crosslinking for mitigating food allergenicity that can be of importance in the context of developing hypoallergenic/non-allergenic food products.
Collapse
Affiliation(s)
- Ishfaq Ahmed
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| | - Huan Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| | - Jiale Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Gonghua Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| |
Collapse
|
10
|
Zhang P, Gao J, Che H, Xue W, Yang D. Molecular Basis of IgE-Mediated Shrimp Allergy and Heat Desensitization. Nutrients 2021; 13:3397. [PMID: 34684397 PMCID: PMC8540294 DOI: 10.3390/nu13103397] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Crustacean allergy, especially to shrimp, is the most predominant cause of seafood allergy. However, due to the high flexibility of immunoglobulin E (IgE), its three-dimensional structure remains unsolved, and the molecular mechanism of shrimp allergen recognition is unknown. Here a chimeric IgE was built in silico, and its variable region in the light chain was replaced with sequences derived from shrimp tropomyosin (TM)-allergic patients. A variety of allergenic peptides from the Chinese shrimp TM were built, treated with heating, and subjected to IgE binding in silico. Amino acid analysis shows that the amino acid residue conservation in shrimp TM contributes to eliciting an IgE-mediated immune response. In the shrimp-allergic IgE, Glu98 in the light chain and other critical residues that recognize allergens from shrimp are implicated in the molecular basis of IgE-mediated shrimp allergy. Heat treatment could alter the conformations of TM allergenic peptides, impact their intramolecular hydrogen bonding, and subsequently decrease the binding between these peptides and IgE. We found Glu98 as the characteristic amino acid residue in the light chain of IgE to recognize general shrimp-allergic sequences, and heat-induced conformational change generally desensitizes shrimp allergens.
Collapse
Affiliation(s)
- PeiAo Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.Z.); (J.G.); (H.C.); (W.X.)
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jihui Gao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.Z.); (J.G.); (H.C.); (W.X.)
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huilian Che
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.Z.); (J.G.); (H.C.); (W.X.)
| | - Wentong Xue
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.Z.); (J.G.); (H.C.); (W.X.)
| | - Dong Yang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.Z.); (J.G.); (H.C.); (W.X.)
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
11
|
Zhao L, Zhang Y, Zhang S, Zhang L, Lan F. The effect of immunotherapy on cross-reactivity between house dust mite and other allergens in house dust mite -sensitized patients with allergic rhinitis. Expert Rev Clin Immunol 2021; 17:969-975. [PMID: 34388949 DOI: 10.1080/1744666x.2021.1968834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION House dust mite (HDM) is a main perennial allergen causing allergic rhinitis (AR). It has been shown that HDM cross-reacts with a variety of other allergens. Presently, allergen-specific immunotherapy (AIT) is an effective way for management of mono-sensitized HDM+ AR patients. However, management approaches to polysensitized HDM-sensitized AR patients are not standardized yet. AREA COVERED This article reviews the data available in the literature for cross-reactivity between HDM and inhalant or food allergens, the diagnosis of cross-reactivity in HDM-sensitized AR patients, and the effect of immunotherapy on cross-reactivity in HDM-sensitized AR patients; which may help to develop effective therapeutic strategies for management of polysensitized HDM-sensitized AR patients in the future. EXPERT OPINION Pan-allergen proteins such as tropomyosin, arginine kinase (AK), glutathione S-transferase (GST), and hemocyanin are responsible for cross-reactivity between HDM and other allergens. To distinguish genuine or cross-reactive sensitization, molecular- or component-resolved diagnosis is suggested to apply in HDM-sensitized AR patients. The effect of HDM immunotherapy to treat the associated cross-reactivity in HDM-sensitized AR patients is still contradictory, and might be dependent on the degree of homology between two allergens. Furthermore, targeting tropomyosin might be a promising way to treat HDM patients with allergen cross-reactivity. ABBREVIATIONS AIT: allergen-specific immunotherapy; AK: arginine kinase; AR: allergic rhinitis; CRD: component-resolved diagnostics; Der f: Dermatophagoides farina; Der p: Dermatophagoides pteronyssinus; EAACI: European Academy of Allergy and Clinical Immunology; GST: glutathione S-transferase; GWAS: genome-wide association study; HDM: house dust mite; IgE: immunoglobulin E; RAST: radioallergosorbent test; sIgE: specific IgE; SIT: specific immunotherapy; SCIT: subcutaneous immunotherapy; SLIT: sublingual immunotherapy; SPT: skin prick test.
Collapse
Affiliation(s)
- Limin Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing, China
| | - Yuling Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing, China
| | - Shujian Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing, China
| | - Feng Lan
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing, China
| |
Collapse
|
12
|
Ma J, Zhou J, Chen L, Zhang H, Wang Y, Fu L. Effects of deglycosylation and the Maillard reaction on conformation and allergenicity of the egg ovomucoid. J Food Sci 2021; 86:3014-3022. [PMID: 34151424 DOI: 10.1111/1750-3841.15791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Ovomucoid (OVM), known as the major allergen in egg white, has gained increasing concerns in industrialized countries. Here, we found the deglycosylation and Maillard reaction with galactooligosaccharide (GOS) and fructooligosaccharide (FOS) can induce conformational transformation of OVM from other structures (β-turn, strang, and random coils) to α-helix. We also introduced an approach to reduce the allergenicity of Gallus domesticus OVM by Maillard reaction with GOS and FOS. However, the OVM glycated by mannosan (MOS) and deglycosylated OVM exhibited higher allergenicity than native OVM. Therefore, GOS and FOS, especially GOS, could be applied in the reduction of the potential allergenicity of OVM through glycation. Furthermore, these findings may provide new insights into the development of hypoallergenic egg products. PRACTICAL APPLICATION: In this study, the allergenicity and conformation of OVM treated with deglycosylation and glycation (GOS, FOS, and MOS) were investigated. The results would provide a better understanding of the effects of deglycosylation and Maillard reaction with different reducing sugars on the molecular characteristics of OVM and further provide new insights into the development of hypoallergenic egg products.
Collapse
Affiliation(s)
- Junjie Ma
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jinru Zhou
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Lerong Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Hong Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
13
|
Zhang Z, Li XM, Li Z, Lin H. Investigation of glycated shrimp tropomyosin as a hypoallergen for potential immunotherapy. Food Funct 2021; 12:2750-2759. [PMID: 33683237 DOI: 10.1039/d0fo03039b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tropomyosin (TM) is the most important allergen in shrimps that could cause food allergy. Glycation is reported to be effective in reducing TM allergenicity and produce hypoallergen; however, up to now, there are very few reports on the potential of hypoallergenic glycated TM (GTM) as allergen immunotherapy for shrimp TM-induced food allergy. This study investigated the glycation of TM-produced hypoallergen and the immunotherapeutic efficacy of GTM + Al(OH)3 as potential allergen immunotherapy. Compared to TM, the TM glycated by glucose (TM-G), maltotriose (TM-MTS), maltopentaose (TM-MPS) and maltoheptaose (TM-MHS) had weaker allergy activation on mast cells and mouse model as a hypoallergen. However, the TM glycated by maltose (TM-M) insignificantly affected the allergenicity. In addition, the GTM absorbed into Al(OH)3 could be efficacious as potential allergen immunotherapy, particularly for the TM glycated by the saccharides having larger molecular size (e.g., TM-MHS), which could provide preclinical data to develop GTM + Al(OH)3 as a candidate immunotherapy for shrimp allergic patients.
Collapse
Affiliation(s)
- Ziye Zhang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | | | | | | |
Collapse
|
14
|
Crosslinked Recombinant-Ara h 1 Catalyzed by Microbial Transglutaminase: Preparation, Structural Characterization and Allergic Assessment. Foods 2020; 9:foods9101508. [PMID: 33096617 PMCID: PMC7590132 DOI: 10.3390/foods9101508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 01/01/2023] Open
Abstract
As the one of the major allergens in peanut, the allergenicity of Ara h 1 is influenced by its intrinsic structure, which can be modified by different processing. However, molecular information in this modification has not been clarified to date. Here, we detected the influence of microbial transglutaminase (MTG) catalyzed cross-linking on the recombinant peanut protein Ara h 1 (rAra h 1). Electrophoresis and spectroscopic methods were used to analysis the structural changes. The immunoreactivity alterations were characterized by enzyme linked immunosorbent assay (ELISA), immunoblotting and degranulation test. Structural features of cross-linked rAra h 1 varied at different reaction stages. Hydrogen bonds and disulfide bonds were the main molecular forces in polymers induced by heating and reducing. In MTG-catalyzed cross-linking, ε-(γ-glutamyl) lysine isopeptide bonds were formed, thus inducing a relatively stable structure in polymers. MTG catalyzed cross-linking could modestly but significantly reduce the immunoreactivity of rAra h 1. Decreased content of conserved secondary structures led to a loss of protection of linear epitopes. Besides, the reduced surface hydrophobic index and increased steric hindrance of rAra h 1 made it more difficult to bind with antibodies, thus hindering the subsequent allergic reaction.
Collapse
|
15
|
Miwa N. Innovation in the food industry using microbial transglutaminase: Keys to success and future prospects. Anal Biochem 2020; 597:113638. [DOI: 10.1016/j.ab.2020.113638] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/08/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
|
16
|
Su H, Luo Y, Sun J, Liu X, Ling S, Xu B, Zhang Y, Liu J, Li W, Wang B, Yao X. Transglutaminase 3 Promotes Skin Inflammation in Atopic Dermatitis by Activating Monocyte-Derived Dendritic Cells via DC-SIGN. J Invest Dermatol 2020; 140:370-379.e8. [DOI: 10.1016/j.jid.2019.07.703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/01/2019] [Accepted: 07/12/2019] [Indexed: 01/15/2023]
|
17
|
Mostafa HS. Microbial transglutaminase: An overview of recent applications in food and packaging. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1720660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Heba Sayed Mostafa
- Faculty of Agriculture, Department of Food Science, University of Cairo, Giza, Egypt
| |
Collapse
|
18
|
Zhang Y, Simpson BK. Food-related transglutaminase obtained from fish/shellfish. Crit Rev Food Sci Nutr 2019; 60:3214-3232. [DOI: 10.1080/10408398.2019.1681357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yi Zhang
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, Québec, Canada
| | - Benjamin K. Simpson
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, Québec, Canada
| |
Collapse
|