1
|
Niu Z, Kozminsky M, Day KC, Broses LJ, Henderson ML, Patsalis C, Tagett R, Qin Z, Blumberg S, Reichert ZR, Merajver SD, Udager AM, Palmbos PL, Nagrath S, Day ML. Characterization of circulating tumor cells in patients with metastatic bladder cancer utilizing functionalized microfluidics. Neoplasia 2024; 57:101036. [PMID: 39173508 PMCID: PMC11387905 DOI: 10.1016/j.neo.2024.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 08/24/2024]
Abstract
Assessing the molecular profiles of bladder cancer (BC) from patients with locally advanced or metastatic disease provides valuable insights, such as identification of invasive markers, to guide personalized treatment. Currently, most molecular profiling of BC is based on highly invasive biopsy or transurethral tumor resection. Liquid biopsy takes advantage of less-invasive procedures to longitudinally profile disease. Circulating tumor cells (CTCs) isolated from blood are one of the key analytes of liquid biopsy. In this study, we developed a protein and mRNA co-analysis workflow for BC CTCs utilizing the graphene oxide (GO) microfluidic chip. The GO chip was conjugated with antibodies against both EpCAM and EGFR to isolate CTCs from 1 mL of blood drawn from BC patients. Following CTC capture, protein and mRNA were analyzed using immunofluorescent staining and ion-torrent-based whole transcriptome sequencing, respectively. Elevated CTC counts were significantly associated with patient disease status at the time of blood draw. We found a count greater than 2.5 CTCs per mL was associated with shorter overall survival. The invasive markers EGFR, HER2, CD31, and ADAM15 were detected in CTC subpopulations. Whole transcriptome sequencing showed distinct RNA expression profiles from patients with or without tumor burden at the time of blood draw. In patients with advanced metastatic disease, we found significant upregulation of metastasis-related and chemotherapy-resistant genes. This methodology demonstrates the capability of GO chip-based assays to identify tumor-related RNA signatures, highlighting the prognostic potential of CTCs in metastatic BC patients.
Collapse
Affiliation(s)
- Zeqi Niu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerface Institute, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Molly Kozminsky
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerface Institute, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathleen C Day
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Luke J Broses
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marian L Henderson
- Department of Internal Medicine, Hematology Oncology Division, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christopher Patsalis
- Department of Internal Medicine, Hematology Oncology Division, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rebecca Tagett
- Bioinformatics Core, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Zhaoping Qin
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah Blumberg
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zachery R Reichert
- Department of Internal Medicine, Hematology Oncology Division, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sofia D Merajver
- Department of Internal Medicine, Hematology Oncology Division, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aaron M Udager
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Phillip L Palmbos
- Department of Internal Medicine, Hematology Oncology Division, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerface Institute, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Mark L Day
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Ohannesian N, Mallick MS, He J, Qiao Y, Li N, Shaitelman SF, Tang C, Shinn EH, Hofstetter WL, Goltsov A, Hassan MM, Hunt KK, Lin SH, Shih WC. Plasmonic nano-aperture label-free imaging of single small extracellular vesicles for cancer detection. COMMUNICATIONS MEDICINE 2024; 4:100. [PMID: 38796532 PMCID: PMC11128000 DOI: 10.1038/s43856-024-00514-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 04/30/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Small extracellular vesicle (sEV) analysis can potentially improve cancer detection and diagnostics. However, this potential has been constrained by insufficient sensitivity, dynamic range, and the need for complex labeling. METHODS In this study, we demonstrate the combination of PANORAMA and fluorescence imaging for single sEV analysis. The co-acquisition of PANORAMA and fluorescence images enables label-free visualization, enumeration, size determination, and enables detection of cargo microRNAs (miRs). RESULTS An increased sEV count is observed in human plasma samples from patients with cancer, regardless of cancer type. The cargo miR-21 provides molecular specificity within the same sEV population at the single unit level, which pinpoints the sEVs subset of cancer origin. Using cancer cells-implanted animals, cancer-specific sEVs from 20 µl of plasma can be detected before tumors were palpable. The level plateaus between 5-15 absolute sEV count (ASC) per µl with tumors ≥8 mm3. In healthy human individuals (N = 106), the levels are on average 1.5 ASC/µl (+/- 0.95) without miR-21 expression. However, for stage I-III cancer patients (N = 205), nearly all (204 out of 205) have levels exceeding 3.5 ASC/µl with an average of 12.2 ASC/µl (±9.6), and a variable proportion of miR-21 labeling among different tumor types with 100% cancer specificity. Using a threshold of 3.5 ASC/µl to test a separate sample set in a blinded fashion yields accurate classification of healthy individuals from cancer patients. CONCLUSIONS Our techniques and findings can impact the understanding of cancer biology and the development of new cancer detection and diagnostic technologies.
Collapse
Affiliation(s)
- Nareg Ohannesian
- Department of Electrical and Computer Engineering, University of Houston, 4800 Martin Luther King Blvd., Houston, TX, 77204, USA
| | - Mohammad Sadman Mallick
- Department of Electrical and Computer Engineering, University of Houston, 4800 Martin Luther King Blvd., Houston, TX, 77204, USA
| | - Jianzhong He
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Yawei Qiao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Nan Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Simona F Shaitelman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Chad Tang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Eileen H Shinn
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Wayne L Hofstetter
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Alexei Goltsov
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Manal M Hassan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Wei-Chuan Shih
- Department of Electrical and Computer Engineering, University of Houston, 4800 Martin Luther King Blvd., Houston, TX, 77204, USA.
| |
Collapse
|
3
|
Relouw S, Dugbartey GJ, Sener A. Non-Invasive Imaging Modalities in Intravesical Murine Models of Bladder Cancer. Cancers (Basel) 2023; 15:cancers15082381. [PMID: 37190309 DOI: 10.3390/cancers15082381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Bladder cancer (BCa) is the sixth most prevalent cancer in men and seventeenth most prevalent cancer in women worldwide. Current treatment paradigms have limited therapeutic impact, suggesting an urgent need for the investigation of novel therapies. To best emulate the progression of human BCa, a pre-clinical intravesical murine model is required in conjunction with existing non-invasive imaging modalities to detect and evaluate cancer progression. Non-invasive imaging modalities reduce the number of required experimental models while allowing for longitudinal studies of novel therapies to investigate long-term efficacy. In this review, we discuss the individual and multi-modal use of non-invasive imaging modalities; bioluminescence imaging (BLI), micro-ultrasound imaging (MUI), magnetic resonance imaging (MRI), and positron emission tomography (PET) in BCa evaluation. We also provide an update on the potential and the future directions of imaging modalities in relation to intravesical murine models of BCa.
Collapse
Affiliation(s)
- Sydney Relouw
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - George J Dugbartey
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box LG 1181, Ghana
- Department of Surgery, Division of Urology, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Multi-Organ Transplant Program, London Health Sciences Center, London, ON N6A 5A5, Canada
| | - Alp Sener
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Department of Surgery, Division of Urology, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Multi-Organ Transplant Program, London Health Sciences Center, London, ON N6A 5A5, Canada
| |
Collapse
|
4
|
Chen L, Yu L, Liu Y, Xu H, Ma L, Tian P, Zhu J, Wang F, Yi K, Xiao H, Zhou F, Yang Y, Cheng Y, Bai L, Wang F, Zhu Y. Space-time-regulated imaging analyzer for smart coagulation diagnosis. Cell Rep Med 2022; 3:100765. [PMID: 36206751 PMCID: PMC9589004 DOI: 10.1016/j.xcrm.2022.100765] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/26/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022]
Abstract
The development of intelligent blood coagulation diagnoses is awaited to meet the current need for large clinical time-sensitive caseloads due to its efficient and automated diagnoses. Herein, a method is reported and validated to realize it through artificial intelligence (AI)-assisted optical clotting biophysics (OCB) properties identification. The image differential calculation is used for precise acquisition of OCB properties with elimination of initial differences, and the strategy of space-time regulation allows on-demand space time OCB properties identification and enables diverse blood function diagnoses. The integrated applications of smartphones and cloud computing offer a user-friendly automated analysis for accurate and convenient diagnoses. The prospective assays of clinical cases (n = 41) show that the system realizes 97.6%, 95.1%, and 100% accuracy for coagulation factors, fibrinogen function, and comprehensive blood coagulation diagnoses, respectively. This method should enable more low-cost and convenient diagnoses and provide a path for potential diagnostic-markers finding. An ultraportable optofluidic analyzer empowers convenient coagulation diagnoses The system enables optical clotting biophysics (OCB) properties acquisition and process Coagulation function diagnoses uses intelligent OCB properties identification Space-time regulation of OCB properties endow it capability to diverse diagnoses
Collapse
Affiliation(s)
- Longfei Chen
- Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China; Renmin Hospital, Wuhan University, Wuhan 430060, China; Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Le Yu
- Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China; Renmin Hospital, Wuhan University, Wuhan 430060, China; Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yantong Liu
- Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China; Renmin Hospital, Wuhan University, Wuhan 430060, China; Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Hongshan Xu
- Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
| | - Linlu Ma
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Pengfu Tian
- Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
| | - Jiaomeng Zhu
- Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
| | - Fang Wang
- Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
| | - Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Hui Xiao
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Yi Yang
- Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China; Renmin Hospital, Wuhan University, Wuhan 430060, China; Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China.
| | | | - Long Bai
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Yimin Zhu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| |
Collapse
|
5
|
Alyafei K, Ahmed R, Abir FF, Chowdhury MEH, Naji KK. A comprehensive review of COVID-19 detection techniques: From laboratory systems to wearable devices. Comput Biol Med 2022; 149:106070. [PMID: 36099862 PMCID: PMC9433350 DOI: 10.1016/j.compbiomed.2022.106070] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/03/2022] [Accepted: 08/27/2022] [Indexed: 11/30/2022]
Abstract
Screening of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among symptomatic and asymptomatic patients offers unique opportunities for curtailing the transmission of novel coronavirus disease 2019, commonly known as COVID-19. Molecular diagnostic techniques, namely reverse transcription loop-mediated isothermal amplification (RT-LAMP), reverse transcription-polymerase chain reaction (RT-PCR), and immunoassays, have been frequently used to identify COVID-19 infection. Although these techniques are robust and accurate, mass testing of potentially infected individuals has shown difficulty due to the resources, manpower, and costs it entails. Moreover, as these techniques are typically used to test symptomatic patients, healthcare systems have failed to screen asymptomatic patients, whereas the spread of COVID-19 by these asymptomatic individuals has turned into a crucial problem. Besides, respiratory infections or cardiovascular conditions generally demonstrate changes in physiological parameters, namely body temperature, blood pressure, and breathing rate, which signifies the onset of diseases. Such vitals monitoring systems have shown promising results employing artificial intelligence (AI). Therefore, the potential use of wearable devices for monitoring asymptomatic COVID-19 individuals has recently been explored. This work summarizes the efforts that have been made in the domains from laboratory-based testing to asymptomatic patient monitoring via wearable systems.
Collapse
Affiliation(s)
- Khalid Alyafei
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, 2713, Qatar
| | - Rashid Ahmed
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, 2713, Qatar; Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, 10250, AJK, Pakistan
| | - Farhan Fuad Abir
- Department of Electrical Engineering, Qatar University, Doha, 2713, Qatar
| | | | | |
Collapse
|
6
|
Chen L, Zheng Y, Liu Y, Tian P, Yu L, Bai L, Zhou F, Yang Y, Cheng Y, Wang F, Zheng L, Jiang F, Zhu Y. Microfluidic-based in vitro thrombosis model for studying microplastics toxicity. LAB ON A CHIP 2022; 22:1344-1353. [PMID: 35179168 DOI: 10.1039/d1lc00989c] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The potential impact of microplastics (MPs) on health has caused great concern, and a toxicology platform that realistically reproduces the system behaviour is urgently needed to further explore and validate MP-related health issues. Herein, we introduce an optically assisted thrombus platform to reveal the interaction of MPs with the vascular system. The risk of accumulation has also been evaluated using a mouse model, and the effect of MPs on the properties of the thrombus are validated via in vitro experiments. The microfluidic system is endothelialized, and the regional tissue injury-induced thrombosis is then realized through optical irradiation. Whole blood is perfused with MPs, and the invasion process visualized and recorded. The mouse model shows a cumulative risk in the blood with continuous exposure to MPs (P-value < 0.0001). The on-chip results show that MP invasion leads to decreased binding of fibrin to platelets (P-value < 0.0001), which is consistent with the results of the in vitro experiments, and shows a high risk of thrombus shedding in real blood flow compared with normal thrombus. This work provides a new method to further reveal MP-related health risks.
Collapse
Affiliation(s)
- Longfei Chen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Yantong Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Pengfu Tian
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China.
| | - Le Yu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China.
| | - Long Bai
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Yi Yang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Li Zheng
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Fenghua Jiang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Yimin Zhu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| |
Collapse
|
7
|
Wu W, Tan X, Zupancic J, Schardt JS, Desai AA, Smith MD, Zhang J, Xie L, Oo MK, Tessier PM, Fan X. Rapid and Quantitative In Vitro Evaluation of SARS-CoV-2 Neutralizing Antibodies and Nanobodies. Anal Chem 2022; 94:4504-4512. [PMID: 35238533 PMCID: PMC9356539 DOI: 10.1021/acs.analchem.2c00062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neutralizing monoclonal antibodies and nanobodies have shown promising results as potential therapeutic agents for COVID-19. Identifying such antibodies and nanobodies requires evaluating the neutralization activity of a large number of lead molecules via biological assays, such as the virus neutralization test (VNT). These assays are typically time-consuming and demanding on-lab facilities. Here, we present a rapid and quantitative assay that evaluates the neutralizing efficacy of an antibody or nanobody within 1.5 h, does not require BSL-2 facilities, and consumes only 8 μL of a low concentration (ng/mL) sample for each assay run. We tested the human angiotensin-converting enzyme 2 (ACE2) binding inhibition efficacy of seven antibodies and eight nanobodies and verified that the IC50 values of our assay are comparable with those from SARS-CoV-2 pseudovirus neutralization tests. We also found that our assay could evaluate the neutralizing efficacy against three widespread SARS-CoV-2 variants. We observed increased affinity of these variants for ACE2, including the β and γ variants. Finally, we demonstrated that our assay enables the rapid identification of an immune-evasive mutation of the SARS-CoV-2 spike protein, utilizing a set of nanobodies with known binding epitopes.
Collapse
Affiliation(s)
- Weishu Wu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xiaotian Tan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer Zupancic
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John S Schardt
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alec A Desai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Matthew D Smith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jie Zhang
- Beijing Key Laboratory of Monoclonal Antibody Research and Development, Sino Biological Inc., Beijing 100176, China
| | - Liangzhi Xie
- Beijing Key Laboratory of Monoclonal Antibody Research and Development, Sino Biological Inc., Beijing 100176, China.,Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China
| | - Maung Khaing Oo
- Optofluidic Bioassay, LLC, Ann Arbor, Michigan 48103, United States
| | - Peter M Tessier
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Peng P, Liu C, Li Z, Xue Z, Mao P, Hu J, Xu F, Yao C, You M. Emerging ELISA Derived Technologies for in vitro Diagnostics. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
He X, Ma Y, Xie H, Rao G, Yang Z, Zhang J, Feng Z. Biomimetic Nanostructure Platform for Cancer Diagnosis Based on Tumor Biomarkers. Front Bioeng Biotechnol 2021; 9:687664. [PMID: 34336803 PMCID: PMC8320534 DOI: 10.3389/fbioe.2021.687664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Biomarker discovery and its clinical use have attracted considerable attention since early cancer diagnosis can significantly decrease mortality. Cancer biomarkers include a wide range of biomolecules, such as nucleic acids, proteins, metabolites, sugars, and cytogenetic substances present in human biofluids. Except for free-circulating biomarkers, tumor-extracellular vesicles (tEVs) and circulating tumor cells (CTCs) can serve as biomarkers for the diagnosis and prognosis of various cancers. Considering the potential of tumor biomarkers in clinical settings, several bioinspired detection systems based on nanotechnologies are in the spotlight for detection. However, tremendous challenges remain in detection because of massive contamination, unstable signal-to-noise ratios due to heterogeneity, nonspecific bindings, or a lack of efficient amplification. To date, many approaches are under development to improve the sensitivity and specificity of tumor biomarker isolation and detection. Particularly, the exploration of natural materials in biological frames has encouraged researchers to develop new bioinspired and biomimetic nanostructures, which can mimic the natural processes to facilitate biomarker capture and detection in clinical settings. These platforms have substantial influence in biomedical applications, owing to their capture ability, significant contrast increase, high sensitivity, and specificity. In this review, we first describe the potential of tumor biomarkers in a liquid biopsy and then provide an overview of the progress of biomimetic nanostructure platforms to isolate and detect tumor biomarkers, including in vitro and in vivo studies. Capture efficiency, scale, amplification, sensitivity, and specificity are the criteria that will be further discussed for evaluating the capability of platforms. Bioinspired and biomimetic systems appear to have a bright future to settle obstacles encountered in tumor biomarker detection, thus enhancing effective cancer diagnosis.
Collapse
Affiliation(s)
- Xiping He
- Department of Rehabilitation Medicine, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Haotian Xie
- Department of Mathematics, The Ohio State University, Columbus, OH, United States
| | - Gaofeng Rao
- Department of Rehabilitation Medicine, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jingjing Zhang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Zhong Feng
- Department of Neurology, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| |
Collapse
|
10
|
Song Q, Sun X, Dai Z, Gao Y, Gong X, Zhou B, Wu J, Wen W. Point-of-care testing detection methods for COVID-19. LAB ON A CHIP 2021; 21:1634-1660. [PMID: 33705507 DOI: 10.1039/d0lc01156h] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
COVID-19 is an acute respiratory disease caused by SARS-CoV-2, which has high transmissibility. People infected with SARS-CoV-2 can develop symptoms including cough, fever, pneumonia and other complications, which in severe cases could lead to death. In addition, a proportion of people infected with SARS-CoV-2 may be asymptomatic. At present, the primary diagnostic method for COVID-19 is reverse transcription-polymerase chain reaction (RT-PCR), which tests patient samples including nasopharyngeal swabs, sputum and other lower respiratory tract secretions. Other detection methods, e.g., isothermal nucleic acid amplification, CRISPR, immunochromatography, enzyme-linked immunosorbent assay (ELISA) and electrochemical sensors are also in use. As the current testing methods are mostly performed at central hospitals and third-party testing centres, the testing systems used mostly employ large, high-throughput, automated equipment. Given the current situation of the epidemic, point-of-care testing (POCT) is advantageous in terms of its ease of use, greater approachability on the user's end, more timely detection, and comparable accuracy and sensitivity, which could reduce the testing load on central hospitals. POCT is thus conducive to daily epidemic control and achieving early detection and treatment. This paper summarises the latest research advances in POCT-based SARS-CoV-2 detection methods, compares three categories of commercially available products, i.e., nucleic acid tests, immunoassays and novel sensors, and proposes the expectations for the development of POCT-based SARS-CoV-2 detection including greater accessibility, higher sensitivity and lower costs.
Collapse
Affiliation(s)
- Qi Song
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. and Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, Guangdong, China
| | - Xindi Sun
- Materials Genome Institute, Shanghai University, Shanghai, China.
| | - Ziyi Dai
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China.
| | - Yibo Gao
- Shenzhen Shineway Technology Corporation, Shenzhen, Guangdong, China
| | - Xiuqing Gong
- Materials Genome Institute, Shanghai University, Shanghai, China.
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China.
| | - Jinbo Wu
- Materials Genome Institute, Shanghai University, Shanghai, China.
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
11
|
He Z, Huffman J, Curtin K, Garner KL, Bowdridge EC, Li X, Nurkiewicz TR, Li P. Composable Microfluidic Plates (cPlate): A Simple and Scalable Fluid Manipulation System for Multiplexed Enzyme-Linked Immunosorbent Assay (ELISA). Anal Chem 2021; 93:1489-1497. [PMID: 33326204 DOI: 10.1021/acs.analchem.0c03651] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Enzyme-linked immunosorbent assay (ELISA) is the gold standard method for protein biomarkers. However, scaling up ELISA for multiplexed biomarker analysis is not a trivial task due to the lengthy procedures for fluid manipulation and high reagent/sample consumption. Herein, we present a highly scalable multiplexed ELISA that achieves a similar level of performance to commercial single-target ELISA kits as well as shorter assay time, less consumption, and simpler procedures. This ELISA is enabled by a novel microscale fluid manipulation method, composable microfluidic plates (cPlate), which are comprised of miniaturized 96-well plates and their corresponding channel plates. By assembling and disassembling the plates, all of the fluid manipulations for 96 independent ELISA reactions can be achieved simultaneously without any external fluid manipulation equipment. Simultaneous quantification of four protein biomarkers in serum samples is demonstrated with the cPlate system, achieving high sensitivity and specificity (∼ pg/mL), short assay time (∼1 h), low consumption (∼5 μL/well), high scalability, and ease of use. This platform is further applied to probe the levels of three protein biomarkers related to vascular dysfunction under pulmonary nanoparticle exposure in rat's plasma. Because of the low cost, portability, and instrument-free nature of the cPlate system, it will have great potential for multiplexed point-of-care testing in resource-limited regions.
Collapse
Affiliation(s)
- Ziyi He
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Justin Huffman
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Kathrine Curtin
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Krista L Garner
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia 26506, United States.,Center for Inhalation Toxicology, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Elizabeth C Bowdridge
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia 26506, United States.,Center for Inhalation Toxicology, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Xiaojun Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia 26506, United States.,Center for Inhalation Toxicology, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
12
|
Tan X, Krel M, Dolgov E, Park S, Li X, Wu W, Sun YL, Zhang J, Khaing Oo MK, Perlin DS, Fan X. Rapid and quantitative detection of SARS-CoV-2 specific IgG for convalescent serum evaluation. Biosens Bioelectron 2020; 169:112572. [PMID: 32916610 PMCID: PMC7468592 DOI: 10.1016/j.bios.2020.112572] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022]
Abstract
Convalescent serum with a high abundance of neutralization IgG is a promising therapeutic agent for rescuing COVID-19 patients in the critical stage. Knowing the concentration of SARS-CoV-2 S1-specific IgG is crucial in selecting appropriate convalescent serum donors. Here, we present a portable microfluidic ELISA technology for rapid (15 min), quantitative, and sensitive detection of anti-SARS-CoV-2 S1 IgG in human serum with only 8 μL sample volume. We first identified a humanized monoclonal IgG that has a high binding affinity and a relatively high specificity towards SARS-CoV-2 S1 protein, which can subsequently serve as the calibration standard of anti-SARS-CoV-2 S1 IgG in serological analyses. We then measured the abundance of anti-SARS-CoV-2 S1 IgG in 16 convalescent COVID-19 patients. Due to the availability of the calibration standard and the large dynamic range of our assay, we were able to identify "qualified donors" for convalescent serum therapy with only one fixed dilution factor (200 ×). Finally, we demonstrated that our technology can sensitively detect SARS-CoV-2 antigens (S1 and N proteins) with pg/mL level sensitivities in 40 min. Overall, our technology can greatly facilitate rapid, sensitive, and quantitative analysis of COVID-19 related markers for therapeutic, diagnostic, epidemiologic, and prognostic purposes.
Collapse
Affiliation(s)
- Xiaotian Tan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mila Krel
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Enriko Dolgov
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Steven Park
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Xuzhou Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Weishu Wu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yun-Lu Sun
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jie Zhang
- Sino Biological Inc, Beijing, 100176, China; Beijing Key Laboratory of Monoclonal Antibody Research and Development, Beijing, 100176, China
| | | | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA.
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|