1
|
Stefanoni K, Schmitz M, Treuheit J, Kerzig C, Wilhelm R. Bichromophoric Ruthenium Complexes for Photocatalyzed Late-Stage Synthesis of Trifluoromethylated Indolizines. J Org Chem 2025; 90:6491-6503. [PMID: 40323755 PMCID: PMC12090221 DOI: 10.1021/acs.joc.5c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/18/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Indolizines are a promising class of biologically active compounds. However, photocatalytic methods for their selective derivatization are scarce in the literature. Herein, a mild, simple, and chemoselective protocol for the synthesis of 3-(trifluoromethyl)indolizine has been developed. The desired products were obtained in good to excellent yields and can be easily obtained on a gram scale. By tuning the redox properties of a Ru-based photocatalyst, it is possible to achieve competitive yields and further apply the optimized conditions to a broad variety of substrates. This method tolerates many functional groups and, therefore, can be used for late-stage functionalization. Our combined theoretical and spectroscopic findings revealed that the superior dyad-like ruthenium catalyst developed in this study has a completely different electronic nature of both key species that are crucial for efficient photoredox catalysis compared to commonly used homoleptic ruthenium complexes.
Collapse
Affiliation(s)
- Kevin
Klaus Stefanoni
- Institute
of Organic Chemistry, Clausthal University
of Technology, Leibnizstr. 6, 38678 Clausthal-Zellerfeld, Germany
| | - Matthias Schmitz
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Johanna Treuheit
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Christoph Kerzig
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - René Wilhelm
- Institute
of Organic Chemistry, Clausthal University
of Technology, Leibnizstr. 6, 38678 Clausthal-Zellerfeld, Germany
| |
Collapse
|
2
|
Marcos PM, Berberan-Santos MN. Recent Advances in Calixarene-Based Fluorescent Sensors for Biological Applications. SENSORS (BASEL, SWITZERLAND) 2024; 24:7181. [PMID: 39598958 PMCID: PMC11597938 DOI: 10.3390/s24227181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
Due to their structural features, macrocyclic compounds such as calixarenes, conjugated with a variety of fluorophores have led to the development of fluorescent probes for numerous applications. This review covers the recent advances (from 2009 to date) made in calixarene-based fluorescent sensors and their biological applications. In addition to the fluorescence mechanisms used to signal the analyte binding, this article focuses mainly on the detection of biological relevant ions, on the selective sensing of biomolecules, such as amino acids, enzymes, drugs and other organic compounds, and on intracellular imaging. Calixarene-containing fluorescent nanoparticles and nanoaggregates for imaging and drug delivery are also described. Finally, this review presents some conclusions and future perspectives in this field.
Collapse
Affiliation(s)
- Paula M. Marcos
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Edifício C8, 1749-016 Lisboa, Portugal
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Mário N. Berberan-Santos
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| |
Collapse
|
3
|
Bhandari S, Sen B, Khatua S, Singh LR, Parihar VS, Mahato M. Ruthenium complex based nanocomposite film with enhanced and selective electrochemical sensing of bifenthrin pesticide. RSC Adv 2024; 14:29542-29558. [PMID: 39297048 PMCID: PMC11409230 DOI: 10.1039/d4ra04188g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/11/2024] [Indexed: 09/21/2024] Open
Abstract
Bifenthrin (BF), a widely used pyrethroid pesticide in farming, lacks highly sensitive and selective sensors despite its extensive application. Ruthenium complexes are very effective for selective sensing applications but suffer from structural instability at elevated conditions, electrochemical activity, and the use of costly electrolytes. This work improves their electrochemical activity and mechanical strength by incorporating silver nanowires and replacing the costly electrolyte with abundant KCl + PBS, resulting in enhanced signal performance. Herein, a ruthenium complex containing composite film was immobilized on a platinum (Pt) electrode using Langmuir Blodgett technique. The fabricated sensor has been characterized by differential pulse voltammetry (DPV) based electrochemical technique. The BF pesticide sensing parameters, including the limit of detection (LOD), linear range (LR), and sensitivity, were evaluated using SWV, DPV, and CV techniques. Among these, the DPV technique demonstrated the best performance, achieving a sensitivity of 0.648 μA cm-2 μM-1, a LR of 1-10 μM, and a LOD of 1 μM. The relative standard deviation (RSD) values using DPV are found to be 6.3% (repeatability study), 3% (reproducibility study), 8% (metal ion interference), 5% (organic species interference), and 2% (real sample study), which are much lesser than the World Health Organization (WHO) recommendation of RSD value on the pesticide (i.e. 20%). The BF sensor demonstrated a selectivity of 2× difference of peak height response compared to similar pesticides. The reported pesticide sensor will open new options for sensor research using metal complex-based LB film nanocomposite.
Collapse
Affiliation(s)
- Sanjeev Bhandari
- Physics Division, Department of Basic Sciences and Social Sciences, School of Technology, North-Eastern Hill University Shillong Meghalaya 793022 India
| | - Bhaskar Sen
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University Shillong Meghalaya 793022 India
| | - Snehadrinarayan Khatua
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University Shillong Meghalaya 793022 India
| | - L Robindro Singh
- Department of Nanotechnology, School of Technology, North-Eastern Hill University Shillong Meghalaya 793022 India
| | - Vijay Singh Parihar
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University 33720 Tampere Finland
| | - Mrityunjoy Mahato
- Physics Division, Department of Basic Sciences and Social Sciences, School of Technology, North-Eastern Hill University Shillong Meghalaya 793022 India
| |
Collapse
|
4
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
5
|
Kumar S, Lal B, Singh G, Muskan, Tittal RK, Singh J, Vikas D G, Sharma R. 5-Aminoisophthalate-based kojic acid-appended bis-1,2,3-triazole: a fluorescent chemosensor for Cu 2+ sensing and in silico study. RSC Adv 2024; 14:20908-20922. [PMID: 38962096 PMCID: PMC11220489 DOI: 10.1039/d4ra02372b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024] Open
Abstract
A new, easy-to-prepare, and highly selective fluorescent chemosensor, i.e., 5-aminoisophthalate-based kojic acid-appended bis-1,2,3-triazole, was synthesized from an alkyne of 5-aminoisophthalic acid and azido-kojic acid using Cu(i)-catalyzed click chemistry and then successfully characterized. The alkyne structure of 5-aminoisophthalic acid, 1, was supported by the single-crystal X-ray crystallographic data. The fluorescent probe 3 was found to be highly selective for Cu2+ ions supported by the Job's plot with a stoichiometric ligand : metal ratio of 2 : 1, exhibiting almost a two-fold enhancement in the emission intensity upon the addition of Cu2+ ions (0-25 μM) with a detection limit of 8.82 μM. A comparison with LODs from previously developed chemosensors for Cu2+ ions was also conducted. Reversibility analysis indicated that probe 3 could be used as both a reusable sensor and as a scavenger of copper ions. DFT calculations with the basis sets B3LYP/6-311G(d,p) and LanL2DZ were employed for geometrical optimizations of structures of the alkyne 1, azide 2, probe 3, and complex 3.Cu2+. Hirshfeld surface analysis revealed significant intermolecular interactions in compound 1. Additionally, molecular docking for the antimicrobial activity showed the better antibacterial efficacy of probe 3.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Chemistry, National Institute of Technology Kurukshetra Haryana 136119 India +91-1744-233-542
- School of Applied Sciences, Om Sterling Global University Hisar Haryana 125001 India
| | - Bajrang Lal
- Department of Chemistry, National Institute of Technology Kurukshetra Haryana 136119 India +91-1744-233-542
| | - Gurleen Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara Punjab 144411 India
| | - Muskan
- Department of Chemistry, University of Delhi Delhi 110007 India
| | - Ram Kumar Tittal
- Department of Chemistry, National Institute of Technology Kurukshetra Haryana 136119 India +91-1744-233-542
| | - Jandeep Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara Punjab 144411 India
| | - Ghule Vikas D
- Department of Chemistry, National Institute of Technology Kurukshetra Haryana 136119 India +91-1744-233-542
| | - Renu Sharma
- School of Applied Sciences, Om Sterling Global University Hisar Haryana 125001 India
| |
Collapse
|
6
|
Ramachandran M, Anandababu A, Al Souwaileh A, Anandan S. Selective turn-on sensing of adenosine diphosphate and phosphate anions by ruthenium (II) polypyridine anchored p-tert-butylcalix[4]arene platform. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123483. [PMID: 37804708 DOI: 10.1016/j.saa.2023.123483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Nucleoside polyphosphate (NPP) anions are important for enzymatic activity and should be monitored by scientists in industry and medicine. By elucidating enzyme kinetics and processes, it aids in the discovery of effective inhibitors and activators. Nucleoside polyphosphate (NPP) anions are used by kinases, GTPases, and glycosyltransferases (GTs). Phosphorylation of certain amino acid residues (Ser, Thr, and Tyr) on proteins requires the breakdown of ATP by protein kinases, which produces ADP. Protein kinases, breakdown of ATP, and NPP are the focus of oncology drug development because the aberrant control of kinase activity is a common cause of cancer. RESULTS However, a discriminative turn-on fluorescent property is exhibited by non-fluorescent p-tertbutylcalix[4]arene modified 1,2,3-triazole containing bis-ruthenium polypyridyl complex (RL) upon the addition of phosphate anions such as (dihydrogen pyrophosphate (H2P2O72-) and dihydrogen phosphate (H2PO4-)) in CH3CN solvent and Adenosine Diphosphate (ADP) in CH3CN/HEPES (pH = 7.4) buffer (9/1, v/v). The probe RL shows a better-recognizing ability with pyrophosphate anion (H2P2O72-) than dihydrogen phosphate anion (H2PO4-). With H2P2O72- and H2PO4- anions, the RL detection limit was calculated to be as low as 83 nM and 198 nM, respectively. SIGNIFICANCE The calix[4]arene macrocycle's excellent size and binding cone conformation make it a good host-guest interface for the pyrophosphate anion and ADP. The bis-ruthenium polypyridyl complex's connection to the p-tertbutyl calix[4]arene moiety creates the ADP selectivity turn-on sensor. When moving from mono-nuclear to bi-nuclear ruthenium complex anchored on p-tertbutyl calix[4]arene, the probe can differentiate ADP, ATP, and AMP. Furthermore, this platform is a great resource for creating devices to simultaneously assess phosphate anions in environmental samples.
Collapse
Affiliation(s)
- Mohanraj Ramachandran
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Ambigapathi Anandababu
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Abdullah Al Souwaileh
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sambandam Anandan
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.
| |
Collapse
|
7
|
Kashyap P, Sharma P, Gohil R, Rajpurohit D, Mishra D, Shrivastav PS. Progress in appended calix[4]arene-based receptors for selective recognition of copper ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123188. [PMID: 37515889 DOI: 10.1016/j.saa.2023.123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
In the past two decades, there has been significant progress in the design and development of synthetic receptors for molecular recognition as they find application in the field of chemical, biological, medical, and environmental sciences. Synthetic receptors based on calix systems appended with fluorogenic and chromogenic groups have gained considerable attention for sensing and recognition of ions and molecules. Copper (Cu2+) is an essential element required in trace amounts in all living organisms to carry out various biological processes. The aim of this review is to summarize advancement in π-conjugated fluorogenic and chromogenic groups appended to calix[4]arene motifs for detection and quantitation of Cu2+ ion. The focus is to present a comprehensive account of extended calix[4]arene systems with different linkers and highlight the unique design and binding characteristics for the recognition and sensing of Cu2+ ions.
Collapse
Affiliation(s)
- Priyanka Kashyap
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Payal Sharma
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Ritu Gohil
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Dushyantsingh Rajpurohit
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India.
| | - Divya Mishra
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India.
| | - Pranav S Shrivastav
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India.
| |
Collapse
|
8
|
Muravev AA, Voloshina AD, Sapunova AS, Gabdrakhmanova FB, Lenina OA, Petrov KA, Shityakov S, Skorb EV, Solovieva SE, Antipin IS. Calix[4]arene-pyrazole conjugates as potential cancer therapeutics. Bioorg Chem 2023; 139:106742. [PMID: 37480816 DOI: 10.1016/j.bioorg.2023.106742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Tumor selectivity is yet a challenge in chemotherapy-based cancer treatment. A series of calixarenes derivatized at the lower rim with 3-phenyl-1H-pyrazole units with variable upper-rim substituent and conformations of macrocyclic core, alkyl chain length between heterocycle and core, as well as phenolic monomer (5-(4-tert-butylphenyloxy)methoxy-3-phenyl-1H-pyrazole) have been synthesized and characterized in a range of therapeutically relevant cellular models (M-HeLa, MCF7, A-549, PC3, Chang liver, and Wi38) from different target organs/systems. Specific cytotoxicity for M-HeLa cells has been observed in tert-butylcalix[4]arene pyrazoles in 1,3-alternate (compound 7b) and partial cone (compound 7c) conformations with low mutagenicity and haemotoxicity and in vivo toxicity in mice. Compounds 7b,c have induced mitochondrial pathway of apoptosis of M-HeLa cells through caspase-9 activation preceded by the cell cycle arrest at G0/G1 phase. A concomitant overexpression of DNA damage markers in pyrazole-treated M-HeLa cells suggests that calixarene pyrazoles target DNA, which was supported by the presence of interactions between calixarenes and ctDNA at the air-water interface.
Collapse
Affiliation(s)
- Anton A Muravev
- Infochemistry Scientific Center, ITMO University, Lomonosov Str. 9, 191002 Saint Petersburg, Russia; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia.
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Anastasia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Farida B Gabdrakhmanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Oksana A Lenina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Sergey Shityakov
- Infochemistry Scientific Center, ITMO University, Lomonosov Str. 9, 191002 Saint Petersburg, Russia
| | - Ekaterina V Skorb
- Infochemistry Scientific Center, ITMO University, Lomonosov Str. 9, 191002 Saint Petersburg, Russia
| | - Svetlana E Solovieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Igor S Antipin
- Kazan Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia
| |
Collapse
|
9
|
Photoinduced electron transfer in triazole-bridged donor-acceptor dyads – A critical perspective. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Sonkar C, Sarkar S, Malviya N, Kuznetsov ML, Mukhopadhyay S. Recognition and mechanistic investigation of anion sensing by ruthenium(II) arene complexes and bio-imaging application. Dalton Trans 2022; 51:13071-13084. [PMID: 35972307 DOI: 10.1039/d2dt01726a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this work, four new ruthenium complexes [Ru(η6-p-cymene)(L1)Cl] 1, [Ru(η6-p-cymene)(L2)Cl] 2, [Ru(η6-p-cymene)(L3)Cl] 3 and [Ru(η6-p-cymene)(L4)Cl] 4 [HL1 = (2-cyanophenyl)glycine; HL2 = (5-chloro-2-cyanophenyl)glycine; HL3 = (2-cyano-3-fluorophenyl)glycine; HL4 = (4-cyanophenyl)glycine] were synthesized and well characterized by several spectroscopic and analytical techniques. Complexes 1 and 3 were found to be fluorescent in most of the solvents; however, 2 and 4 were found to be fluorescent mostly in EtOAc, DMF and ethanol. Amongst these four complexes, 3 has shown selective sensing against CO32- and SO42- anions by quenching of fluorescence. The LOD values are found to be in the sub-micromolar range. Investigations of the sensing mechanism performed by computation and NMR studies indicate a possible adduct formation between the NH group of the ligand and the anion(s) through hydrogen bond formation, which ultimately might lead to proton transfer to the bi-negative anion. The quantum yield of the complex 3 was found to decrease on addition of CO32- and SO42- anions from 0.46 to 0.13 and 0.12, respectively. The Job's plot indicates the binding between the probe and anion in a 1 : 1 ratio for both CO32- and SO42- anions. Along with that, all the complexes were found to be biocompatible when tested against several cell lines showing very high IC50 values. It can also be observed that 1 is capable of penetrating within the cells and can act as a cell imaging agent showing fluorescence, and thus can be used for bio-imaging purposes.
Collapse
Affiliation(s)
- Chanchal Sonkar
- Department of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Sayantan Sarkar
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India.
| | - Novina Malviya
- School of Chemistry and Chemical Engineering, Queen's University Belfast, UK
| | - Maxim L Kuznetsov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Suman Mukhopadhyay
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India.
| |
Collapse
|
11
|
Cd2+ and Zn2+ fluorescence turn-on sensing and the subsequent detection of S2− by a quinolimide-based sensor in water and living cells with application in the combinational logic gate. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Li L, Zhang Y, Yang J, Qu W, Cao H. A turn-on fluorescent sensor for Cd2+ and sequential detection of S2− using the quinolimide scaffold. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Fluorescent chemosensors containing ruthenium(II) bipyridine as fluorogenic unit and modified calixarene as ionophore: Synthesis, characterization, electrochemistry and ion-binding property. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Chen M, Cao F, Huang S, Li Y, Zhong M, Zhu M. The Schiff Base Probe With J-aggregation Induced Emission for Selective Detection of Cu 2. J Fluoresc 2022; 32:1457-1469. [PMID: 35451703 DOI: 10.1007/s10895-022-02948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Here, three Schiff bases 3a-c, differing by the substitutions (-H, -Cl, and -N(CH3)2) on the phenyl ring, have been designed and synthesized via the reaction of ortho-aminophenol with benzaldehyde, 2,4-dichlorobenzaldehyde and para-dimethylamine benzaldehyde in 1:1 molar ratio with favourable yields of 89-92%, respectively. Their structural characterizations were studied by FT-IR, NMR, MALDI-MS and elemental analysis. The fluorescence behaviours of compounds 3a and 3b exhibited a severe aggregation caused quenching (ACQ) effect in EtOH/water system. On the contrary, compound 3c had an obvious J-aggregation induced emission (AIE) feature in EtOH/water mixture (v/v = 1:1), and exhibited excellent sensitivity and anti-interference towards Cu2+ with the limit of detection (LOD) of 1.35 × 10-8 M. Job's plot analysis and MS spectroscopic study revealed the 2:1 complexation of probe 3c and Cu2+. In addition, probe 3c was successfully applied to the determination of Cu2+ in real aqueous samples.
Collapse
Affiliation(s)
- Meihui Chen
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, People's Republic of China
| | - Fengying Cao
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, People's Republic of China
| | - Shizhou Huang
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, People's Republic of China
| | - Yangping Li
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, People's Republic of China
| | - Min Zhong
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, People's Republic of China
| | - Mingguang Zhu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, People's Republic of China.
| |
Collapse
|
15
|
Soni H, Prasad J, Pandya A, Soni SS, Sutariya PG. Disposable paper-based PET fluorescence probe linked with calix[4]arene for lithium and phosphate ion detection. NEW J CHEM 2022. [DOI: 10.1039/d2nj04536b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
As a part of our ongoing research, we have synthesized a new fluorescence probe, p-C4A, based on a calix[4]arene substituted with 4-aminoquinoline moieties with amide linkages for lithium and phosphate ions.
Collapse
Affiliation(s)
- Heni Soni
- Department of Chemistry, Sardar Patel University, V. V. Nagar, 388120, Gujarat, India
| | - Jyoti Prasad
- Department of Chemistry, Sardar Patel University, V. V. Nagar, 388120, Gujarat, India
| | - Alok Pandya
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar 382246, Gujarat, India
| | - Saurabh S. Soni
- Department of Chemistry, Sardar Patel University, V. V. Nagar, 388120, Gujarat, India
| | - Pinkesh G. Sutariya
- Department of Chemistry, Sardar Patel University, V. V. Nagar, 388120, Gujarat, India
| |
Collapse
|
16
|
Sharma PR, Pandey S, Malik A, Choudhary G, Soni VK, Sharma RK. Calix[4]amido crown functionalized visible sensors for cyanide and iodide anions. RSC Adv 2021; 11:26644-26654. [PMID: 35480007 PMCID: PMC9037394 DOI: 10.1039/d1ra03608d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/29/2021] [Indexed: 01/11/2023] Open
Abstract
This study comprises the design and development of calix[4] arene-amido-based ionophores by varying structural stringency and steric hindrance at the lower rim to probe the anion sensing properties. The ionophores are prepared, purified, and characterized using various analytical techniques. The molecular structure of the most active ionophore I is established by single-crystal X-ray characterisation. Out of various anions investigated, iodide and cyanide show the highest sensitivity towards the ionophores investigated. Both anions are sensitive enough to give a visibly distinct color change. The binding properties of the ionophores are established with 1H & 127I NMR, fluorescence, and UV-vis spectroscopy, revealing that three ionophores strongly interact with CN- and I-. The binding constants are calculated via Benesi-Hildebrand plots using absorption data. The time-dependent 1H NMR revealed strong hydrogen bonding between the OH and NH groups of the ionophore and cyanide anion. The 127I NMR shows the highest 27.6 ppm shift after 6 h for ionophore I. The crystal structure revealed hydrogen bonding of N-H protons of the amide pendulum and phenolic oxygen of the calix rim. The Job's plot depicted the possibility of a 1 : 1 complex of ionophores with both anions.
Collapse
Affiliation(s)
- Pragati R Sharma
- Department of Chemistry, Sustainable Materials and Catalysis Research Laboratory (SMCRL), Indian Institute of Technology Jodhpur NH 65, Karwar Jodhpur 342037 India
| | - Shubham Pandey
- Department of Chemistry, Sustainable Materials and Catalysis Research Laboratory (SMCRL), Indian Institute of Technology Jodhpur NH 65, Karwar Jodhpur 342037 India
| | - Apoorva Malik
- Department of Chemistry, Sustainable Materials and Catalysis Research Laboratory (SMCRL), Indian Institute of Technology Jodhpur NH 65, Karwar Jodhpur 342037 India
| | - Ganpat Choudhary
- Department of Chemistry, Sustainable Materials and Catalysis Research Laboratory (SMCRL), Indian Institute of Technology Jodhpur NH 65, Karwar Jodhpur 342037 India
| | - Vineet K Soni
- Department of Chemistry, Sustainable Materials and Catalysis Research Laboratory (SMCRL), Indian Institute of Technology Jodhpur NH 65, Karwar Jodhpur 342037 India
| | - Rakesh K Sharma
- Department of Chemistry, Sustainable Materials and Catalysis Research Laboratory (SMCRL), Indian Institute of Technology Jodhpur NH 65, Karwar Jodhpur 342037 India
| |
Collapse
|
17
|
Kumar S, Singh S, Kumar A, Kumar P. Recognition, mechanistic investigation and applications for the detection of biorelevant Cu2+/Fe2+/Fe3+ ions by ruthenium(ii)-polypyridyl based fluorescent sensors. Dalton Trans 2021; 50:2705-2721. [DOI: 10.1039/d0dt03488f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Selective recognition of biorelevant Cu2+ and Fe2+/Fe3+ ions using fluorescent Ru(ii)-polypyridyl based sensors via both “turn-on” and “turn-off” emissive response is the main focus of present article.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Applied Sciences and Humanities
- School of Engineering
- University of Petroleum and Energy Studies
- Dehradun-248007
- India
| | - Siddhant Singh
- Department of Chemistry
- School of Physical Sciences (SoPS)
- Doon University
- Dehradun
- India
| | - Arun Kumar
- Department of Chemistry
- School of Physical Sciences (SoPS)
- Doon University
- Dehradun
- India
| | - Pramod Kumar
- Department of Chemistry
- Mahamana Malviya College Khekra (Baghpat)
- C.C.S. University Meerut
- India
| |
Collapse
|
18
|
Jamal Moideen MM, Alqahtani A, Venkatesan K, Ahmad F, Krisharaju K, Gayasuddin M, Shaik RA, Ibraheem KMM, Salama MELM, Abed SY. Application of the Box-Behnken design for the production of soluble curcumin: Skimmed milk powder inclusion complex for improving the treatment of colorectal cancer. Food Sci Nutr 2020; 8:6643-6659. [PMID: 33312548 PMCID: PMC7723192 DOI: 10.1002/fsn3.1957] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 01/10/2023] Open
Abstract
The main objective of this study was to develop a soluble product of the practically insoluble curcumin (CMN) to treat colorectal cancer more effectively than with pure CMN. To improve the solubility of CMN, various hydrophilic carriers of skimmed milk powder (SMP), polyvinylpyrrolidone (PVP), and mannitol (MNT) were utilized to prepare solid dispersion (SD) binary complexes. The prepared complexes were characterized in terms of their aqueous solubility and in vitro drug release and analyzed by Fourier transform infrared spectrophotometry, powder X-ray diffractometry, scanning electron microscopy, dynamic light scattering, and the novel dyeing test. Based on this characterization, the best SD complex was optimized using the Box-Behnken design (RSM-BBD). These results showed that the solubility of CMN was greatly improved in combination with SMP. The SD of CMN with SMP produced significantly improved solubility (0.646 ± 0.024 mg/ml) and dissolution (54.94 ± 3.21% at 5 min). Further, solid-state characterization revealed that the complex exhibited intermolecular inclusion of the drug and carrier. Also, the complex did not undergo any chemical modification owing to its amorphous form, and the novel dye test showed better coloring impact, indicating the solubility of CMN. The in vitro cytotoxicity of the complex showed that 50% inhibition (IC50) of SW480 and Caco-2 cells was achieved at a considerably lower concentration than that of pure CMN. Flow cytometry analysis confirmed that the cell cycle arrest was at G2/M phase (43.26% and 65.14%), and DNA fragmentation analysis investigation confirmed that the complex induced more DNA damage during apoptosis.
Collapse
Affiliation(s)
| | - Ali Alqahtani
- Department of PharmacologyCollege of PharmacyKing Khalid UniversityAbhaSaudi Arabia
| | | | - Fazil Ahmad
- Department of Anesthesia TechnologyCollege of Applied Medical Sciences in JubailImam Abdulrahman Bin Faisal UniversityJubailSaudi Arabia
| | - Kalpana Krisharaju
- Department of Pharmaceutical AnalysisErode College of PharmacyErodeIndia
| | - Mohammed Gayasuddin
- College of Applied Medical SciencesKing Saud bin Abdulaziz University for Health SciencesAl‐AhsaSaudi Arabia
- King Abdullah International Medical Research CenterAl‐AhsaSaudi Arabia
| | - Rasheed Ahemad Shaik
- Department of Pharmacology & ToxicologyFaculty of PharmacyKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Khalid Mohamad Morsy Ibraheem
- Department of Anesthesia TechnologyCollege of Applied Medical Sciences in JubailImam Abdulrahman Bin Faisal UniversityJubailSaudi Arabia
| | - Mohamed EL‐dosoky Mohamed Salama
- Department of Neuroscience TechnologyCollege of Applied Medical Science in JubailImam Abdulrahman Bin Faisal UniversityJubailSaudi Arabia
| | - Sally Yussef Abed
- Department of Respiratory CareCollege of Applied Medical Science in JubailImam Abdulrahman Bin Faisal UniversityJubailSaudi Arabia
| |
Collapse
|
19
|
Malviya N, Rajput M, Mobin SM, Mukhopadhyay S. Amino‐Acid‐Derived Emerging Sensor for Detection of S
2−
Ion and MeOH Percentage in MeOH‐H
2
O Mixture. ChemistrySelect 2020. [DOI: 10.1002/slct.202002690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Novina Malviya
- Discipline of Chemistry School of Basic Sciences Indian Institute of Technology Indore Simrol 453552 India
| | - Mahima Rajput
- Discipline of Chemistry School of Basic Sciences Indian Institute of Technology Indore Simrol 453552 India
| | - Shaikh M. Mobin
- Discipline of Chemistry School of Basic Sciences Indian Institute of Technology Indore Simrol 453552 India
| | - Suman Mukhopadhyay
- Discipline of Chemistry School of Basic Sciences Indian Institute of Technology Indore Simrol 453552 India
- Discipline of Biosciences and Biomedical Engineering, School of Engineering, Indian Institut Discipline of Biosciences and Biomedical Engineering School of Engineering Indian Institute of Technology Indore Simrol 453552 India
| |
Collapse
|
20
|
Mohamed JMM, Alqahtani A, Ahmad F, Krishnaraju V, Kalpana K. Stoichiometrically Governed Curcumin Solid Dispersion and Its Cytotoxic Evaluation on Colorectal Adenocarcinoma Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4639-4658. [PMID: 33173275 PMCID: PMC7648666 DOI: 10.2147/dddt.s273322] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/02/2020] [Indexed: 12/24/2022]
Abstract
Background Colorectal cancer (CRC) is the third most commonly occurring cancer in men and the second most commonly occurring cancer in women. Curcumin (CMN) is obtained from a natural source and has no toxicity, even at high doses (8,000 mg/kg body weight in 24 hours) and was determined to have anticancer potency on several kinds of carcinoma. However, its medical applications were limited because of its low solubility and poor bioavailability. Materials and Methods To improve the medical applications of CMN, various hydrophilic carriers such as poloxamer 407 (PMX-407), poloxamer 188 (PMX-188), Gelucire 50/13 (Gel-50/13), and mannitol (MNL) were used to prepare a binary complex solid dispersion (SD). These binary SDs were characterized for aqueous solubility in various solvents. Physical stability, thermal behaviors, and morphology were determined by Fourier transform infrared spectrophotometric analysis, powder X-ray diffraction analysis, thermogravimetric analysis, differential scanning calorimetric analysis, scanning electron microscopy, dynamic light scattering study, and the novel dyeing test. In vitro drug release was determined by dissolution study. Based on the characterization, the better SD complex was optimized using Box-Behnken design (BBD). The cytotoxicity and apoptosis study of prepared CMN (C-SD) were used to test for colorectal adenocarcinoma cell lines. Results These results showed that the solubility of CMN is greatly improved after complexation with PXM-407 in SD. CMN is practically insoluble in water at acidic and neutral pH; however, the SD of CMN with PXM-407 produced significant improvement in solubility (1.266±0.0242 mg/mL) and dissolution (91.36±0.431% at 30 minutes); similarly, these data fit with a phase solubility study and in silico molecular modeling. Moreover, the solid-state characterization revealed that the SD complex exhibits the intermolecular hydrogen bond with drug and carrier. Also, the complex does not undergo any chemical modification owing to the amorphous form, and the dye test showed better coloring impact indicating the solubility of CMN. The cell cycle arrest confirmed at G2/M phase from flow cytometry analysis, and Western blot investigation was recognized molecular level cell death and the complex induced more exploit DNA during apoptosis. Conclusion This study confirmed that the ideal stoichiometric ratio of CMN with carrier to enhance its solubility was 1:1. This molecular complex of PXM-407 was found to be more effective against colorectal cancer (CRC) than pure CMN.
Collapse
Affiliation(s)
- Jamal Moideen Muthu Mohamed
- Department of Pharmaceutical Technology, BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu 620024, India
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
| | - Fazil Ahmad
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - V Krishnaraju
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
| | - K Kalpana
- Department of Pharmaceutical Analysis, Erode College of Pharmacy, Veppampalayam, Erode, Tamil Nadu 638112, India
| |
Collapse
|
21
|
Yilmaz Obali A. Hydroxy- and Methoxy-Substituted Inorganic Receptor Design: Dual Selectivities for Ag + and CN − in Aqueous Medium. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1759662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Wang S, Wang L, Zhu Y, Song Y. Fluorescent detection of S 2- based on ZnMOF-74 and CuMOF-74. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 236:118327. [PMID: 32315951 DOI: 10.1016/j.saa.2020.118327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
The detection of S2- is of great significance because excess S2- can lead to a variety of serious physiological diseases. Here, two metal-organic frameworks (MOFs), ZnMOF-74 and CuMOF-74, were synthesized by using 2,5-dihydroxy terephthalic acid with strong fluorescence as organic ligand and Zn2+ or Cu2+ as central coordination ions for S2- detection. Both as-prepared ZnMOF-74 and CuMOF-74 displayed nanospheres with a diameter of about 100 nm. Under the excitation of 353 nm, the ZnMOF-74 had a characteristic emission peak at 537 nm and the CuMOF-74 had a characteristic emission peak at 528 nm under excitation of 356 nm. The interaction of S2- and Zn2+ weakened the fluorescence of ZnMOF-74 but the interaction of S2- with Cu2+ to form CuS restored the fluorescence of CuMOF-74, so the ZnMOF-74 and CuMOF-74 were exploited as a fluorescent nanosensor for sensing S2-. The ZnMOF-74 sensor has a good linear range of 19.6 nmol L-1-90.0 μmol L-1, and the limit of detection was as low as 6.53 nmol L-1. The CuMOF-74 sensor has a good linear relationship with II0 in the S2- concentration range of 1.50 nmol L-1-125 μmol L-1, and the limit of detection was 1.50 nmol L-1. The proposed ZnMOF-74 and CuMOF-74 sensor could also detect S2- in actual samples.
Collapse
Affiliation(s)
- Shiqi Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Li Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yongmei Zhu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yonghai Song
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
23
|
Zhang H, Zhang Y, Xiang J. The Tunable Luminescence of Ruthenium(II) Complexes Containing Different Tetrazolate Ligands. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.201900286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hong‐Rui Zhang
- College of Agronomy Henan Agricultural University 450002 Zhengzhou P. R. China
| | - Yun‐Xia Zhang
- College of Life Science Zhengzhou Normal University 450044 Zhengzhou P. R. China
| | - Jing Xiang
- College of Chemistry and Environmental Engineering Yangtze University 434020 Jingzhou HuBei P. R. China
| |
Collapse
|
24
|
Ramachandran M, Anandan S. Triazole appending ruthenium(ii) polypyridine complex for selective sensing of phosphate anions through C–H–anion interaction and copper(ii) ions via cancer cells. NEW J CHEM 2020. [DOI: 10.1039/d0nj00273a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Selective fluorescence enhancement by H2PO4−/H2P2O72− anions and maximum fluorescence quenching by Cu2+ ions were attained upon treatment with different types of anions and cations, respectively.
Collapse
Affiliation(s)
| | - Sambandam Anandan
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli-620 015
- India
| |
Collapse
|
25
|
Luo T, Wang X, Qian Y, Liu J, Li L, Liu J, Chen J. Direct and sensitive detection of sulfide ions based on one-step synthesis of ionic liquid functionalized fluorescent carbon nanoribbons. RSC Adv 2019; 9:37484-37490. [PMID: 35542298 PMCID: PMC9075588 DOI: 10.1039/c9ra07701d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Despite widely reported fluorescence sensors for cations, direct detection of anions is nevertheless still rare. In this work, ionic liquid-functionalized fluorescent carbon nanoribbons (IL-CNRs) are one-step synthesized and serve as the fluorescent probes for direct and sensitive detection of sulfide ions (S2−). The IL-CNRs are synthesized based on electrochemical exfoliation of graphite rods in a water-IL biphasic system. The as-prepared IL-CNRs exhibit uniform structure, high crystallinity, strong blue fluorescence (absolute photoluminescence quantum yield of 11.4%), and unique selectivity towards S2−. Based on the fluorescence quenching of IL-CNRs by S2−, a fluorescence sensor is developed for direct, rapid and sensitive detection of S2− in the range of 100 nM to 1 μM and 1–300 μM with a low detection limit (LOD, 85 nM). Moreover, detection of S2− in a real sample (tap water) is also demonstrated. Sensitive detection of sulfide ions is realized based on one-step synthesis of ionic liquid functionalized fluorescent carbon nanoribbons.![]()
Collapse
Affiliation(s)
- Tao Luo
- Affiliated Tumor Hospital of Guangxi Medical University 71 Hedi Road Nanning 530021 PR China
| | - Xiaobo Wang
- Affiliated Tumor Hospital of Guangxi Medical University 71 Hedi Road Nanning 530021 PR China
| | - Yuting Qian
- Department of Chemistry, Zhejiang Sci-Tech University 928 Second Avenue, Xiasha Higher Education Zone Hangzhou 310018 PR China
| | - Junjie Liu
- Affiliated Tumor Hospital of Guangxi Medical University 71 Hedi Road Nanning 530021 PR China
| | - Lequn Li
- Affiliated Tumor Hospital of Guangxi Medical University 71 Hedi Road Nanning 530021 PR China
| | - Jiyang Liu
- Department of Chemistry, Zhejiang Sci-Tech University 928 Second Avenue, Xiasha Higher Education Zone Hangzhou 310018 PR China
| | - Jie Chen
- Affiliated Tumor Hospital of Guangxi Medical University 71 Hedi Road Nanning 530021 PR China
| |
Collapse
|