1
|
Kavitha V, Snega V, Viswanathamurthi P, Haribabu J. A Simple Selective Probe for Lysine Detection in Tablets, Food Samples and Cells. J Fluoresc 2025; 35:131-138. [PMID: 37995072 DOI: 10.1007/s10895-023-03523-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
A novel probe ITQ (9-(((E)-1 H-inden-1-ylidene)methyl)-8-(3-(((E)-1 H-inden-1-ylidene)methyl)phenoxy)-2,3,6,7-tetrahydro-1 H,5 H-pyrido[3,2,1ij]quinolone) was successfully designed and synthesized to detect amino acid lysine (Lys). The selective sensing behavior of the probe ITQ was observed using absorption and emission spectral results. Further, the probe ITQ exhibits a strong binding affinity for Lys [1.4 × 104 M- 1] and detects and quantifies Lys even in its nanomolar concentration. Moreover, the probe ITQ detects Lys at 1:2 binding stoichiometry with suitable biological pH [4-11]. Furthermore, the probe ITQ was also successfully utilized to detect Lys in tablets, real samples (avocado, soyabean and pork) and in live HeLa cells.
Collapse
Affiliation(s)
| | | | | | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras, Copiapo, 1579, 1532502, Chile
- Chennai Institute of Technology (CIT), Chennai, 600069, India
| |
Collapse
|
2
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
3
|
Mitochondria-targeted fluorescent probe with long wavelength emission for detecting H 2S and its application in foodstuff, water and living cells. Food Chem 2023; 410:135411. [PMID: 36623459 DOI: 10.1016/j.foodchem.2023.135411] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Hydrogen sulfide (H2S) is crucial to cellular energy production, apoptosis, and redox homeostasis in mitochondria of living cells. In this work, a unique mitochondria-targeting fluorescence probe (DDMI) was established for H2S determination based on styrylpyridinium scaffold. When DDMI was treated with H2S, it showed significant fluorescence enhancement at 623 nm, with good selectivity, and high sensitivity. In addition, the "turn-on" fluorescent probe DDMI could detect H2S in water samples with good recoveries in the range of 95.4 %-105.6 % and track the degree of food spoilage by visualizing the change of DDMI-loaded test strips. Furthermore, the established probe DDMI was successfully used for monitoring exogenous H2S in living cells and mitochondria targeting. These results paved the way for success in developing a technology that could be used to identify H2S in environment, foodstuff, and living cells.
Collapse
|
4
|
An active ESIPT based molecular sensor aided with sulfonate ester moiety to track the presence of H2S analyte in realistic samples and HeLa cells. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
5
|
H 2S Sensors: Synthesis, Optical Properties, and Selected Biomedical Applications under Visible and NIR Light. Molecules 2023; 28:molecules28031295. [PMID: 36770961 PMCID: PMC9919052 DOI: 10.3390/molecules28031295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Hydrogen sulfide (H2S) is an essential signaling gas within the cell, and its endogenous levels are correlated with various health diseases such as Alzheimer's disease, diabetes, Down's syndrome, and cardiovascular disease. Because it plays such diverse biological functions, being able to detect H2S quickly and accurately in vivo is an area of heightened scientific interest. Using probes that fluoresce in the near-infrared (NIR) region is an effective and convenient method of detecting H2S. This approach allows for compounds of high sensitivity and selectivity to be developed while minimizing cytotoxicity. Herein, we report a review on the synthesis, mechanisms, optical properties, and selected biomedical applications of H2S sensors.
Collapse
|
6
|
Xie L, Fan T, Yao R, Mu Y, Wang R, Fan C, Pu S. Highly selective near-infrared fluorescent probe with large Stokes shift and sensitivity for H2S detection in water, foodstuff and imaging in living cells. DYES AND PIGMENTS 2023; 208:110828. [DOI: 10.1016/j.dyepig.2022.110828] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Sun Y, Sun P, Li Z, Qu L, Guo W. Natural flavylium-inspired far-red to NIR-II dyes and their applications as fluorescent probes for biomedical sensing. Chem Soc Rev 2022; 51:7170-7205. [PMID: 35866752 DOI: 10.1039/d2cs00179a] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorescent probes that emit in the far-red (600-700 nm), first near-infrared (NIR-I, 700-900 nm), and second NIR (NIR-II, 900-1700 nm) regions possess unique advantages, including low photodamage and deep penetration into biological samples. Notably, NIR-II optical imaging can achieve tissue penetration as deep as 5-20 mm, which is critical for biomedical sensing and clinical applications. Much research has focused on developing far-red to NIR-II dyes to meet the needs of modern biomedicine. Flavylium compounds are natural colorants found in many flowers and fruits. Flavylium-inspired dyes are ideal platforms for constructing fluorescent probes because of their far-red to NIR emissions, high quantum yields, high molar extinction coefficients, and good water solubilities. The synthetic and structural diversities of flavylium dyes also enable NIR-II probe development, which markedly advance the field of NIR-II in vivo imaging. In the last decade, there have been huge developments in flavylium-inspired dyes and their applications as far-red to NIR fluorescent probes for biomedical applications. In this review, we highlight the optical properties of representative flavylium dyes, design strategies, sensing mechanisms, and applications as fluorescent probes for detecting and visualizing important biomedical species and events. This review will prompt further research not only on flavylium dyes, but also into all far-red to NIR fluorophores and fluorescent probes. Moreover, this interest will hopefully spillover into applications related to complex biological systems and clinical treatments, ranging in focus from the sub-organelle to whole-animal levels.
Collapse
Affiliation(s)
- Yuanqiang Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Pengjuan Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhaohui Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Wei Guo
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
8
|
Ai Y, Zhu Z, Ding H, Fan C, Liu G, Pu S. A dual-responsive fluorescent probe for detection of H2S and Cu2+ based on rhodamine-naphthalimide and cell imaging. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Dhivya R, Kavitha V, Gomathi A, Keerthana P, Santhalakshmi N, Viswanathamurthi P, Haribabu J. Dinitrobenzene ether reactive turn-on fluorescence probes for the selective detection of H 2S. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 14:58-66. [PMID: 34889907 DOI: 10.1039/d1ay01700d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two novel fluorescent probes, namely, 3-(2,4-dinitrophenoxy)-2-(4-(diphenylamino)phenyl)-4H-chromen-4-one (P1) and 3-(2,4-dinitrophenoxy)-2-(pyren-1-yl)-4H-chromen-4-one (P2), were designed and synthesized here. The probes (P1 and P2) were found to be highly selective and sensitive toward hydrogen sulfide (H2S) in the presence of a wide range of anions. The new probes (P1 and P2) were fully characterized by analytical, NMR spectroscopy (1H and 13C), and ESI mass spectrometry. The sensing capability of chemodosimeters (P1 and P2) toward H2S was confirmed by fluorescence studies. The 'turn-on' fluorescence was used to calculate the detection limit of probes (LOD), which were found to be 2.4 and 1.2 μM for P1 and P2, respectively. Moreover, the probes were tested for their cytotoxicity against HeLa cells using the MTT assay and found to be non-cytotoxic in nature; hence, the probes P1 and P2 were successfully utilized to visualize H2S in the living cells.
Collapse
Affiliation(s)
- Rajasekaran Dhivya
- Department of Chemistry, Periyar University, Salem, Tamil Nadu 636011, India.
| | | | - Asaithambi Gomathi
- Department of Chemistry, Periyar University, Salem, Tamil Nadu 636011, India.
| | - Ponmudi Keerthana
- Department of Chemistry, Periyar University, Salem, Tamil Nadu 636011, India.
| | | | | | | |
Collapse
|
10
|
Yang Q, Zhou L, Peng L, Yuan G, Ding H, Tan L, Zhou Y. A smart mitochondria-targeting TP-NIR fluorescent probe for the selective and sensitive sensing of H 2S in living cells and mice. NEW J CHEM 2021. [DOI: 10.1039/d1nj00840d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hydrogen sulfide (H2S) is one of the important gaseous signalling molecules, which plays key roles in various critical biological processes.
Collapse
Affiliation(s)
- Qiaomei Yang
- Hunan Key Laboratory of Processed Food for Special Medical Purpose
- National Engineering Laboratory for Deep Process of Rice and Byproducts
- College of Food Science and Engineering
- Central South University of Forestry and Technology
- Changsha
| | - Liyi Zhou
- Hunan Key Laboratory of Processed Food for Special Medical Purpose
- National Engineering Laboratory for Deep Process of Rice and Byproducts
- College of Food Science and Engineering
- Central South University of Forestry and Technology
- Changsha
| | - Longpeng Peng
- Hunan Key Laboratory of Processed Food for Special Medical Purpose
- National Engineering Laboratory for Deep Process of Rice and Byproducts
- College of Food Science and Engineering
- Central South University of Forestry and Technology
- Changsha
| | - Gangqiang Yuan
- Hunan Key Laboratory of Processed Food for Special Medical Purpose
- National Engineering Laboratory for Deep Process of Rice and Byproducts
- College of Food Science and Engineering
- Central South University of Forestry and Technology
- Changsha
| | - Haiyuan Ding
- Hunan Key Laboratory of Processed Food for Special Medical Purpose
- National Engineering Laboratory for Deep Process of Rice and Byproducts
- College of Food Science and Engineering
- Central South University of Forestry and Technology
- Changsha
| | - Libin Tan
- Hunan Key Laboratory of Processed Food for Special Medical Purpose
- National Engineering Laboratory for Deep Process of Rice and Byproducts
- College of Food Science and Engineering
- Central South University of Forestry and Technology
- Changsha
| | - Yizhuang Zhou
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation
- Guilin Medical University
- Guilin
- China
| |
Collapse
|
11
|
An effective phthalazine-imidazole-based chemosensor for detecting Cu2+, Co2+ and S2− via the color change. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Zhang C, Zhang J, Xu Z, Zang K, Liu F, Yin J, Tan Y, Jiang Y. A biotin-guided hydrogen sulfide fluorescent probe and its application in living cell imaging. RSC Adv 2020; 10:36135-36140. [PMID: 35517112 PMCID: PMC9056979 DOI: 10.1039/d0ra06524b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/14/2020] [Indexed: 02/01/2023] Open
Abstract
Hydrogen sulfide (H2S), a well-known signaling molecule, exerts significant regulatory effects on the cardiovascular and nervous systems. Therefore, monitoring the metabolism of H2S offers a potential mechanism to detect various diseases. In addition, biotin is significantly used as a targeting group to detect cancer cells exclusively. In this work, a biotin-guided benzoxadizole-based fluorescent probe, NP-biotin, was developed for H2S detection and evaluated in normal liver cell (LO2) and liver cancer cell (HepG2) lines. Results reveal that NP-biotin can detect cellular H2S with high sensitivity and selectivity. Moreover, NP-biotin has been confirmed to possess the ability to target cancer cells under the guidance of the biotin group.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University Shenzhen 518055 P. R. China
| | - Jiewen Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University Shenzhen 518055 P. R. China
| | - Zhiqiang Xu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Kun Zang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University Shenzhen 518055 P. R. China
| | - Feng Liu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University Shenzhen 518055 P. R. China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University Shenzhen 518055 P. R. China
| | - Yuyang Jiang
- School of Pharmaceutical Sciences, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
13
|
Muthusamy S, Rajalakshmi K, Xu Q, Chen Y, Zhao L, Zhu W. An azido coumarin-quinoline conjugated fluorogenic dye: Utilizing amide-iminol tautomerism for H 2S detection in live MCF-7 cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118345. [PMID: 32387916 DOI: 10.1016/j.saa.2020.118345] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Detection of H2S to analyze some diseases in living lives demands fast response, high selectivity and biocompatibility. Here we designed an azide containing coumarin attached with 8-aminoquinoline via amide backbone (ACAQ) fluorophore as the H2S sensing probe. Excellent response time of 6 min, high sensitivity with the limit of detection (LOD) of 14.6 nM and high selectivity with other possible interferences are revealed for ACAQ after characterized by spectroscopy, 1H NMR titration and LC-MS measurements. The sensing strategy is explained by amide-iminol tautomerism and azide reduction. In addition, the successful visualization measurement suggests the practicability of the probe ACAQ for H2S detection in live samples.
Collapse
Affiliation(s)
- Selvaraj Muthusamy
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kanagaraj Rajalakshmi
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qingxiang Xu
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yan Chen
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Long Zhao
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Weihua Zhu
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|