1
|
Luo X, Wang D, Liu S, Yan H, Cheng J, Lu Y, Zhang D, Pang H. CoSe QDs/Sn 3O 4 PCNFs with high catalytic conversion kinetics towards high-efficiency Li-S batteries. J Colloid Interface Sci 2025; 682:884-893. [PMID: 39653634 DOI: 10.1016/j.jcis.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 01/15/2025]
Abstract
The redox reactions occurring at positive electrode of the lithium-sulfur (Li-S) batteries involve several key electrocatalytic processes that significantly impact the overall performance of the electrochemical energy storage system. This study presents a heterogeneous catalytic composite material composed of CoSe quantum dots (QDs) integrated with Sn3O4 nanosheets, which enhances the overall ionic conductivity and accessibility of active sites within the cathode. This controlled migration effectively traps polysulfides within the cathode, reducing their dissolution into the electrolyte and mitigating the shuttle effect. Li-S batteries incorporating CoSe QDs/Sn3O4 porous carbon nanofibers (PCNFs) demonstrate a high discharge capacity of 1596.9 mAh g-1 at 0.1 C, along with remarkable cycling stability, achieving 1500 cycles at 2 C with a minimal capacity decay of 0.024 % per cycle. Even under a high sulfur loading conditions of 8.61 mg cm-2 and a low electrolyte to sulfur ratio of approximately 4.6 μL mg-1, the CoSe QDs/Sn3O4 PCNFs cathode delivers an initial discharge-specific capacity of 732.0 mAh g-1 at 0.2 C. Through this method, we accomplished the size control and uniform distribution of CoSe QDs, and this method can be extended to the synthesis of other metal oxide and metal sulfide QDs, offering a novel idea for the application of QDs in polysulfide catalysis.
Collapse
Affiliation(s)
- Xiaoke Luo
- Henan International Joint Laboratory of MXene Materials Microstructure, Nanyang Normal University, Nanyang 473061, PR China; Queen's University Belfast, Belfast, Northern Ireland BT71NN, United Kingdom
| | - Di Wang
- Henan International Joint Laboratory of MXene Materials Microstructure, Nanyang Normal University, Nanyang 473061, PR China; School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, PR China
| | - Shiyi Liu
- School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, PR China
| | - Hailong Yan
- Henan International Joint Laboratory of MXene Materials Microstructure, Nanyang Normal University, Nanyang 473061, PR China.
| | - Jinbing Cheng
- Henan International Joint Laboratory of MXene Materials Microstructure, Nanyang Normal University, Nanyang 473061, PR China.
| | - Yang Lu
- School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, PR China
| | - Deyang Zhang
- School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu 225002, China.
| |
Collapse
|
2
|
Feng P, Wu Q, Rodriguez Ayllon Y, Lu Y. Precisely Designed Ultra-Small CoP Nanoparticles-Decorated Hollow Carbon Nanospheres as Highly Efficient Host in Lithium-Sulfur Batteries. Chemistry 2024; 30:e202401345. [PMID: 38837813 DOI: 10.1002/chem.202401345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Designing porous carbon materials with metal phosphides as host materials holds promise for enhancing the cyclability and durability of lithium-sulfur (Li-S) batteries by mitigating sulfur poisoning and exhibiting high electrocatalytic activity. Nevertheless, it is urgent to precisely control the size of metal phosphides to further optimize the polysulfide conversion reaction kinetics of Li-S batteries. Herein, a subtlety regulation strategy was proposed to obtain ultra-small CoP nanoparticles-decorated hollow carbon nanospheres (CoP@C) by using spherical polyelectrolyte brush (SPB) as the template with stabilizing assistance from polydopamine coating, which also works as carbon source. Leveraging the electrostatic interaction between SPB and Co2+, ultra-small Co particles with sizes measuring 5.5±2.6 nm were endowed after calcination. Subsequently, through a gas-solid phosphating process, these Co particles were converted into CoP nanoparticles with significantly finer sizes (7.1±3.1 nm) compared to state-of-the-art approaches. By uniformly distributing the electrocatalyst nanoparticles on hollow carbon nanospheres, CoP@C facilitated the acceleration of Li-ion diffusion and enhanced the conversion reaction kinetics of polysulfides through adsorption-diffusion synergy. As a result, Li-S batteries utilizing the CoP@C/S cathode demonstrated an initial specific discharge capacity of 850.0 mAh g-1 at 1.0 C, with a low-capacity decay rate of 0.03 % per cycle.
Collapse
Affiliation(s)
- Ping Feng
- Institute of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, 14109, Germany
| | - Qingping Wu
- Institute of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, 14109, Germany
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yael Rodriguez Ayllon
- Institute of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, 14109, Germany
| | - Yan Lu
- Institute of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, 14109, Germany
- Institute for Technical and Environmental Chemistry, Friedrich-Schiller-Universität Jena, Jena, 07743, Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Jena, 07743, Germany
| |
Collapse
|
3
|
Wang T, He J, Zhu Z, Cheng XB, Zhu J, Lu B, Wu Y. Heterostructures Regulating Lithium Polysulfides for Advanced Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303520. [PMID: 37254027 DOI: 10.1002/adma.202303520] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/17/2023] [Indexed: 06/01/2023]
Abstract
Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium-sulfur batteries. Heterostructures, due to unique properties, have congenital advantages that are difficult to be achieved by single-component materials in regulating lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium-sulfur batteries. In this review, the principles of heterostructures expediting lithium polysulfides conversion and anchoring lithium polysulfides are detailedly analyzed, and the application of heterostructures as sulfur host, interlayer, and separator modifier to improve the performance of lithium-sulfur batteries is systematically reviewed. Finally, the problems that need to be solved in the future study and application of heterostructures in lithium-sulfur batteries are prospected. This review will provide a valuable reference for the development of heterostructures in advanced lithium-sulfur batteries.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Jiarui He
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Zhi Zhu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Xin-Bing Cheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Jian Zhu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Yuping Wu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
4
|
Sun R, Qu M, Peng L, Yang W, Wang Z, Bai Y, Sun K. Regulating Electrochemical Kinetics of CoP by Incorporating Oxygen on Surface for High-Performance Li-S Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302092. [PMID: 37292041 DOI: 10.1002/smll.202302092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/11/2023] [Indexed: 06/10/2023]
Abstract
Lithium-sulfur (Li-S) batteries are widely studied because of their high theoretical specific capacity and environmental friendliness. However, the further development of Li-S batteries is hindered by the shuttle effect of lithium polysulfides (LiPSs) and the sluggish redox kinetics. Since the adsorption and catalytic conversion of LiPSs mainly occur on the surface of the electrocatalyst, regulating the surface structure of electrocatalysts is an advisable strategy to solve the obstacles in Li-S batteries. Herein, CoP nanoparticles with high oxygen content on surface embedded in hollow carbon nanocages (C/O-CoP) is employed to functionalize the separators and the effect of the surface oxygen content of CoP on the electrochemical performance is systematically explored. Increasing the oxygen content on CoP surface can enhance the chemical adsorption to lithium polysulfides and accelerate the redox conversions kinetics of polysulfides. The cell with C/O-CoP modified separator can achieve the capacity of 1033 mAh g-1 and maintain 749 mAh g-1 after 200 cycles at 2 C. Moreover, DFT calculations are used to reveal the enhancement mechanism of oxygen content on surface of CoP in Li-S chemistry. This work offers a new insight into developing high-performance Li-S batteries from the perspective of surface engineering.
Collapse
Affiliation(s)
- Rui Sun
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Meixiu Qu
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lin Peng
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Weiwei Yang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhenhua Wang
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yu Bai
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Kening Sun
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
5
|
Wang Z, Che H, Lu W, Chao Y, Wang L, Liang B, Liu J, Xu Q, Cui X. Application of Inorganic Quantum Dots in Advanced Lithium-Sulfur Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301355. [PMID: 37088862 PMCID: PMC10323660 DOI: 10.1002/advs.202301355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Indexed: 05/03/2023]
Abstract
Lithium-sulfur (Li-S) batteries have emerged as one of the most attractive alternatives for post-lithium-ion battery energy storage systems, owing to their ultrahigh theoretical energy density. However, the large-scale application of Li-S batteries remains enormously problematic because of the poor cycling life and safety problems, induced by the low conductivity , severe shuttling effect, poor reaction kinetics, and lithium dendrite formation. In recent studies, catalytic techniques are reported to promote the commercial application of Li-S batteries. Compared with the conventional catalytic sites on host materials, quantum dots (QDs) with ultrafine particle size (<10 nm) can provide large accessible surface area and strong polarity to restrict the shuttling effect, excellent catalytic effect to enhance the kinetics of redox reactions, as well as abundant lithiophilic nucleation sites to regulate Li deposition. In this review, the intrinsic hurdles of S conversion and Li stripping/plating reactions are first summarized. More importantly, a comprehensive overview is provided of inorganic QDs, in improving the efficiency and stability of Li-S batteries, with the strategies including composition optimization, defect and morphological engineering, design of heterostructures, and so forth. Finally, the prospects and challenges of QDs in Li-S batteries are discussed.
Collapse
Affiliation(s)
- Zhuosen Wang
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Haiyun Che
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Wenqiang Lu
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Yunfeng Chao
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Liu Wang
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Bingyu Liang
- High & New Technology Research CenterHenan Academy of SciencesZhengzhou450002P. R. China
| | - Jun Liu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage MaterialsSchool of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641P. R. China
| | - Qun Xu
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Xinwei Cui
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
6
|
Wang P, Sun S, Rui X, Zhang Y, Wang S, Xiao Y, Fang S, Yu Y. Polar Electrocatalysts for Preventing Polysulfide Migration and Accelerating Redox Kinetics in Room-Temperature Sodium-Sulfur Batteries. SMALL METHODS 2023; 7:e2201728. [PMID: 36995022 DOI: 10.1002/smtd.202201728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/01/2023] [Indexed: 06/09/2023]
Abstract
Due to the high theoretical energy density, low cost, and rich abundance of sodium and sulfur, room-temperature sodium-sulfur (RT Na-S) batteries are investigated as the promising energy storage system. However, the inherent insulation of the S8 , the dissolution and shuttle of the intermediate sodium polysulfides (NaPSs), and especially the sluggish conversion kinetics, restrict the commercial application of the RT Na-S batteries. To address these issues, various catalysts are developed to immobilize the soluble NaPSs and accelerate the conversion kinetics. Among them, the polar catalysts display impressive performance. Polar catalysts not only can significantly accelerate (or alter) the redox process, but also can adsorb polar NaPSs through polar-polar interaction because of their intrinsic polarity, thus inhibiting the notorious shuttle effect. Herein, the recent advances in the electrocatalytic effect of polar catalysts on the manipulation of S speciation pathways in RT Na-S batteries are reviewed. Furthermore, challenges and research directions to realize rapid and reversible sulfur conversion are put forward to promote the practical application of RT Na-S batteries.
Collapse
Affiliation(s)
- Peiyuan Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Department of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Shumin Sun
- Henan Provincial Key Laboratory of Surface and Interface Science, Department of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Xianhong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yonghui Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Department of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Shiwen Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Department of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yuanhua Xiao
- Henan Provincial Key Laboratory of Surface and Interface Science, Department of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Shaoming Fang
- Henan Provincial Key Laboratory of Surface and Interface Science, Department of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, National Synchrotron Radiation Laboratory, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
7
|
Dai S, Sun C, Zhang Y, Zeng L, Peng Y, Zhou L, Wang Y, Jiang J, Ming Li C. Carbon microspheres built of La 2O 3 quantum dots-implanted nanorods: Superb hosts with ultra-long Li 2S n-catalysis durability. J Colloid Interface Sci 2023; 640:320-328. [PMID: 36867928 DOI: 10.1016/j.jcis.2023.02.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
Practical utilization of Li-sulfur batteries (LSBs) is still hindered by the sulfur cathode side due to its inferior electrical conductivity, huge volume expansion and adverse polysulfide shuttling effects. Though using polar catalysts coupled with mesoporous carbons may well surmount these barriers, such unsheltered catalysts rarely survive due to oversaturated polysulfide adsorption and extra sulfuration side reactions. To overcome above constrains, we herein propose to implant highly reactive nanocatalysts into carbon matrix with few nanometers insertion depth for mechanical protection. As a paradigm study, we have embedded La2O3-quantum dots (QDs) into carbon nanorods, which are then assembled into carbon microspheres (CMs). As evaluated, La2O3 QDs-CMs can help elevate the cathode redox reaction kinetics and sulfur utilization ratios, delivering a large capacity of 1392 mAh g-1 at 0.25C and high-capacity retention of 76% after total cycling. The thin carbon layers on La2O3 QDs exert a key role in impeding excess polysulfide accumulation on catalysts and thus prevent their deactivation/failure. Our strategy may guide a smart way to make catalysts-involved sulfur cathode systems with ultra-long working durability for LSBs applications.
Collapse
Affiliation(s)
- Shuai Dai
- Institute for Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; School of Materials and Energy, and Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China
| | - Chang Sun
- School of Materials and Energy, and Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China
| | - Yuhe Zhang
- School of Materials and Energy, and Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China
| | - Lingzhi Zeng
- School of Materials and Energy, and Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China
| | - Yiqiong Peng
- School of Materials and Energy, and Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China
| | - Liyuan Zhou
- School of Materials and Energy, and Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China
| | - Yanlong Wang
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Jian Jiang
- School of Materials and Energy, and Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China; College of Chemistry and Chemical Engineering, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, and Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Hainan Normal University, Haikou 571158, PR China.
| | - Chang Ming Li
- Institute for Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; College of Chemistry and Chemical Engineering, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, and Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Hainan Normal University, Haikou 571158, PR China.
| |
Collapse
|
8
|
Sun J, Liu Y, Liu L, Bi J, Wang S, Du Z, Du H, Wang K, Ai W, Huang W. Interface Engineering Toward Expedited Li 2 S Deposition in Lithium-Sulfur Batteries: A Critical Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211168. [PMID: 36756778 DOI: 10.1002/adma.202211168] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Indexed: 06/09/2023]
Abstract
Lithium-sulfur batteries (LSBs) with superior energy density are among the most promising candidates of next-generation energy storage techniques. As the key step contributing to 75% of the overall capacity, Li2 S deposition remains a formidable challenge for LSBs applications because of its sluggish kinetics. The severe kinetic issue originates from the huge interfacial impedances, indicative of the interface-dominated nature of Li2 S deposition. Accordingly, increasing efforts have been devoted to interface engineering for efficient Li2 S deposition, which has attained inspiring success to date. However, a systematic overview and in-depth understanding of this critical field are still absent. In this review, the principles of interface-controlled Li2 S precipitation are presented, clarifying the pivotal roles of electrolyte-substrate and electrolyte-Li2 S interfaces in regulating Li2 S depositing behavior. For the optimization of the electrolyte-substrate interface, efforts on the design of substrates including metal compounds, functionalized carbons, and organic compounds are systematically summarized. Regarding the regulation of electrolyte-Li2 S interface, the progress of applying polysulfides catholytes, redox mediators, and high-donicity/polarity electrolytes is overviewed in detail. Finally, the challenges and possible solutions aiming at optimizing Li2 S deposition are given for further development of practical LSBs. This review would inspire more insightful works and, more importantly, may enlighten other electrochemical areas concerning heterogeneous deposition processes.
Collapse
Affiliation(s)
- Jinmeng Sun
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yuhang Liu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Lei Liu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Jingxuan Bi
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Siying Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Zhuzhu Du
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Hongfang Du
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, 350117, China
| | - Ke Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Wei Ai
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, 350117, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
9
|
Zhang Q, Zhang X, Qiao S, Lei D, Wang Q, Shi X, Huang C, Lu W, Yang S, Tian Y, Liu Z, He G, Zhang F. Synthesis of the Ni 2P-Co Mott-Schottky Junction as an Electrocatalyst to Boost Sulfur Conversion Kinetics and Application in Separator Modification in Li-S Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5253-5264. [PMID: 36683487 DOI: 10.1021/acsami.2c19735] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To overcome the shuttling effect and sluggish conversion kinetics of polysulfides, a large number of catalysts have been designed for lithium-sulfur (Li-S) batteries. Herein, a Mott-Schottky junction catalyst composed of Co nanoparticles and Ni2P was designed to improve polysulfide kinetics. Our investigations reveal the rearrangement of charges at the Schottky junction interface and the construction of the built-in electric field are crucial for lowering the activation energy of the dissolved Li2Sn reduction and Li2S nucleation reaction. Furthermore, a series of experimental and electrochemical tests were performed to demonstrate that the Schottky catalytic effect enhanced the synergistic catalytic effect. With a Ni2P-Co@CNT catalyst, the battery exhibits an initial specific capacity of 874 mAh g-1 at a rate of 4.0 C, and the decay rate per cycle is 0.049% in 700 cycles. Meanwhile, the battery shows 0.118% decay rate per cycle at 0.5 C in 100 cycles at a high sulfur loading of 10 mg cm-2. The Schottky heterojunction structure proposed here has been shown to have a good catalytic effect on the reduction of Li2Sn and nucleation of Li2S, which provides a profound guidance for efficient and rational catalyst design.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Xu Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Shaoming Qiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Da Lei
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Qian Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Xiaoshan Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Chunhong Huang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Wang Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Shixuan Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Yuhan Tian
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Zhiqing Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Fengxiang Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| |
Collapse
|
10
|
Zhang P, Yue L, Liang Q, Gao H, Yan Q, Wang L. A Review of Transition Metal Compounds as Functional Separators for Lithium‐Sulfur Batteries. ChemistrySelect 2023. [DOI: 10.1002/slct.202203352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Peng Zhang
- Product Engineering Department Wuhan Branch of SAIC-GM Co., Ltd. Wuhan 430200 P. R. China
| | - Liangliang Yue
- Product Engineering Department Pan Asia Technical Automotive Center Co., Ltd. Wuhan 430200 P. R. China
| | - Qiuyang Liang
- Product Engineering Department Wuhan Branch of SAIC-GM Co., Ltd. Wuhan 430200 P. R. China
| | - Heng Gao
- Product Engineering Department Wuhan Branch of SAIC-GM Co., Ltd. Wuhan 430200 P. R. China
| | - Qiong Yan
- Product Engineering Department Wuhan Branch of SAIC-GM Co., Ltd. Wuhan 430200 P. R. China
| | - Li Wang
- Product Engineering Department Wuhan Branch of SAIC-GM Co., Ltd. Wuhan 430200 P. R. China
| |
Collapse
|
11
|
Peng G, Li H. The electrosorption behavior of shuttle-like FeP: performance and mechanism. RSC Adv 2023; 13:10029-10034. [PMID: 37006352 PMCID: PMC10052389 DOI: 10.1039/d2ra07857k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Owing to its high electrochemical ability, the FeP is envisioned to be the potential electrode for capacitive deionization (CDI) with enhanced performance. However, it suffers from poor cycling stability due to the active redox reaction. In this work, a facile approach has been designed to prepare the mesoporous shuttle-like FeP using MIL-88 as the template. The porous shuttle-like structure not only alleviates the volume expansion of FeP during the desalination/salination process but also promotes ion diffusion dynamics by providing convenient ion diffusion channels. As a result, the FeP electrode has demonstrated a high desalting capacity of 79.09 mg g−1 at 1.2 V. Further, it proves the superior capacitance retention, which maintained 84% of the initial capacity after the cycling. Based on post-characterization, a possible electrosorption mechanism of FeP has been proposed. In this work, mesoporous shuttle-like FeP for electrosorption is prepared. As an electrode, it achieves a high salt adsorption capacity of 79.09 mg g−1 and superior capacitance retention. The conversion of FeII to FeIII is responsible for the removal of salty ions.![]()
Collapse
Affiliation(s)
- Gengen Peng
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia UniversityYinchuan 750021China
| | - Haibo Li
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia UniversityYinchuan 750021China
| |
Collapse
|
12
|
Enhancing conversion of polysulfides via porous carbon nanofiber interlayer with dual-active sites for lithium-sulfur batteries. J Colloid Interface Sci 2022; 625:946-955. [DOI: 10.1016/j.jcis.2022.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
|
13
|
Cheng R, Xian X, Manasa P, Liu J, Xia Y, Guan Y, Wei S, Li Z, Li B, Xu F, Sun L. Carbon Coated Metal-Based Composite Electrode Materials for Lithium Sulfur Batteries: A Review. CHEM REC 2022; 22:e202200168. [PMID: 36240459 DOI: 10.1002/tcr.202200168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/31/2022] [Indexed: 11/08/2022]
Abstract
Lithium-sulfur battery is one of the most promising secondary battery systems due to their high energy density and low material cost. During the past decade, great progress has been achieved in promoting the performances of Li-S batteries by addressing the challenges at the laboratory-level model systems. With growing attention paid to the application of Li-S batteries, new challenges at practical cell scales emerge as the bottleneck. However, challenges remain for the commercialization of lithium-sulfur batteries. The current review mainly focused on metal-based catalysts decorated-carbon materials for enhanced lithium sulfur battery performance. Firstly, the synthesis methods of various carbon-sulfur composites are discussed, as well as the influence of different material structures on the electrochemical performance. Secondly, a variety of catalysts, including metal atoms, metal oxides, sulfides, phosphides, nitrides, and carbide-decorated carbon nanomaterials, are systematically introduced to determine how lithium can be enhanced by suppressing polysulfides and promoting redox conversion reactions. Also, analyzed the multi-step electrochemical reaction mechanism of the battery during the charging and discharging process, and provide a feasible path for the practical application of high energy density lithium-sulfur batteries.
Collapse
Affiliation(s)
- Riguang Cheng
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin, 541004, PR China.,School of Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Xinyi Xian
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Pantrangi Manasa
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Jiaxi Liu
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin, 541004, PR China.,School of Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Yongpeng Xia
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Yanxun Guan
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Sheng Wei
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin, 541004, PR China.,School of Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Zengyi Li
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Bin Li
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Fen Xu
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Lixian Sun
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin, 541004, PR China.,School of Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin, 541004, PR China
| |
Collapse
|
14
|
Wu L, Cai C, Yu X, Chen Z, Hu Y, Yu F, Zhai S, Mei T, Yu L, Wang X. Scalable 3D Honeycombed Co 3O 4 Modified Separators as Polysulfides Barriers for High-Performance Li-S Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35894-35904. [PMID: 35881975 DOI: 10.1021/acsami.2c07263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lithium sulfur batteries (LSBs) are regarded as one of the most promising energy storage devices due to the high theoretical capacity and energy density. However, the shuttling lithium polysulfides (LiPSs) from the cathode and the growing lithium dendrites on the anode limit the practical application of LSBs. To overcome these challenges, a novel three-dimensional (3D) honeycombed architecture consisting of a local interconnected Co3O4 successfully assembled into a scalable modified layer through mutual support, which is coated on commercial separators for high-performance LSBs. On the basis of the 3D honeycombed architecture, the modified separators not only suppress effectively the "shuttle effects" but also allow for fast lithium-ions transportation. Moreover, the theoretical calculations results exhibit that the collaboration of the exposed (111) and (220) crystal planes of Co3O4 is able to effectively anchor LiPSs. As expected, LSBs with 3D honeycombed Co3O4 modified separators present a reversible specific capacity with 1007 mAh g-1 over 100 cycles at 0.1 C. More importantly, a high reversible capacity of 808 mAh g-1 over 300 cycles even at 1 C is also acquired with the modified separators. Therefore, this proposed strategy of 3D honeycombed architecture Co3O4 modified separators will give a new route to rationally devise durable and efficient LSBs.
Collapse
Affiliation(s)
- Liping Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Overseas, Expertise Introduction Center for Discipline Innovation (D18025), Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Chuyue Cai
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Overseas, Expertise Introduction Center for Discipline Innovation (D18025), Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xi Yu
- School of Microelectronics, Shanghai University, Shanghai 200241, P. R. China
| | - Zihe Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Overseas, Expertise Introduction Center for Discipline Innovation (D18025), Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430073, P. R. China
| | - Yuxin Hu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Overseas, Expertise Introduction Center for Discipline Innovation (D18025), Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Fang Yu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Shengjun Zhai
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Overseas, Expertise Introduction Center for Discipline Innovation (D18025), Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Tao Mei
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Overseas, Expertise Introduction Center for Discipline Innovation (D18025), Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Li Yu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Overseas, Expertise Introduction Center for Discipline Innovation (D18025), Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Overseas, Expertise Introduction Center for Discipline Innovation (D18025), Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
15
|
Dimensional effects on the electronic conductivity and rheological behaviors of LiFePO4 catholytes for rechargeable lithium slurry battery. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Liu L, Li Y, Zhang Y, Qiao Z, Lin L, Yan X, Meng Z, Huang Y, Lin J, Wang L, Sa B, Xie Q, Peng DL. CoP@C with chemisorption-catalysis effect toward lithium polysulfides as multifunctional interlayer for high-performance lithium-sulfur batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Lu Y, Zhao M, Yang Y, Zhang M, Zhang N, Yan H, Peng T, Liu X, Luo Y. A conductive framework embedded with cobalt-doped vanadium nitride as an efficient polysulfide adsorber and convertor for advanced lithium-sulfur batteries. NANOSCALE HORIZONS 2022; 7:543-553. [PMID: 35293915 DOI: 10.1039/d1nh00512j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The industrialization and commercialization of Li-S batteries are greatly hindered by several defects such as the sluggish reaction kinetics, polysulfide shuttling and large volume expansion. Herein, we propose a heteroatom doping method to optimize the electronic structure for enhancing the adsorption and catalytic activity of VN that is in situ embedded into a spongy N-doped conductive framework, thus obtaining a Co-VN/NC multifunctional catalyst as an ideal sulfur host. The synthesized composite has both the unique structural advantages and the synergistic effect of cobalt, VN, and nitrogen-doped carbon (NC), which not only improve the polysulfide anchoring of the sulfur cathode but also boost the kinetics of polysulfide conversion. The density functional theory (DFT) calculations revealed that Co doping could enrich the d orbit electrons of VN for elevating the d band center, which improves its interaction with lithium polysulfides (LiPSs) and accelerates the interfacial electron transfer, simultaneously. As a result, the batteries present a high initial discharge capacity of 1521 mA h g-1 at 0.1 C, good rate performance, and excellent cycling performances (∼876 mA h g-1 at 0.5 C after 300 cycles and ∼490 mA h g-1 at 2 C after 1000 cycles, respectively), even with a high areal sulfur loading of 4.83 mg cm-2 (∼4.70 mA h cm-2 at 0.2 C after 100 cycles). This well-designed work provides a good strategy to develop effective polysulfide catalysis and further obtain high-performance host materials for Li-S batteries.
Collapse
Affiliation(s)
- Yang Lu
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Menglong Zhao
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Ya Yang
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Mengjie Zhang
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Ning Zhang
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Hailong Yan
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Tao Peng
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Xianming Liu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yongsong Luo
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, P. R. China
| |
Collapse
|
18
|
Emerging multifunctional iron-based nanomaterials as polysulfides adsorbent and sulfur species catalyst for lithium-sulfur batteries——a minireview. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Iron Phosphide Precatalyst for Electrocatalytic Degradation of Rhodamine B Dye and Removal of Escherichia coli from Simulated Wastewater. Catalysts 2022. [DOI: 10.3390/catal12030269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Electrocatalysis using low-cost materials is a promising, economical strategy for remediation of water contaminated with organic chemicals and microorganisms. Here, we report the use of iron phosphide (Fe2P) precatalyst for electrocatalytic water oxidation; degradation of a representative aromatic hydrocarbon, the dye rhodamine B (RhB); and inactivation of Escherichia coli (E. coli) bacteria. It was found that during anodic oxidation, the Fe2P phase was converted to iron phosphate phase (Fe2P-iron phosphate). This is the first report that Fe2P precatalyst can efficiently catalyze electrooxidation of an organic molecule and inactivate microorganisms in aqueous media. Using a thin film of Fe2P precatalyst, we achieved 98% RhB degradation efficiency and 100% E. coli inactivation under an applied bias of 2.0 V vs. reversible hydrogen electrode in the presence of in situ generated reactive chlorine species. Recycling test revealed that Fe2P precatalyst exhibits excellent activity and reproducibility during degradation of RhB. High-performance liquid chromatography with UV-Vis detection further confirmed the electrocatalytic (EC) degradation of the dye. Finally, in tests using Lepidium sativum L., EC-treated RhB solutions showed significantly diminished phytotoxicity when compared to untreated RhB. These findings suggest that Fe2P-iron phosphate electrocatalyst could be an effective water remediation agent.
Collapse
|
20
|
Feng J, Li Y, Yuan J, Zhao Y, Zhang J, Wang F, Tang J, Song J. Energy-Saving Synthesis of Functional CoS 2/rGO Interlayer With Enhanced Conversion Kinetics for High-Performance Lithium-Sulfur Batteries. Front Chem 2022; 9:830485. [PMID: 35223779 PMCID: PMC8867214 DOI: 10.3389/fchem.2021.830485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 01/29/2023] Open
Abstract
Lithium sulfur (Li-S) battery has exhibited great application potential in next-generation high-density secondary battery systems due to their excellent energy density and high specific capacity. However, the practical industrialization of Li-S battery is still affected by the low conductivity of sulfur and its discharge product (Li2S2/Li2S), the shuttle effect of lithium polysulfide (Li2Sn, 4 ≤ n ≤ 8) during charging/discharging process and so on. Here, cobalt disulfide/reduced graphene oxide (CoS2/rGO) composites were easily and efficiently prepared through an energy-saving microwave-assisted hydrothermal method and employed as functional interlayer on commercial polypropylene separator to enhance the electrochemical performance of Li-S battery. As a physical barrier and second current collector, the porous conductive rGO can relieve the shuttle effect of polysulfides and ensure fast electron/ion transfer. Polar CoS2 nanoparticles uniformly distributed on rGO provide strong chemical adsorption to capture polysulfides. Benefitting from the synergy of physical and chemical constraints on polysulfides, the Li-S battery with CoS2/rGO functional separator exhibits enhanced conversion kinetics and excellent electrochemical performance with a high cycling initial capacity of 1,122.3 mAh g-1 at 0.2 C, good rate capabilities with 583.9 mAh g-1 at 2 C, and long-term cycle stability (decay rate of 0.08% per cycle at 0.5 C). This work provides an efficient and energy/time-saving microwave hydrothermal method for the synthesis of functional materials in stable Li-S battery.
Collapse
Affiliation(s)
- Junan Feng
- College of Physics, Qingdao University, Qingdao, China
| | - Yahui Li
- College of Physics, Qingdao University, Qingdao, China
| | - Jinshi Yuan
- College of Physics, Qingdao University, Qingdao, China
| | - Yuling Zhao
- College of Physics, Qingdao University, Qingdao, China
| | - Jianmin Zhang
- National Engineering Research Center for Intelligent Electrical Vehicle Power System (Qingdao), College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, China
| | - Fengyun Wang
- College of Physics, Qingdao University, Qingdao, China
| | - Jie Tang
- National Institute for Materials Science, Tsukuba, Japan
| | - Jianjun Song
- College of Physics, Qingdao University, Qingdao, China
| |
Collapse
|
21
|
Zhang Y, Zhang Y, Zhang H, Bai L, Hao L, Ma T, Huang H. Defect engineering in metal sulfides for energy conversion and storage. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214147] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Zhao M, Lu Y, Yang Y, Zhang M, Yue Z, Zhang N, Peng T, Liu X, Luo Y. A vanadium-based oxide-nitride heterostructure as a multifunctional sulfur host for advanced Li-S batteries. NANOSCALE 2021; 13:13085-13094. [PMID: 34477792 DOI: 10.1039/d1nr03763c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The commercial application of lithium-sulfur (Li-S) batteries is obstructed by the inherent dissolution/shuttling of lithium polysulfides (LiPSs) in a sluggish redox reaction. Here, a heterophase V2O3-VN yolk-shell nanosphere encapsulated by a nitrogen-doped carbon layer has been designed to address the problems of the short cycle life and rapid capacity decay of Li-S batteries synchronously. The structural merits comprise efficient polysulfide anchoring (V2O3), rapid electron transfer (VN) and a reinforced frame (N-doped carbon). The assembled cathode based on the V2O3-VN@NC sulfur host delivered a high initial capacity of 1352 mA h g-1 at 0.1C with excellent rate performance (797 mA h g-1 at 2C) and favorable cycle stability with a low capacity-decay rate of only 0.038% per cycle over 800 cycles at 1C. Even with a high sulfur loading of 3.95 mg cm-2, an initial capacity of 954 mA h g-1 at 0.2C could be achieved, along with a good capacity retention of 75.1% after 150 cycles. Density functional theory computations demonstrated the crucial role of the V2O3-VN@NC heterostructure in the trapping-diffusion-conversion of polysulfides. This multi-functional cathode is very promising in realizing practically usable Li-S batteries owing to the simple process and the prominent rate and cyclic performances.
Collapse
Affiliation(s)
- Menglong Zhao
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Multifunctional FeP/Spongy Carbon Modified Separator with Enhanced Polysulfide Immobilization and Conversion for Flame‐Retardant Lithium‐Sulfur Batteries. ChemistrySelect 2021. [DOI: 10.1002/slct.202102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Wang Z, Xu X, Liu Z, Zhang D, Yuan J, Liu J. Multifunctional Metal Phosphides as Superior Host Materials for Advanced Lithium-Sulfur Batteries. Chemistry 2021; 27:13494-13512. [PMID: 34288172 DOI: 10.1002/chem.202101873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 11/11/2022]
Abstract
For the past few years, a new generation of energy storage systems with large theoretical specific capacity has been urgently needed because of the rapid development of society. Lithium-sulfur (Li-S) batteries are regarded as one of the most promising candidates for novel battery systems, since their resurgence at the end of the 20th century Li-S batteries have attracted ever more attention, attributed to their notably high theoretical energy density of 2600 W h kg-1 , which is almost five times larger than that of commercial lithium-ion batteries (LIBs). One of the determining factors in Li-S batteries is how to design/prepare the sulfur cathode. For the sulfur host, the major technical challenge is avoiding the shuttling effect that is caused by soluble polysulfides during the reaction. In past decades, though the sulfur cathode has developed greatly, there are still some enormous challenges to be conquered, such as low utilization of S, rapid decay of capacity, and poor cycle life. This article spotlights the recent progress and foremost findings in improving the performance of Li-S batteries by employing multifunctional metal phosphides as host materials. The current state of development of the sulfur electrode of Li-S batteries is summarized by emphasizing the relationship between the essential properties of metal phosphide-based hybrid nanomaterials, the chemical reaction with lithium polysulfides and the latter's influence on electrochemical performance. Finally, trends in the development and practical application of Li-S batteries are also pointed out.
Collapse
Affiliation(s)
- Zhuosen Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xijun Xu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Zhengbo Liu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Dechao Zhang
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jujun Yuan
- School of Physics and Electronics, Gannan Normal University, Ganzhou, 341000, P. R China
| | - Jun Liu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China.,School of Physics and Electronics, Gannan Normal University, Ganzhou, 341000, P. R China
| |
Collapse
|
25
|
Lo YH, Kuo PL, Wu JJ. Direct coating of multifunctional zinc oxide-reduced graphene oxide interlayer on cathode for lithium-sulfur batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Liu H, He Y, Cao K, Wang S, Jiang Y, Liu X, Huang KJ, Jing QS, Jiao L. Stimulating the Reversibility of Sb 2 S 3 Anode for High-Performance Potassium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008133. [PMID: 33586294 DOI: 10.1002/smll.202008133] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Conversion-alloy sulfide materials for potassium-ion batteries (KIBs) have attracted considerable attention because of their high capacities and suitable working potentials. However, the sluggish kinetics and sulfur loss result in their rapid capacity degeneration as well as inferior rate capability. Herein, a strategy that uses the confinement and catalyzed effect of Nb2 O5 layers to restrict the sulfur species and facilitate them to form sulfides reversibly is proposed. Taking Sb2 S3 anode as an example, Sb2 S3 and Nb2 O5 are dispersed in the core and shell layers of carbon nanofibers (C NFs), respectively, constructing core@shell structure Sb2 S3 -C@Nb2 O5 -C NFs. Benefiting from the bi-functional Nb2 O5 layers, the electrochemical reversibility of Sb2 S3 is stimulated. As a result, the Sb2 S3 -C@Nb2 O5 -C NFs electrode delivers the rapidest K-ion diffusion coefficient, longest cycling stability, and most excellent rate capability among the controlled electrodes (347.5 mAh g-1 is kept at 0.1 A g-1 after 100 cycles, and a negligible capacity degradation (0.03% per cycle) at 2.0 A g-1 for 2200 cycles is delivered). The enhanced K-ion storage properties are also found in SnS2 -C@Nb2 O5 -C NFs electrode. Encouraged by the stimulated reversibility of Sb2 S3 and SnS2 anodes, other sulfides with high electrochemical performance also could be developed for KIBs.
Collapse
Affiliation(s)
- Huiqiao Liu
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, China
| | - Yanan He
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, China
| | - Kangzhe Cao
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, China
| | - Shaodan Wang
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, China
| | - Yong Jiang
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, China
| | - Xiaogang Liu
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, China
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, China
| | - Qiang-Shan Jing
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
27
|
In situ growth of Sn nanoparticles confined carbon-based TiO2/TiN composite with long-term cycling stability for sodium-ion batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Hu Q, Lu J, Yang C, Zhang C, Hu J, Chang S, Dong H, Wu C, Hong Y, Zhang L. Promoting Reversible Redox Kinetics by Separator Architectures Based on CoS 2 /HPGC Interlayer as Efficient Polysulfide-Trapping Shield for Li-S Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002046. [PMID: 32697433 DOI: 10.1002/smll.202002046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Main obstacles from the shuttle effect and slow conversion rate of soluble polysulfide compromise the sulfur utilization and cycling life for lithium sulfur (Li-S) batteries. In pursuit of a practically viable high performance Li-S battery, a separator configuration (CoS2 /HPGC/interlayer) as efficient polysulfide trapping barrier is reported. This configuration endows great advantages, particularly enhanced conductivity, promoted polysulfide trapping capability, accelerated sulfur electrochemistry, when using the functional interlayer for Li-S cells. Attributed to the above merits, such cell shows excellent cyclability, with a capacity of 846 mAh g-1 after 250 cycles corresponding to a high capacity retention of 80.2% at 0.2 C, and 519 mAh g-1 after 500 cycles at 1C (1C = 1675 mA g-1 ). In addition, the optimized separator exhibits a high initial areal capacity of 4.293 mAh cm-2 at 0.1C. Moreover, with CoS2 /HPGC/interlayer, the sulfur cell enables a low self-discharge rate with a very high capacity retention of 97.1%. This work presents a structural engineering of the separator toward suppressing the dissolution of soluble Li2 Sn moieties and simultaneously promoting the sulfur conversion kinetics, thus achieving durable and high capacity Li-S batteries.
Collapse
Affiliation(s)
- Qianqian Hu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong, 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou, Guangdong, 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, Guangdong, 510640, China
- GAC Automotive Research & Development Center, Guangzhou, 511434, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiqun Lu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong, 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou, Guangdong, 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, Guangdong, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chun Yang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong, 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou, Guangdong, 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, Guangdong, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congcong Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong, 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou, Guangdong, 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, Guangdong, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinlong Hu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong, 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou, Guangdong, 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, Guangdong, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiyong Chang
- GAC Automotive Research & Development Center, Guangzhou, 511434, China
| | - Haiyong Dong
- GAC Automotive Research & Development Center, Guangzhou, 511434, China
| | - Chunyu Wu
- GAC Automotive Research & Development Center, Guangzhou, 511434, China
| | - Ye Hong
- Industrial Training Center, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | - Lingzhi Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong, 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou, Guangdong, 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, Guangdong, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|