1
|
Yan W, Lu Y, Gao T, Wang J, Tang X, Wang N. Molecular Dynamics Simulation on Solidification Microstructure and Tensile Properties of Cu/SiC Composites. Molecules 2024; 29:2230. [PMID: 38792092 PMCID: PMC11123677 DOI: 10.3390/molecules29102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
The shape of ceramic particles is one of the factors affecting the properties of metal matrix composites. Exploring the mechanism of ceramic particles affecting the cooling mechanical behavior and microstructure of composites provides a simulation basis for the design of high-performance composites. In this study, molecular dynamics methods are used for investigating the microstructure evolution mechanism in Cu/SiC composites containing SiC particles of different shapes during the rapid solidification process and evaluating the mechanical properties after cooling. The results show that the spherical SiC composites demonstrate the highest degree of local ordering after cooling. The more ordered the formation is of face-centered-cubic and hexagonal-close-packed structures, the better the crystallization is of the final composite and the less the number of stacking faults. Finally, the results of uniaxial tensile in three different directions after solidification showed that the composite containing spherical SiC particles demonstrated the best mechanical properties. The findings of this study provide a reference for understanding the preparation of Cu/SiC composites with different shapes of SiC particles as well as their microstructure and mechanical properties and provide a new idea for the experimental and theoretical research of Cu/SiC metal matrix composites.
Collapse
Affiliation(s)
- Wanjun Yan
- College of Electronics and Information Engineering, Anshun University, Anshun 561000, China; (W.Y.); (Y.L.); (J.W.)
| | - Yuhang Lu
- College of Electronics and Information Engineering, Anshun University, Anshun 561000, China; (W.Y.); (Y.L.); (J.W.)
- Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China; (X.T.); (N.W.)
| | - Tinghong Gao
- Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China; (X.T.); (N.W.)
| | - Junjie Wang
- College of Electronics and Information Engineering, Anshun University, Anshun 561000, China; (W.Y.); (Y.L.); (J.W.)
- Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China; (X.T.); (N.W.)
| | - Xin Tang
- Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China; (X.T.); (N.W.)
| | - Nan Wang
- Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China; (X.T.); (N.W.)
| |
Collapse
|
2
|
Kim D, Lee J, Kim G, Ma J, Kim HM, Han JH, Jeong HH. Proton-Assisted Assembly of Colloidal Nanoparticles into Wafer-Scale Monolayers in Seconds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313299. [PMID: 38267396 DOI: 10.1002/adma.202313299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Underwater adhesion processes in nature promise controllable assembly of functional nanoparticles for industrial mass production; However, their artificial strategies have faced challenges to uniformly transfer nanoparticles into a monolayer, particularly those below 100 nm in size, over large areas. Here a scalable "one-shot" self-limiting nanoparticle transfer technique is presented, enabling the efficient transport of nanoparticles from water in microscopic volumes to an entire 2-inch wafer in a remarkably short time of 10 seconds to reach near-maximal surface coverage (≈40%) in a 2D mono-layered fashion. Employing proton engineering in electrostatic assembly accelerates the diffusion of nanoparticles (over 50 µm2/s), resulting in a hundredfold faster coating speed than the previously reported results in the literature. This charge-sensitive process further enables "pick-and-place" nanoparticle patterning at the wafer scale, with large flexibility in surface materials, including flexible metal oxides and 3D-printed polymers. As a result, the fabrication of wafer-scale disordered plasmonic metasurfaces in seconds is successfully demonstrated. These metasurfaces exhibit consistent resonating colors across diverse material and geometrical platforms, showcasing their potential for applications in full-color painting and optical encryption devices.
Collapse
Affiliation(s)
- Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - JuHyeong Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jiyeong Ma
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyun Min Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- Department of Semiconductor Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
3
|
Orszulak L, Lamrani T, Tarnacka M, Hachuła B, Jurkiewicz K, Zioła P, Mrozek-Wilczkiewicz A, Kamińska E, Kamiński K. The Impact of Various Poly(vinylpyrrolidone) Polymers on the Crystallization Process of Metronidazole. Pharmaceutics 2024; 16:136. [PMID: 38276506 PMCID: PMC10820696 DOI: 10.3390/pharmaceutics16010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
In this paper, we propose one-step synthetic strategies for obtaining well-defined linear and star-shaped polyvinylpyrrolidone (linPVP and starPVP). The produced macromolecules and a commercial PVP K30 with linear topology were investigated as potential matrices for suppressing metronidazole (MTZ) crystallization. Interestingly, during the formation of binary mixtures (BMs) containing different polymers and MTZ, we found that linear PVPs exhibit maximum miscibility with the drug at a 50:50 weight ratio (w/w), while the star-shaped polymer mixes with MTZ even at a 30:70 w/w. To explain these observations, comprehensive studies of MTZ-PVP formulations with various contents of both components were performed using Fourier-transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction. The obtained results clearly showed that the polymer's topology plays a significant role in the type of interactions occurring between the matrix and MTZ. Additionally, we established that for MTZ-PVP 50:50 and 75:25 w/w BMs, linear polymers have the most substantial impact on inhibiting the crystallization of API. The star-shaped macromolecule turned out to be the least effective in stabilizing amorphous MTZ at these polymer concentrations. Nevertheless, long-term structural investigations of the MTZ-starPVP 30:70 w/w system (which is not achievable for linear PVPs) demonstrated its complete amorphousness for over one month.
Collapse
Affiliation(s)
- Luiza Orszulak
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9, 40-007 Katowice, Poland;
| | - Taoufik Lamrani
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (T.L.); (M.T.); (K.J.); (P.Z.); (A.M.-W.); (K.K.)
| | - Magdalena Tarnacka
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (T.L.); (M.T.); (K.J.); (P.Z.); (A.M.-W.); (K.K.)
| | - Barbara Hachuła
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9, 40-007 Katowice, Poland;
| | - Karolina Jurkiewicz
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (T.L.); (M.T.); (K.J.); (P.Z.); (A.M.-W.); (K.K.)
| | - Patryk Zioła
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (T.L.); (M.T.); (K.J.); (P.Z.); (A.M.-W.); (K.K.)
| | - Anna Mrozek-Wilczkiewicz
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (T.L.); (M.T.); (K.J.); (P.Z.); (A.M.-W.); (K.K.)
- Biotechnology Centre, Silesian University of Technology, Boleslawa Krzywoustego 8, 44-100 Gliwice, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland;
| | - Kamil Kamiński
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (T.L.); (M.T.); (K.J.); (P.Z.); (A.M.-W.); (K.K.)
| |
Collapse
|
4
|
Dispersion and Homogeneity of MgO and Ag Nanoparticles Mixed with Polymethylmethacrylate. Polymers (Basel) 2023; 15:polym15061479. [PMID: 36987259 PMCID: PMC10056507 DOI: 10.3390/polym15061479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
This study aims to examine the impact of the direct and indirect mixing techniques on the dispersion and homogeneity of magnesium oxide (MgO) and silver (Ag) nanoparticles (NPs) mixed with polymethylmethacrylate (PMMA). NPs were mixed with PMMA powder directly (non-ethanol-assisted) and indirectly (ethanol-assisted) with the aid of ethanol as solvent. X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscope (SEM) were used to evaluate the dispersion and homogeneity of MgO and Ag NPs within the PMMA-NPs nanocomposite matrix. Prepared discs of PMMA-MgO and PMMA-Ag nanocomposite were analyzed for dispersion and agglomeration by Stereo microscope. XRD showed that the average crystallite size of NPs within PMMA-NP nanocomposite powder was smaller in the case of ethanol-assisted mixing compared to non-ethanol-assisted mixing. Furthermore, EDX and SEM revealed good dispersion and homogeneity of both NPs on PMMA particles with ethanol-assisted mixing compared to the non-ethanol-assisted one. Again, the PMMA-MgO and PMMA-Ag nanocomposite discs were found to have better dispersion and no agglomeration with ethanol-assisted mixing when compared to the non-ethanol-assisted mixing technique. Ethanol-assisted mixing of MgO and Ag NPs with PMMA powder obtained better dispersion, better homogeneity, and no agglomeration of NPs within the PMMA-NP matrix.
Collapse
|
5
|
Nébouy M, Morthomas J, Fusco C, Chazeau L, Jabbari-Farouji S, Baeza GP. Mechanistic Understanding of Sticker Aggregation in Supramolecular Polymers: Quantitative Insights from the Plateau Modulus of Triblock Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthias Nébouy
- Univ Lyon, INSA Lyon, UCBL, CNRS, MATEIS, UMR5510, 69621Villeurbanne, France
| | - Julien Morthomas
- Univ Lyon, INSA Lyon, UCBL, CNRS, MATEIS, UMR5510, 69621Villeurbanne, France
| | - Claudio Fusco
- Univ Lyon, INSA Lyon, UCBL, CNRS, MATEIS, UMR5510, 69621Villeurbanne, France
| | - Laurent Chazeau
- Univ Lyon, INSA Lyon, UCBL, CNRS, MATEIS, UMR5510, 69621Villeurbanne, France
| | - Sara Jabbari-Farouji
- Institute of Theoretical Physics (UvA), University of Amsterdam, Science Park 904, 1098 XHAmsterdam, Netherlands
| | - Guilhem P. Baeza
- Univ Lyon, INSA Lyon, UCBL, CNRS, MATEIS, UMR5510, 69621Villeurbanne, France
| |
Collapse
|
6
|
Heczko D, Hachuła B, Maksym P, Kamiński K, Zięba A, Orszulak L, Paluch M, Kamińska E. The Effect of Various Poly ( N-vinylpyrrolidone) (PVP) Polymers on the Crystallization of Flutamide. Pharmaceuticals (Basel) 2022; 15:971. [PMID: 36015118 PMCID: PMC9414356 DOI: 10.3390/ph15080971] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, several experimental techniques were applied to probe thermal properties, molecular dynamics, crystallization kinetics and intermolecular interactions in binary mixtures (BMs) composed of flutamide (FL) and various poly(N-vinylpyrrolidone) (PVP) polymers, including a commercial product and, importantly, samples obtained from high-pressure syntheses, which differ in microstructure (defined by the tacticity of the macromolecule) from the commercial PVP. Differential Scanning Calorimetry (DSC) studies revealed a particularly large difference between the glass transition temperature (Tg) of FL+PVPsynth. mixtures with 10 and 30 wt% of the excipient. In the case of the FL+PVPcomm. system, this effect was significantly lower. Such unexpected findings for the former mixtures were strictly connected to the variation of the microstructure of the polymer. Moreover, combined DSC and dielectric measurements showed that the onset of FL crystallization is significantly suppressed in the BM composed of the synthesized polymers. Further non-isothermal DSC investigations carried out on various FL+10 wt% PVP mixtures revealed a slowing down of FL crystallization in all FL-based systems (the best inhibitor of this process was PVP Mn = 190 kg/mol). Our research indicated a significant contribution of the microstructure of the polymer on the physical stability of the pharmaceutical-an issue completely overlooked in the literature.
Collapse
Affiliation(s)
- Dawid Heczko
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Barbara Hachuła
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Paulina Maksym
- Institute of Material Science, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Kamil Kamiński
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Andrzej Zięba
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Luiza Orszulak
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Marian Paluch
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
7
|
Naffakh M, Shuttleworth PS. Investigation of the Crystallization Kinetics and Melting Behaviour of Polymer Blend Nanocomposites Based on Poly(L-Lactic Acid), Nylon 11 and TMDCs WS 2. Polymers (Basel) 2022; 14:2692. [PMID: 35808736 PMCID: PMC9269272 DOI: 10.3390/polym14132692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of this work was to study the crystallization kinetics and melting behaviour of polymer blend nanocomposites based on poly (L-lactic acid) (PLLA), nylon 11 and tungsten disulfide nanotubes (INT-WS2), which are layered transition metal dichalcogenides (TMDCs), using non-isothermal differential scanning calorimetry (DSC). Blends containing different nylon 11 contents ranging from 20 to 80 wt.% with or without INT-WS2 were prepared by melt mixing. Evaluation of their morphology with high-resolution SEM imaging proved that the incorporation of inorganic nanotubes into the immiscible PLLA/nylon 11 mixtures led to an improvement in the dispersibility of the nylon 11 phase, a reduction in its average domain size and, consequently, an increase in its interfacial area. The crystallization temperatures of these PLLA/nylon 11-INT blends were influenced by the cooling rate and composition. In particular, the DSC results appear to demonstrate that the 1D-TMDCs WS2 within the PLLA/nylon 11-INT blend nanocomposites initiated nucleation in both polymeric components, with the effect being more pronounced for PLLA. Moreover, the nucleation activity and activation energy were calculated to support these findings. The nucleation effect of INT-WS2, which influences the melting behaviour of PLLA, is highly important, particularly when evaluating polymer crystallinity. This study opens up new perspectives for the development of advanced PLA-based nanomaterials that show great potential for ecological and biomedical applications.
Collapse
Affiliation(s)
- Mohammed Naffakh
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Peter S. Shuttleworth
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain;
| |
Collapse
|
8
|
Altorbaq AS, Krauskopf AA, Wen X, Pérez-Camargo RA, Su Y, Wang D, Müller AJ, Kumar SK. Crystallization Kinetics and Nanoparticle Ordering in Semicrystalline Polymer Nanocomposites. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Zhao T, Yang R, Yang Z. Swelling Effects on the Conductivity of Graphene/PSS/PAH Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3280. [PMID: 34947629 PMCID: PMC8708682 DOI: 10.3390/nano11123280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/17/2022]
Abstract
Graphene/poly-(sodium-4-styrene sulfonate)(PSS)/poly-(allylamine hydrochloride) (PAH) composite is a frequently adopted system for fabricating polyelectrolyte multilayer films. Swelling is the bottleneck limiting its applications, and its effects on the conductivity is still controversial. Herein, we report successful swelling of a graphene/PSS/PAH composite in a vapor atmosphere, and the relation with the mass fraction of water is uncovered. The composite was prepared via a layer-by-layer assembly technique and systematically characterized. The results indicated that the average thickness for each bilayer was about 0.95 nm. The hardness and modulus were 2.5 ± 0.2 and 68 ± 5 GPa, respectively, and both were independent of thickness. The sheet resistance decreased slightly with the prolongation of immersion time, but was distinct from that of the water mass fraction. It reduced from 2.44 × 105 to 2.34 × 105 ohm/sq, and the change accelerated as the water mass fraction rose, especially when it was larger than 5%. This could be attributing to the lubrication effect of the water molecules, which sped up the migration of charged groups in the polyelectrolytes. Moreover, molecular dynamics simulations confirmed that a microphase separation occurred when the fraction reached an extreme value owing to the dominated interaction between PSS and PAH. These results provide support for the structural stability of this composite material and its applications in devices.
Collapse
Affiliation(s)
- Tianbao Zhao
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China; (T.Z.); (R.Y.)
- National Research Center of Pumps, Jiangsu University, ZhenJiang 212013, China
| | - Ruyi Yang
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China; (T.Z.); (R.Y.)
| | - Zhi Yang
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China; (T.Z.); (R.Y.)
| |
Collapse
|
10
|
Liu R, Nie Y, Ming Y, Hao T, Zhou Z. Simulations on polymer nanocomposite crystallization. POLYMER CRYSTALLIZATION 2021. [DOI: 10.1002/pcr2.10214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Rongjuan Liu
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Yijing Nie
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Yongqiang Ming
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Tongfan Hao
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Zhiping Zhou
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| |
Collapse
|
11
|
Sharifzadeh E, Mohammadi R. Temperature‐/
Frequency‐dependent
complex viscosity and tensile modulus of polymer nanocomposites from the glassy state to the melting point. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Esmail Sharifzadeh
- Polymer Research Center, Faculty of Petroleum and Chemical Engineering Razi University Kermanshah Iran
| | - Reza Mohammadi
- Faculty of Petroleum and Chemical Engineering Razi University Kermanshah Iran
| |
Collapse
|
12
|
Regmi C, Ashtiani S, Sofer Z, Hrdlička Z, Průša F, Vopička O, Friess K. CeO 2-Blended Cellulose Triacetate Mixed-Matrix Membranes for Selective CO 2 Separation. MEMBRANES 2021; 11:632. [PMID: 34436395 PMCID: PMC8400081 DOI: 10.3390/membranes11080632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Accepted: 08/15/2021] [Indexed: 01/24/2023]
Abstract
Due to the high affinity of ceria (CeO2) towards carbon dioxide (CO2) and the high thermal and mechanical properties of cellulose triacetate (CTA) polymer, mixed-matrix CTA-CeO2 membranes were fabricated. A facile solution-casting method was used for the fabrication process. CeO2 nanoparticles at concentrations of 0.32, 0.64 and 0.9 wt.% were incorporated into the CTA matrix. The physico-chemical properties of the membranes were evaluated by SEM-EDS, XRD, FTIR, TGA, DSC and strain-stress analysis. Gas sorption and permeation affinity were evaluated using different single gases. The CTA-CeO2 (0.64) membrane matrix showed a high affinity towards CO2 sorption. Almost complete saturation of CeO2 nanoparticles with CO2 was observed, even at low pressure. Embedding CeO2 nanoparticles led to increased gas permeability compared to pristine CTA. The highest gas permeabilities were achieved with 0.64 wt.%, with a threefold increase in CO2 permeability as compared to pristine CTA membranes. Unwanted aggregation of the filler nanoparticles was observed at a 0.9 wt.% concentration of CeO2 and was reflected in decreased gas permeability compared to lower filler loadings with homogenous filler distributions. The determined gas selectivity was in the order CO2/CH4 > CO2/N2 > O2/N2 > H2/CO2 and suggests the potential of CTA-CeO2 membranes for CO2 separation in flue/biogas applications.
Collapse
Affiliation(s)
- Chhabilal Regmi
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic; (S.A.); (O.V.)
| | - Saeed Ashtiani
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic; (S.A.); (O.V.)
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic;
| | - Zdeněk Hrdlička
- Department of Polymers, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic;
| | - Filip Průša
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic;
| | - Ondřej Vopička
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic; (S.A.); (O.V.)
| | - Karel Friess
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic; (S.A.); (O.V.)
| |
Collapse
|
13
|
Naffakh M, Rica P, Moya-Lopez C, Castro-Osma JA, Alonso-Moreno C, Moreno DA. The Effect of WS 2 Nanosheets on the Non-Isothermal Cold- and Melt-Crystallization Kinetics of Poly(l-lactic acid) Nanocomposites. Polymers (Basel) 2021; 13:2214. [PMID: 34279357 PMCID: PMC8271659 DOI: 10.3390/polym13132214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022] Open
Abstract
In the present work, hybrid nanocomposite materials were obtained by a solution blending of poly(l-lactic acid) (PLLA) and layered transition-metal dichalcogenides (TMDCs) based on tungsten disulfide nanosheets (2D-WS2) as a filler, varying its content between 0 and 1 wt%. The non-isothermal cold- and melt-crystallization and melting behavior of PLLA/2D-WS2 were investigated. The overall crystallization rate, final crystallinity, and subsequent melting behavior of PLLA were controlled by both the incorporation of 2D-WS2 and variation of the cooling/heating rates. In particular, the analysis of the cold-crystallization behavior of the PLLA matrix showed that the crystallization rate of PLLA was reduced after nanosheet incorporation. Unexpectedly for polymer nanocomposites, a drastic change from retardation to promotion of crystallization was observed with increasing the nanosheet content, while the melt-crystallization mechanism of PLLA remained unchanged. On the other hand, the double-melting peaks, mainly derived from melting-recrystallization-melting processes upon heating, and their dynamic behavior were coherent with the effect of 2D-WS2 involved in the crystallization of PLLA. Therefore, the results of the present study offer a new perspective for the potential of PLLA/hybrid nanocomposites in targeted applications.
Collapse
Affiliation(s)
- Mohammed Naffakh
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Pablo Rica
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Carmen Moya-Lopez
- Facultad de Farmacia, Universidad de Castilla-La Mancha (FF-UCLM), Avda. Dr. José María Sánchez Ibáñez s/n, 02008 Albacete, Spain
- LMOPS, CentraleSupelec, University of Lorraine, 2 Rue E. Belin, 57070 Metz, France
| | - José Antonio Castro-Osma
- Facultad de Farmacia, Universidad de Castilla-La Mancha (FF-UCLM), Avda. Dr. José María Sánchez Ibáñez s/n, 02008 Albacete, Spain
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain
| | - Carlos Alonso-Moreno
- Facultad de Farmacia, Universidad de Castilla-La Mancha (FF-UCLM), Avda. Dr. José María Sánchez Ibáñez s/n, 02008 Albacete, Spain
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain
| | - Diego A Moreno
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Facultad de Farmacia, Universidad de Castilla-La Mancha (FF-UCLM), Avda. Dr. José María Sánchez Ibáñez s/n, 02008 Albacete, Spain
| |
Collapse
|
14
|
Duan Q, Xie J, Xia G, Xiao C, Yang X, Xie Q, Huang Z. Molecular Dynamics Simulation for the Effect of Fluorinated Graphene Oxide Layer Spacing on the Thermal and Mechanical Properties of Fluorinated Epoxy Resin. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1344. [PMID: 34065258 PMCID: PMC8160737 DOI: 10.3390/nano11051344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/19/2023]
Abstract
Traditional epoxy resin (EP) materials have difficulty to meet the performance requirements in the increasingly complex operating environment of the electrical and electronic industry. Therefore, it is necessary to study the design and development of new epoxy composites. At present, fluorinated epoxy resin (F-EP) is widely used, but its thermal and mechanical properties cannot meet the demand. In this paper, fluorinated epoxy resin was modified by ordered filling of fluorinated graphene oxide (FGO). The effect of FGO interlayer spacing on the thermal and mechanical properties of the composite was studied by molecular dynamics (MD) simulation. It is found that FGO with ordered filling can significantly improve the thermal and mechanical properties of F-EP, and the modification effect is better than that of FGO with disordered filling. When the interlayer spacing of FGO is about 9 Å, the elastic modulus, glass transition temperature, thermal expansion coefficient, and thermal conductivity of FGO are improved with best effect. Furthermore, we calculated the micro parameters of different systems, and analyzed the influencing mechanism of ordered filling and FGO layer spacing on the properties of F-EP. It is considered that FGO can bind the F-EP molecules on both sides of the nanosheets, reducing the movement ability of the molecular segments of the materials, so as to achieve the enhancement effect. The results can provide new ideas for the development of high-performance epoxy nanocomposites.
Collapse
Affiliation(s)
- Qijun Duan
- Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense, North China Electric Power University, Baoding 071003, China; (Q.D.); (G.X.); (C.X.); (X.Y.); (Q.X.)
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
| | - Jun Xie
- Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense, North China Electric Power University, Baoding 071003, China; (Q.D.); (G.X.); (C.X.); (X.Y.); (Q.X.)
| | - Guowei Xia
- Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense, North China Electric Power University, Baoding 071003, China; (Q.D.); (G.X.); (C.X.); (X.Y.); (Q.X.)
| | - Chaoxuan Xiao
- Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense, North China Electric Power University, Baoding 071003, China; (Q.D.); (G.X.); (C.X.); (X.Y.); (Q.X.)
| | - Xinyu Yang
- Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense, North China Electric Power University, Baoding 071003, China; (Q.D.); (G.X.); (C.X.); (X.Y.); (Q.X.)
| | - Qing Xie
- Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense, North China Electric Power University, Baoding 071003, China; (Q.D.); (G.X.); (C.X.); (X.Y.); (Q.X.)
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
| | - Zhengyong Huang
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China;
| |
Collapse
|
15
|
Chen D, Lei L, Zou M, Li X. Non-Isothermal Crystallization Kinetics of Poly(Ethylene Glycol)-Poly(l-Lactide) Diblock Copolymer and Poly(Ethylene Glycol) Homopolymer via Fast-Scan Chip-Calorimeter. Polymers (Basel) 2021; 13:1156. [PMID: 33916589 PMCID: PMC8038454 DOI: 10.3390/polym13071156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 11/23/2022] Open
Abstract
The non-isothermal crystallization kinetics of double-crystallizable poly(ethylene glycol)-poly(l-lactide) diblock copolymer (PEG-PLLA) and poly(ethylene glycol) homopolymer (PEG) were studied using the fast cooling rate provided by a Fast-Scan Chip-Calorimeter (FSC). The experimental data were analyzed by the Ozawa method and the Kissinger equation. Additionally, the total crystallization rate was represented by crystallization half time t1/2. The Ozawa method is a perfect success because secondary crystallization is inhibited by using fast cooling rate. The first crystallized PLLA block provides nucleation sites for the crystallization of PEG block and thus promotes the crystallization of the PEG block, which can be regarded as heterogeneous nucleation to a certain extent, while the method of the PEG block and PLLA block crystallized together corresponds to a one-dimensional growth, which reflects that there is a certain separation between the crystallization regions of the PLLA block and PEG block. Although crystallization of the PLLA block provides heterogeneous nucleation conditions for PEG block to a certain extent, it does not shorten the time of the whole crystallization process because of the complexity of the whole crystallization process including nucleation and growth.
Collapse
Affiliation(s)
| | | | | | - Xiaodong Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (D.C.); (L.L.); (M.Z.)
| |
Collapse
|
16
|
Wang L, Chen J, Cox SJ, Liu L, Sosso GC, Li N, Gao P, Michaelides A, Wang E, Bai X. Microscopic Kinetics Pathway of Salt Crystallization in Graphene Nanocapillaries. PHYSICAL REVIEW LETTERS 2021; 126:136001. [PMID: 33861106 DOI: 10.1103/physrevlett.126.136001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/08/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The fundamental understanding of crystallization, in terms of microscopic kinetic and thermodynamic details, remains a key challenge in the physical sciences. Here, by using in situ graphene liquid cell transmission electron microscopy, we reveal the atomistic mechanism of NaCl crystallization from solutions confined within graphene cells. We find that rock salt NaCl forms with a peculiar hexagonal morphology. We also see the emergence of a transitory graphitelike phase, which may act as an intermediate in a two-step pathway. With the aid of density functional theory calculations, we propose that these observations result from a delicate balance between the substrate-solute interaction and thermodynamics under confinement. Our results highlight the impact of confinement on both the kinetics and thermodynamics of crystallization, offering new insights into heterogeneous crystallization theory and a potential avenue for materials design.
Collapse
Affiliation(s)
- Lifen Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Laboratory for Materials Science, Dongguan 523000, China
| | - Ji Chen
- School of Physics and the Collaborative Innovation Center of Quantum Matters, Peking University, Beijing 100871, China
| | - Stephen J Cox
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Lei Liu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Gabriele C Sosso
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ning Li
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Peng Gao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Physics and Astronomy, and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
| | - Enge Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Laboratory for Materials Science, Dongguan 523000, China
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- School of Physics, Liaoning University, Shenyang 110036, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Laboratory for Materials Science, Dongguan 523000, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
17
|
Naffakh M, Fernández M, Shuttleworth PS, García AM, Moreno DA. Nanocomposite Materials with Poly(l-lactic Acid) and Transition-Metal Dichalcogenide Nanosheets 2D-TMDCs WS 2. Polymers (Basel) 2020; 12:E2699. [PMID: 33207692 PMCID: PMC7698076 DOI: 10.3390/polym12112699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Layered transition-metal dichalcogenides (TMDCs) based on tungsten disulfide nanosheets (2D-WS2) were introduced via melt processing into poly(l-lactic acid) (PLLA) to generate PLLA/2D-WS2 nanocomposite materials. The effects of the 2D-WS2 on the morphology, crystallization, and biodegradation behavior of PLLA were investigated. In particular, the non-isothermal melt-crystallization of neat PLLA and PLLA/2D-WS2 nanocomposites were analyzed in detail by varying both the cooling rate and 2D-WS2 loading. The kinetic parameters of PLLA chain crystallization are successfully described using the Liu model. It was found that the PLLA crystallization rate was reduced with 2D-WS2 incorporation, while the crystallization mechanism and crystal structure of PLLA remained unchanged in spite of nanoparticle loading. This was due to the PLLA chains not being able to easily adsorb on the WS2 nanosheets, hindering crystal growth. In addition, from surface morphology analysis, it was observed that the addition of 2D-WS2 facilitated the enzymatic degradation of poorly biodegradable PLLA using a promising strain of actinobacteria, Lentzea waywayandensis. The identification of more suitable enzymes to break down PLLA nanocomposites will open up new avenues of investigation and development, and it will also lead to more environmentally friendly, safer, and economic routes for bioplastic waste management.
Collapse
Affiliation(s)
- Mohammed Naffakh
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain; (M.F.); (A.M.G.); (D.A.M.)
| | - Miriam Fernández
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain; (M.F.); (A.M.G.); (D.A.M.)
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Peter S. Shuttleworth
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Ana M. García
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain; (M.F.); (A.M.G.); (D.A.M.)
| | - Diego A. Moreno
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain; (M.F.); (A.M.G.); (D.A.M.)
- Facultad de Farmacia, Universidad de Castilla-La Mancha (FF-UCLM), Avda. Dr. José María Sánchez Ibañez s/n, E-02071 Albacete, Spain
| |
Collapse
|
18
|
Lizundia E, Armentano I, Luzi F, Bertoglio F, Restivo E, Visai L, Torre L, Puglia D. Synergic Effect of Nanolignin and Metal Oxide Nanoparticles into Poly(l-lactide) Bionanocomposites: Material Properties, Antioxidant Activity, and Antibacterial Performance. ACS APPLIED BIO MATERIALS 2020; 3:5263-5274. [PMID: 35021701 DOI: 10.1021/acsabm.0c00637] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Binary and ternary poly(l-lactide) (PLLA)-based nanocomposites, containing nanolignin (1 wt %) and different metal oxide nanoparticles (0.5 wt %, Ag2O, TiO2, WO3, Fe2O3, and ZnFe2O4), were realized by solvent casting, and their morphological, thermal, surface, optical, antioxidant, and antimicrobial characterizations were performed. The presence of metal oxide nanoparticles at the selected weight concentration affects the surface microstructure of the PLLA polymer, and this outcome is particle-type dependent, according to the shape, morphology, and chemical properties of the selected nanoparticles (NPs). Analogously, wettability of PLLA-based nanocomposites was slightly modified by the presence of hydrophobic lignin nanoparticles and different shaped metal oxides. Results of differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) tests confirmed that nanoparticle addition confined the mobility of the amorphous phase, increasing at the same time the formation of more numerous but less perfect PLLA crystals. Interestingly, antioxidant activity was also obtained in ternary-based nanocomposites, where a synergic effect of lignin and metal oxide nanoparticles was obtained. Antibacterial tests showed manifest activity of TiO2 and Ag2O nanoparticles containing PLLA films, and the time dependence was more evident for Staphylococcus aureus than for Escherichia coli. Lignin nanoparticles are able to provide protection against UV light while still allowing visible light to pass and even surpass the UV-protection capacity provided by many inorganic nanoparticles. This makes them an attractive renewable additive for the realization of PLLA/metal oxide nanocomposites in the fields of food, drug packaging, and biomedical industry, where antibacterial and antioxidant properties are required.
Collapse
Affiliation(s)
- Erlantz Lizundia
- Faculty of Engineering in Bilbao, Department of Graphic Design and Engineering Projects, University of the Basque Country (UPV/EHU), Bilbao 48013, Spain.,BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.,Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Ilaria Armentano
- Department of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - Francesca Luzi
- Civil and Environmental Engineering Department, UdR INSTM, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy
| | - Federico Bertoglio
- Molecular Medicine Department, UdR INSTM, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy.,Center for Health Technologies, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy
| | - Elisa Restivo
- Molecular Medicine Department, UdR INSTM, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy.,Center for Health Technologies, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri S.p.A Società Benefit, IRCCS, Via S. Boezio, 28, 27100 Pavia, Italy
| | - Livia Visai
- Molecular Medicine Department, UdR INSTM, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy.,Center for Health Technologies, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri S.p.A Società Benefit, IRCCS, Via S. Boezio, 28, 27100 Pavia, Italy
| | - Luigi Torre
- Civil and Environmental Engineering Department, UdR INSTM, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy
| | - Debora Puglia
- Civil and Environmental Engineering Department, UdR INSTM, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy
| |
Collapse
|
19
|
Ausiello P, Gloria A, Maietta S, Watts DC, Martorelli M. Stress Distributions for Hybrid Composite Endodontic Post Designs with and without a Ferrule: FEA Study. Polymers (Basel) 2020; 12:E1836. [PMID: 32824363 PMCID: PMC7465202 DOI: 10.3390/polym12081836] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of the current work was to analyze the influence of the ferrule effect for hybrid composite endodontic post designs consisting of carbon (C) and glass (G) fiber-reinforced polyetherimide (PEI), in upper canine teeth. Starting from theoretical designs of C-G/PEI hybrid composite posts with different Young's moduli (Post A-57.7 GPa, Post B-31.6 GPa, Post C-graduated from 57.7 to 9.0 GPa in the coronal-apical direction) in endodontically treated anterior teeth, the influence of the ferrule effect was determined through finite element analysis (FEA). On the surface of the crown, a load of 50 N was applied at 45° to the longitudinal axis of the tooth. Maximum principal stresses were evaluated along the C-G/PEI post as well as at the interface between the surrounding tooth structure and the post. Maximum stress values were lower than those obtained for the corresponding models without a ferrule. The presence of a ferrule led to a marked decrease of stress and gradients especially for posts A and B. A less marked effect was globally found for Post C, except in a cervical margin section along a specific direction, where a significant decrease of the stress was probably due to local geometric features, compared to the model without a ferrule. The presence of a ferrule did not generally provide a marked benefit in the case of the graduated Post C, in comparison to other C-G/PEI posts. The outcomes suggest how such a hybrid composite post alone should be sufficient to optimize the stress distribution, dissipating stress from the coronal to the apical end.
Collapse
Affiliation(s)
- Pietro Ausiello
- School of Dentistry—University of Naples Federico II, 80131 Naples, Italy;
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials—National Research Council of Italy, 80125 Naples, Italy
| | - Saverio Maietta
- Department of Industrial Engineering, Fraunhofer JL IDEAS—University of Naples Federico II, 80125 Naples, Italy; (S.M.); (M.M.)
| | - David C. Watts
- School of Medical Sciences and Photon Science Institute, University of Manchester, Manchester M13 9PL, UK;
| | - Massimo Martorelli
- Department of Industrial Engineering, Fraunhofer JL IDEAS—University of Naples Federico II, 80125 Naples, Italy; (S.M.); (M.M.)
| |
Collapse
|
20
|
Read DJ, McIlroy C, Das C, Harlen OG, Graham RS. PolySTRAND Model of Flow-Induced Nucleation in Polymers. PHYSICAL REVIEW LETTERS 2020; 124:147802. [PMID: 32338987 DOI: 10.1103/physrevlett.124.147802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
We develop a thermodynamic continuum-level model, polySTRAND, for flow-induced nucleation in polymers suitable for use in computational process modeling. The model's molecular origins ensure that it accounts properly for flow and nucleation dynamics of polydisperse systems and can be extended to include effects of exhaustion of highly deformed chains and nucleus roughness. It captures variations with the key processing parameters, flow rate, temperature, and molecular weight distribution. Under strong flow, long chains are over-represented within the nucleus, leading to superexponential nucleation rate growth with shear rate as seen in experiments.
Collapse
Affiliation(s)
- Daniel J Read
- School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Claire McIlroy
- School of Mathematics and Physics, University of Lincoln, Lincoln LN6 7TS, United Kingdom
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Chinmay Das
- School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Oliver G Harlen
- School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Richard S Graham
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
21
|
Jamila GS, Sajjad S, Leghari SAK, Li Y. Pivotal role of N and Bi doping in CQD/Mn3O4 composite structure with outstanding visible photoactivity. NEW J CHEM 2020. [DOI: 10.1039/d0nj01457e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The roles of N and Bi doped CQDs have been checked. N-doping resulted in exclusive optical and electronic properties in the CQDs while preserving their intrinsic properties such as quantum size effect, surface area and compatibility.
Collapse
Affiliation(s)
- Ghulam Sughra Jamila
- Faculty of Basic and Applied Sciences
- International Islamic University
- H-10 Islamabad
- Pakistan
| | - Shamaila Sajjad
- Faculty of Basic and Applied Sciences
- International Islamic University
- H-10 Islamabad
- Pakistan
| | | | - Yongdan Li
- Department of Chemical and Metallurgical Engineering
- School of Chemical Engineering University of Aalto
- Finland
| |
Collapse
|