1
|
Alotaibi BM, Chen X, Alharbi TMD, Heydari A, Raston CL. Free-Standing Nanocomposite Au@Graphene Oxide Continuous Flow Synthesis in Water for Degradation of Organic Dyes. Chemistry 2025; 31:e202403207. [PMID: 39593269 DOI: 10.1002/chem.202403207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Indexed: 11/28/2024]
Abstract
We have developed a rapid and facile method for preparing free-standing nanocomposite of gold nanoparticles with graphene oxide (Au@GO) in water under continuous flow in the absence of harsh reducing agents and any other auxiliary substances, as a method with favourable green chemistry metrics. This uses a vortex fluidic device (VFD) where induced mechanical energy and photo-contact electrification associated with the dynamic thin film in the rapidly rotating tube tilted at 45° while simultaneously UV irradiated (λ=254 nm, 20 W) results in decomposition of water to hydrogen and hydrogen peroxide with growth of the gold nanoparticles on the surface of the GO. We have established that the resulting Au@GO composite sheets rapidly catalyse the degradation of commercial dyes like methyl orange (MO) and methylene blue (MB) using the hydrogen peroxide generated in situ in the VFD. This process relies on active radicals generated through liquid-solid photo-contact electrification of water in the VFD which dramatically minimises the generation of waste in industrial applications, with the reaction having implications for wastewater treatment.
Collapse
Affiliation(s)
- Badriah M Alotaibi
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Xianjue Chen
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Thaar M D Alharbi
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
- Physics Department, Faculty of Science, Taibah University, Almadinah Almunawarrah, Saudi Arabia
| | - Amir Heydari
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
- Chemical Engineering Department, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
2
|
Gardner Z, Rahpeima S, Sun Q, Zou J, Darwish N, Vimalanathan K, Raston CL. High Shear Thin Film Synthesis of Partially Oxidized Gallium and Indium Composite 2D Sheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300577. [PMID: 37010011 DOI: 10.1002/smll.202300577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Reducing resistance in silicon-based devices is important as they get miniaturized further. 2D materials offer an opportunity to increase conductivity whilst reducing size. A scalable, environmentally benign method is developed for preparing partially oxidized gallium/indium sheets down to 10 nm thick from a eutectic melt of the two metals. Exfoliation of the planar/corrugated oxide skin of the melt is achieved using the vortex fluidic device with a variation in composition across the sheets determined using Auger spectroscopy. From an application perspective, the oxidized gallium indium sheets reduce the contact resistance between metals such as platinum and silicon (Si) as a semiconductor. Current‒voltage measurements between a platinum atomic force microscopy tip and a Si-H substrate show that the current switches from being a rectifier to a highly conducting ohmic contact. These characteristics offer new opportunities for controlling Si surface properties at the nanoscale and enable the integration of new materials with Si platforms.
Collapse
Affiliation(s)
- Zoe Gardner
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Soraya Rahpeima
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Qiang Sun
- School of Mechanical and Mining Engineering and Centre for Microscopy and Microanalysis, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jin Zou
- School of Mechanical and Mining Engineering and Centre for Microscopy and Microanalysis, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Kasturi Vimalanathan
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| |
Collapse
|
3
|
Alharbi TMD. Recent progress on vortex fluidic synthesis of carbon nanomaterials. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2023.2172954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Thaar M. D. Alharbi
- School of Science, Taibah University, Medina, Saudi Arabia
- Nanotechnology Centre, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
4
|
Yu S, Wang P, Ye H, Tang H, Wang S, Wu Z, Pei C, Lu J, Li H. Transition Metal Dichalcogenides Nanoscrolls: Preparation and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2433. [PMID: 37686941 PMCID: PMC10490124 DOI: 10.3390/nano13172433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) nanosheets have shown extensive applications due to their excellent physical and chemical properties. However, the low light absorption efficiency limits their application in optoelectronics. By rolling up 2D TMDCs nanosheets, the one-dimensional (1D) TMDCs nanoscrolls are formed with spiral tubular structure, tunable interlayer spacing, and opening ends. Due to the increased thickness of the scroll structure, the light absorption is enhanced. Meanwhile, the rapid electron transportation is confined along the 1D structure. Therefore, the TMDCs nanoscrolls show improved optoelectronic performance compared to 2D nanosheets. In addition, the high specific surface area and active edge site from the bending strain of the basal plane make them promising materials for catalytic reaction. Thus, the TMDCs nanoscrolls have attracted intensive attention in recent years. In this review, the structure of TMDCs nanoscrolls is first demonstrated and followed by various preparation methods of the TMDCs nanoscrolls. Afterwards, the applications of TMDCs nanoscrolls in the fields of photodetection, hydrogen evolution reaction, and gas sensing are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hai Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
Vimalanathan K, Zhang Z, Zou J, Raston CL. Vortex fluidic high shear induced crystallisation of fullerene C 70 into nanotubules. Chem Commun (Camb) 2023. [PMID: 37469308 DOI: 10.1039/d3cc02464d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Hollow C70 nanotubules are formed under high shear within the thin film of a vortex fluidic device (VFD) without the need for using auxiliary reagents, high temperatures and pressures, and/or requiring downstream processing. This novel bottom-up crystallisation process involves intense micro mixing of two liquids (toluene solution of C70 and anti-solvent, isopropyl alcohol) within a thin film in the VFD to precisely control the hierarchical assembly of C70 molecules into hollow nanotubules. The mechanism of self-assembly was consistent with them being a mould of the high shear double helical topological flow from Faraday waves coupled with Coriolis forces generated within the thin film.
Collapse
Affiliation(s)
- Kasturi Vimalanathan
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia.
| | - Zhi Zhang
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
- Materials Engineering, The University of Queensland, St Lucia, QLD, Australia
| | - Jin Zou
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
- Materials Engineering, The University of Queensland, St Lucia, QLD, Australia
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia.
| |
Collapse
|
6
|
Vimalanathan K, Scott J, Pan X, Luo X, Rahpeima S, Sun Q, Zou J, Bansal N, Prabawati E, Zhang W, Darwish N, Andersson MR, Li Q, Raston CL. Continuous flow fabrication of green graphene oxide in aqueous hydrogen peroxide. NANOSCALE ADVANCES 2022; 4:3121-3130. [PMID: 36132816 PMCID: PMC9419056 DOI: 10.1039/d2na00310d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 06/16/2023]
Abstract
Highly processible graphene oxide (GO) has a diversity of applications as a material readily dispersed in aqueous media. However, methods for preparing such free-standing GO use hazardous and toxic reagents and generate significant waste streams. This is an impediment for uptake of GO in any application, for developing sustainable technologies and industries, and overcoming this remains a major challenge. We have developed a robust scalable continuous flow method for fabricating GO directly from graphite in 30% aqueous hydrogen peroxide which dramatically minimises the generation of waste. The process features the continuous flow thin film microfluidic vortex fluidic device (VFD), operating at specific conditions while irradiated sequentially by UV LED than a NIR pulsed laser. The resulting 'green' graphene oxide (gGO) has unique properties, possessing highly oxidized edges with large intact sp2 domains which gives rise to exceptional electrical and optical properties, including purple to deep blue emission of narrow full width at half maximum (<35 nm). Colloidally stable gGO exhibits cytotoxicity owing to the oxidised surface groups while solid-state films of gGO are biocompatible. The continuous flow method of generating gGO also provides unprecedented control of the level of oxidation and its location in the exfoliated graphene sheets by harnessing the high shear topological fluid flows in the liquid, and varying the wavelength, power and pulse frequency of the light source.
Collapse
Affiliation(s)
- Kasturi Vimalanathan
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - James Scott
- Environmental Engineering and Queensland Micro and Nanotechnology Centre, Griffith University Brisbane QLD 4111 Australia
| | - Xun Pan
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - Xuan Luo
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University Adelaide SA 5042 Australia
| | - Soraya Rahpeima
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
- School of Molecular and Life Sciences, Curtin Institute for Functional Molecule and Interfaces, Curtin University Bentley Western Australia 6102 Australia
| | - Qiang Sun
- Centre for Microscopy and Microanalysis, The University of Queensland Brisbane QLD 4072 Australia
- Materials Engineering, The University of Queensland St Lucia QLD 4072 Australia
| | - Jin Zou
- Centre for Microscopy and Microanalysis, The University of Queensland Brisbane QLD 4072 Australia
- Materials Engineering, The University of Queensland St Lucia QLD 4072 Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland St Lucia QLD Australia
| | - Elisabeth Prabawati
- School of Agriculture and Food Sciences, The University of Queensland St Lucia QLD Australia
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University Adelaide SA 5042 Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin Institute for Functional Molecule and Interfaces, Curtin University Bentley Western Australia 6102 Australia
| | - Mats R Andersson
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - Qin Li
- Environmental Engineering and Queensland Micro and Nanotechnology Centre, Griffith University Brisbane QLD 4111 Australia
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| |
Collapse
|
7
|
Jellicoe M, Igder A, Chuah C, Jones DB, Luo X, Stubbs KA, Crawley EM, Pye SJ, Joseph N, Vimalananthan K, Gardner Z, Harvey DP, Chen X, Salvemini F, He S, Zhang W, Chalker JM, Quinton JS, Tang Y, Raston CL. Vortex fluidic induced mass transfer across immiscible phases. Chem Sci 2022; 13:3375-3385. [PMID: 35432865 PMCID: PMC8943860 DOI: 10.1039/d1sc05829k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/30/2022] [Indexed: 12/03/2022] Open
Abstract
Mixing immiscible liquids typically requires the use of auxiliary substances including phase transfer catalysts, microgels, surfactants, complex polymers and nano-particles and/or micromixers. Centrifugally separated immiscible liquids of different densities in a 45° tilted rotating tube offer scope for avoiding their use. Micron to submicron size topological flow regimes in the thin films induce high inter-phase mass transfer depending on the nature of the two liquids. A hemispherical base tube creates a Coriolis force as a 'spinning top' (ST) topological fluid flow in the less dense liquid which penetrates the denser layer of liquid, delivering liquid from the upper layer through the lower layer to the surface of the tube with the thickness of the layers determined using neutron imaging. Similarly, double helical (DH) topological flow in the less dense liquid, arising from Faraday wave eddy currents twisted by Coriolis forces, impact through the less dense liquid onto the surface of the tube. The lateral dimensions of these topological flows have been determined using 'molecular drilling' impacting on a thin layer of polysulfone on the surface of the tube and self-assembly of nanoparticles at the interface of the two liquids. At high rotation speeds, DH flow also occurs in the denser layer, with a critical rotational speed reached resulting in rapid phase demixing of preformed emulsions of two immiscible liquids. ST flow is perturbed relative to double helical flow by changing the shape of the base of the tube while maintaining high mass transfer between phases as demonstrated by circumventing the need for phase transfer catalysts. The findings presented here have implications for overcoming mass transfer limitations at interfaces of liquids, and provide new methods for extractions and separation science, and avoiding the formation of emulsions.
Collapse
Affiliation(s)
- Matt Jellicoe
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Aghil Igder
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Clarence Chuah
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Darryl B Jones
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Xuan Luo
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
| | - Emily M Crawley
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Scott J Pye
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Nikita Joseph
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Kasturi Vimalananthan
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Zoe Gardner
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - David P Harvey
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Xianjue Chen
- School of Environmental and Life Sciences, The University of Newcastle Callaghan New South Wales 2308 Australia
| | - Filomena Salvemini
- Australian Nuclear Science and Technology Organization New Illawara Road, Lucas Heights NSW Australia
| | - Shan He
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
- Department of Food Science and Engineering, School of Chemistry Chemical Engineering, Guangzhou University Guangzhou 510006 China
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University Adelaide SA 5042 Australia
| | - Justin M Chalker
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Jamie S Quinton
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
- Flinders Microscopy and Microanalysis (FMMA), College of Science and Engineering, Flinders University GPO Box 2100 Adelaide South Australia 5001 Australia
| | - Youhong Tang
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| |
Collapse
|
8
|
Crawley EM, Pye S, Forbes BE, Raston CL. Vortex Fluidic Mediated Oxidative Sulfitolysis of Oxytocin. Molecules 2022; 27:1109. [PMID: 35164375 PMCID: PMC8840205 DOI: 10.3390/molecules27031109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
In peptide production, oxidative sulfitolysis can be used to protect the cysteine residues during purification, and the introduction of a negative charge aids solubility. Subsequent controlled reduction aids in ensuring correct disulfide bridging. In vivo, these problems are overcome through interaction with chaperones. Here, a versatile peptide production process has been developed using an angled vortex fluidic device (VFD), which expands the viable pH range of oxidative sulfitolysis from pH 10.5 under batch conditions, to full conversion within 20 min at pH 9-10.5 utilising the VFD. VFD processing gave 10-fold greater conversion than using traditional batch processing, which has potential in many applications of the sulfitolysis reaction.
Collapse
Affiliation(s)
- Emily M. Crawley
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia; (E.M.C.); (S.P.)
| | - Scott Pye
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia; (E.M.C.); (S.P.)
| | - Briony E. Forbes
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia;
| | - Colin L. Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia; (E.M.C.); (S.P.)
| |
Collapse
|
9
|
Tavakoli J, Shrestha J, Bazaz SR, Rad MA, Warkiani ME, Raston CL, Tipper JL, Tang Y. Developing Novel Fabrication and Optimisation Strategies on Aggregation-Induced Emission Nanoprobe/Polyvinyl Alcohol Hydrogels for Bio-Applications. Molecules 2022; 27:1002. [PMID: 35164268 PMCID: PMC8840180 DOI: 10.3390/molecules27031002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
The current study describes a new technology, effective for readily preparing a fluorescent (FL) nanoprobe-based on hyperbranched polymer (HB) and aggregation-induced emission (AIE) fluorogen with high brightness to ultimately develop FL hydrogels. We prepared the AIE nanoprobe using a microfluidic platform to mix hyperbranched polymers (HB, generations 2, 3, and 4) with AIE (TPE-2BA) under shear stress and different rotation speeds (0-5 K RPM) and explored the FL properties of the AIE nanoprobe. Our results reveal that the use of HB generation 4 exhibits 30-times higher FL intensity compared to the AIE alone and is significantly brighter and more stable compared to those that are prepared using HB generations 3 and 2. In contrast to traditional methods, which are expensive and time-consuming and involve polymerization and post-functionalization to develop FL hyperbranched molecules, our proposed method offers a one-step method to prepare an AIE-HB nanoprobe with excellent FL characteristics. We employed the nanoprobe to fabricate fluorescent injectable bioadhesive gel and a hydrogel microchip based on polyvinyl alcohol (PVA). The addition of borax (50 mM) to the PVA + AIE nanoprobe results in the development of an injectable bioadhesive fluorescent gel with the ability to control AIEgen release for 300 min. When borax concentration increases two times (100 mM), the adhesion stress is more than two times bigger (7.1 mN/mm2) compared to that of gel alone (3.4 mN/mm2). Excellent dimensional stability and cell viability of the fluorescent microchip, along with its enhanced mechanical properties, proposes its potential applications in mechanobiology and understanding the impact of microstructure in cell studies.
Collapse
Affiliation(s)
- Javad Tavakoli
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Jesus Shrestha
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Sajad R. Bazaz
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Maryam A. Rad
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Majid E. Warkiani
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Colin L. Raston
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia;
| | - Joanne L. Tipper
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Youhong Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia;
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
10
|
Tuten BT, Bui AH, Wiedbrauk S, Truong VX, Raston CL, Barner-Kowollik C. Four component Passerini polymerization of bulky monomers under high shear flow. Chem Commun (Camb) 2021; 57:8328-8331. [PMID: 34323263 DOI: 10.1039/d1cc02984c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We introduce a four component Passerini polymerization utilizing sterically bulky isocyanide monomers. Under typical Passerini conditions, bulky isocyanides do not react within standard Passerini reaction timescales (hours). We overcome this challenge via the unique physiochemical conditions present in a vortex fluidic device, reducing the reaction time to 2 h on average. Under these high-shear thin-film conditions, bulky isocyanides are readily incorporated into the multicomponent polymerization without the need of high-pressure or temperature. Finally, we demonstrate that the four component approach using functional cyclic anhydrides allows for post-polymerization modification.
Collapse
Affiliation(s)
- Bryan T Tuten
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.
| | | | | | | | | | | |
Collapse
|
11
|
Alharbi TMD, Jellicoe M, Luo X, Vimalanathan K, Alsulami IK, Al Harbi BS, Igder A, Alrashaidi FAJ, Chen X, Stubbs KA, Chalker JM, Zhang W, Boulos RA, Jones DB, Quinton JS, Raston CL. Sub-micron moulding topological mass transport regimes in angled vortex fluidic flow. NANOSCALE ADVANCES 2021; 3:3064-3075. [PMID: 36133664 PMCID: PMC9419266 DOI: 10.1039/d1na00195g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/26/2021] [Indexed: 05/16/2023]
Abstract
Shear stress in dynamic thin films, as in vortex fluidics, can be harnessed for generating non-equilibrium conditions, but the nature of the fluid flow is not understood. A rapidly rotating inclined tube in the vortex fluidic device (VFD) imparts shear stress (mechanical energy) into a thin film of liquid, depending on the physical characteristics of the liquid and rotational speed, ω, tilt angle, θ, and diameter of the tube. Through understanding that the fluid exhibits resonance behaviours from the confining boundaries of the glass surface and the meniscus that determines the liquid film thickness, we have established specific topological mass transport regimes. These topologies have been established through materials processing, as spinning top flow normal to the surface of the tube, double-helical flow across the thin film, and spicular flow, a transitional region where both effects contribute. The manifestation of mass transport patterns within the film have been observed by monitoring the mixing time, temperature profile, and film thickness against increasing rotational speed, ω. In addition, these flow patterns have unique signatures that enable the morphology of nanomaterials processed in the VFD to be predicted, for example in reversible scrolling and crumbling graphene oxide sheets. Shear-stress induced recrystallisation, crystallisation and polymerisation, at different rotational speeds, provide moulds of high-shear topologies, as 'positive' and 'negative' spicular flow behaviour. 'Molecular drilling' of holes in a thin film of polysulfone demonstrate spatial arrangement of double-helices. The grand sum of the different behavioural regimes is a general fluid flow model that accounts for all processing in the VFD at an optimal tilt angle of 45°, and provides a new concept in the fabrication of novel nanomaterials and controlling the organisation of matter.
Collapse
Affiliation(s)
- Thaar M D Alharbi
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
- Physics Department, Faculty of Science, Taibah University Almadinah Almunawarrah 42353 Saudi Arabia
| | - Matt Jellicoe
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Xuan Luo
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University Adelaide SA 5042 Australia
| | - Kasturi Vimalanathan
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Ibrahim K Alsulami
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Bediea S Al Harbi
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Aghil Igder
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
- School of Engineering, Edith Cowan University Joondalup Perth WA 6027 Australia
| | - Fayed A J Alrashaidi
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
- Department of Chemistry, College of Science, AlJouf University Sakaka 72388 Saudi Arabia
| | - Xianjue Chen
- School of Chemistry, University of New South Wales Sydney NSW 2052 Australia
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia 35 Stirling Hwy Crawley WA 6009 Australia
| | - Justin M Chalker
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University Adelaide SA 5042 Australia
| | - Ramiz A Boulos
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
- BrightChem Consulting Suite 16, 45 Delawney Street Balcatta WA 6021 Australia
| | - Darryl B Jones
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Jamie S Quinton
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| |
Collapse
|
12
|
Mohammed Al-antaki AH, Kellici S, Power NP, Lawrance WD, Raston CL. Continuous flow vortex fluidic-mediated exfoliation and fragmentation of two-dimensional MXene. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192255. [PMID: 32537213 PMCID: PMC7277261 DOI: 10.1098/rsos.192255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/30/2020] [Indexed: 05/06/2023]
Abstract
MXene (Ti2CT x ) is exfoliated in a vortex fluidic device (VFD), as a thin film microfluidic platform, under continuous flow conditions, down to ca 3 nm thin multi-layered two-dimensional (2D) material, as determined using AFM. The optimized process, under an inert atmosphere of nitrogen to avoid oxidation of the material, was established by systematically exploring the operating parameters of the VFD, along with the concentration of the dispersed starting material and the choice of solvent, which was a 1 : 1 mixture of isopropyl alcohol and water. There is also some fragmentation of the 2D material into nanoparticles ca 68 nm in diameter.
Collapse
Affiliation(s)
- Ahmed Hussein Mohammed Al-antaki
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
- Department of Chemistry, Faculty of Sciences, University of Kufa, Kufa, Najaf, Iraq
| | - Suela Kellici
- School of Engineering, London South Bank University, 103 Borough Road, London SE1 0AA, UK
| | - Nicholas P. Power
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Warren D. Lawrance
- College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Colin L. Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
- Author for correspondence: Colin L. Raston e-mail:
| |
Collapse
|