1
|
Li T, Li Y, Chen J, Nan M, Zhou X, Yang L, Xu W, Zhang C, Kong L. Hyperibone J exerts antidepressant effects by targeting ADK to inhibit microglial P2X7R/TLR4-mediated neuroinflammation. J Adv Res 2025; 72:571-589. [PMID: 39019111 DOI: 10.1016/j.jare.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/20/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024] Open
Abstract
INTRODUCTION The antidepressant properties of Hypericum species are known. Hyperibone J, a principal component found in the flowers of Hypericum bellum, exhibited in vitro anti-inflammatory effects. However, the antidepressant effects and mechanisms of Hyperibone J remain to be elucidated. Adenosine kinase (ADK) is upregulated in epilepsy and depression and has been implicated in promoting neuroinflammation. OBJECTIVES This study aimed to explore the impact of Hyperibone J on neuroinflammation-mediated depression and the mechanism underlying this impact. METHODS This study employed acute and chronic in vivo depression models and an in vitro LPS-induced depression model using BV-2 microglia. The in vivo antidepressant efficacy of Hyperibone J was assessed through behavioral assays. Techniques such as RNA-seq, western blot, qPCR and ELISA were utilized to elucidate the direct target and mechanism of action of Hyperibone J. RESULTS Compared with the model group, depression-like behaviors were significantly alleviated in the Hyperibone J group. Furthermore, Hyperibone J mitigated hippocampal neuroinflammation and neuronal damage. RNA-seq suggested that Hyperibone J predominantly influenced inflammation-related pathways. In vitro experiments revealed that Hyperibone J reversed the LPS-induced overexpression and release of inflammatory factors. Network pharmacology and various molecular biology experiments revealed that the potential binding of Hyperibone J at the ASN-312 site of ADK diminished the stability and protein expression of ADK. Mechanistic studies revealed that Hyperibone J attenuated the ADK/ATP/P2X7R/Caspase-1-mediated maturation and release of IL-1β. The study also revealed a significant correlation between Tlr4 expression and depression-like behaviors in mice. Hyperibone J downregulated ADK, inhibiting Tlr4 transcription, which in turn reduced the phosphorylation of NF-κB and the subsequent transcription of Nlrp3, Il-1b, Tnf, and Il-6. CONCLUSION Hyperibone J exerted antineuroinflammatory and antidepressant effects by binding to ADK in microglia, reducing its expression and thereby inhibiting the ATP/P2X7R/Caspase-1 and TLR4/NF-κB pathways. This study provides experimental evidence for the therapeutic potential of Hypericum bellum.
Collapse
Affiliation(s)
- Ting Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yawei Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jinhu Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Miaomiao Nan
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xin Zhou
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lifang Yang
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China
| | - Wenjun Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Qiu X, Ding J, Wang Y, Fang L, Li D, Huo Z. Identification and function analysis of Toll-like receptor 4 (TLR4) from Manila clam (Ruditapes philippinarum). Int J Biol Macromol 2025; 290:139000. [PMID: 39706402 DOI: 10.1016/j.ijbiomac.2024.139000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Toll-like receptor 4 (TLR4) is a pattern recognition receptor that activates innate immunity in response to pathogen infection. However, the role of TLR4 in pathogen-induced apoptosis and host immunity in mollusks remains largely unknown. In this study, the TLR4 of the Manila clam Ruditapes philippinarum (RpTLR4) was cloned. The open reading frame of RpTLR4 encodes a protein of 734 amino acids, containing a conserved TIR domain. Phylogenetic analysis revealed that RpTLR4 clusters closely with TLR4s from mollusks. RpTLR4 mRNA was detected in all tested tissues, with notably high expression in hemocytes (428-fold) and gills (657-fold). Subcellular localization showed that RpTLR4 is expressed on the cell membrane. qRT-PCR and western blot analyses demonstrated that RpTLR4 expression was induced in Manila clams after treatment with Vibrio parahaemolyticus. Overexpression of RpTLR4 significantly increased apoptosis levels and the expression of apoptosis-related genes. Conversely, silencing RpTLR4 markedly reduced the apoptosis rate in hemocytes induced by V. parahaemolyticus, indicating that V. parahaemolyticus-induced hemocyte apoptosis depends on RpTLR4 expression. Overall, these findings confirm that RpTLR4 plays a pro-apoptotic role in the response of Manila clams to V. parahaemolyticus infection. This study provides a theoretical foundation for understanding the molecular mechanisms underlying mollusk responses to pathogen infection.
Collapse
Affiliation(s)
- Xianbo Qiu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian 116023, China
| | - Jianfeng Ding
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian 116023, China
| | - Yuhang Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian 116023, China
| | - Lei Fang
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian 116023, China; College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China
| | - Dongdong Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian 116023, China.
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian 116023, China.
| |
Collapse
|
3
|
Wang C, Zhu H, Cheng Y, Guo Y, Zhao Y, Qian H. Aqueous Extract of Brassica rapa L.'s Impact on Modulating Exercise-Induced Fatigue via Gut-Muscle Axis. Nutrients 2023; 15:4737. [PMID: 38004133 PMCID: PMC10674577 DOI: 10.3390/nu15224737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Exercise-induced fatigue is a common physiological response to prolonged physical activity, often associated with changes in gut microbiota and metabolic responses. This study investigates the potential role of Brassica rapa L. in modulating these responses. Using an animal model subjected to chronic exercise-induced stress, we explored the effects of Brassica rapa L. on fatigue-related biomarkers, energy metabolism genes, inflammatory responses, intestinal integrity, and gut microbiota composition. Our findings revealed that Brassica rapa L. exhibits significant antioxidant activity and effectively modulates physiological responses to fatigue. It influences gene expression related to the tricarboxylic acid (TCA) cycle in muscle tissue through the AMPK/PGC-1α/TFAM signaling pathway. Furthermore, Brassica rapa L. has been found to alleviate inflammation by inhibiting lipopolysaccharide (LPS) infection and suppressing the activation of the NF-κB pathway. It also maintains intestinal integrity and controls Gram-negative bacterial growth. A correlation analysis identified several pathogenic bacteria linked with inflammation and energy metabolism, as well as beneficial probiotic bacteria associated with improved energy metabolism and reduced inflammation. These findings underscore Brassica rapa L.'s potential for managing prolonged exercise-induced fatigue, paving the way for future therapeutic applications. The results highlight its impact on gut microbiota modulation and its role in nutrition science and sports medicine.
Collapse
Affiliation(s)
- Cheng Wang
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China; (C.W.); (H.Z.); (Y.C.); (Y.G.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Hongkang Zhu
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China; (C.W.); (H.Z.); (Y.C.); (Y.G.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yuliang Cheng
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China; (C.W.); (H.Z.); (Y.C.); (Y.G.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yahui Guo
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China; (C.W.); (H.Z.); (Y.C.); (Y.G.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yong Zhao
- Department of Thoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - He Qian
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China; (C.W.); (H.Z.); (Y.C.); (Y.G.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Talipova D, Smagulova A, Poddighe D. Toll-like Receptors and Celiac Disease. Int J Mol Sci 2022; 24:265. [PMID: 36613709 PMCID: PMC9820541 DOI: 10.3390/ijms24010265] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Celiac disease (CD) is an immune-mediated disorder triggered by dietary gluten intake in some genetically predisposed individuals; however, the additional non-HLA-related genetic factors implicated in CD immunopathogenesis are not well-defined. The role of the innate immune system in autoimmunity has emerged in the last few years. Genetic polymorphisms of some pattern-recognition receptors, including toll-like receptors (TLRs), have been associated with several autoimmune disorders. In this review, we summarize and discuss the evidence from basic research and clinical studies as regards the potential role of TLRs in CD immunopathogenesis. The evidence supporting the role of TLRs in CD immunopathogenesis is limited, especially in terms of basic research. However, differences in the expression and activation of TLRs between active CD patients from one side, and controls and treated CD patients from the other side, have been described in some clinical studies. Therefore, TLRs may be part of those non-HLA-related genetic factors implicated in CD etiopathogenesis, considering their potential role in the interaction between the host immune system and some environmental factors (including viral infections and gut microbiota), which are included in the list of candidate agents potentially contributing to the determination of CD risk in genetically predisposed individuals exposed to dietary gluten intake. Further basic research and clinical studies focused on TLRs in the context of CD and other gluten-related disorders are needed.
Collapse
Affiliation(s)
- Diana Talipova
- Department of Medicine, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
| | - Aiganym Smagulova
- Department of Medicine, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
| | - Dimitri Poddighe
- Department of Medicine, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
- Clinical Academic Department of Pediatrics, National Research Center for Maternal and Child Health, University Medical Center, Astana 010000, Kazakhstan
| |
Collapse
|
5
|
Yu T, Hu S, Min F, Li J, Shen Y, Yuan J, Gao J, Wu Y, Chen H. Wheat Amylase Trypsin Inhibitors Aggravate Intestinal Inflammation Associated with Celiac Disease Mediated by Gliadin in BALB/c Mice. Foods 2022; 11:1559. [PMID: 35681310 PMCID: PMC9180791 DOI: 10.3390/foods11111559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Celiac disease (CD) is an autoimmune intestinal disorder caused by the ingestion of gluten in people who carry the susceptible gene. In current celiac disease research, wheat gluten is often the main target of attention, neglecting the role played by non-gluten proteins. This study aimed to describe the effects of wheat amylase trypsin inhibitors (ATI, non-gluten proteins) and gliadin in BALB/c mice while exploring the further role of relevant adjuvants (cholera toxin, polyinosinic: polycytidylic acid and dextran sulfate sodium) intervention. An ex vivo splenocyte and intestinal tissue were collected for analysis of the inflammatory profile. The consumption of gliadin and ATI caused intestinal inflammation in mice. Moreover, the histopathology staining of four intestinal sections (duodenum, jejunum, terminal ileum, and middle colon) indicated that adjuvants, especially polyinosinic: polycytidylic acid, enhanced the villi damage and crypt hyperplasia in co-stimulation with ATI and gliadin murine model. Immunohistochemical results showed that tissue transglutaminase and IL-15 expression were significantly increased in the jejunal tissue of mice treated with ATI and gliadin. Similarly, the expression of inflammatory factors (TNF-α, IL-1β, IL-4, IL-13) and Th1/Th2 balance also showed that the inflammation response was significantly increased after co-stimulation with ATI and gliadin. This study provided new evidence for the role of wheat amylase trypsin inhibitors in the pathogenesis of celiac disease.
Collapse
Affiliation(s)
- Tian Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (T.Y.); (F.M.); (J.L.); (Y.S.); (J.Y.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China;
| | - Shuai Hu
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China;
| | - Fangfang Min
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (T.Y.); (F.M.); (J.L.); (Y.S.); (J.Y.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China;
| | - Jingjing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (T.Y.); (F.M.); (J.L.); (Y.S.); (J.Y.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China;
| | - Yunpeng Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (T.Y.); (F.M.); (J.L.); (Y.S.); (J.Y.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China;
| | - Juanli Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (T.Y.); (F.M.); (J.L.); (Y.S.); (J.Y.); (H.C.)
- School of Pharmaceutical Science, Nanchang University, Nanchang 330006, China
| | - Jinyan Gao
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China;
| | - Yong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (T.Y.); (F.M.); (J.L.); (Y.S.); (J.Y.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (T.Y.); (F.M.); (J.L.); (Y.S.); (J.Y.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
6
|
Johanson TM, Keenan CR, Allan RS. Shedding Structured Light on Molecular Immunity: The Past, Present and Future of Immune Cell Super Resolution Microscopy. Front Immunol 2021; 12:754200. [PMID: 34975842 PMCID: PMC8715013 DOI: 10.3389/fimmu.2021.754200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
In the two decades since the invention of laser-based super resolution microscopy this family of technologies has revolutionised the way life is viewed and understood. Its unparalleled resolution, speed, and accessibility makes super resolution imaging particularly useful in examining the highly complex and dynamic immune system. Here we introduce the super resolution technologies and studies that have already fundamentally changed our understanding of a number of central immunological processes and highlight other immunological puzzles only addressable in super resolution.
Collapse
Affiliation(s)
- Timothy M. Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Christine R. Keenan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Rhys S. Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Wang Y, Xie L, Zhu M, Guo Y, Tu Y, Zhou Y, Zeng J, Zhu L, Du S, Wang Z, Zhang Y, Liu X, Song E. Shikonin alleviates choroidal neovascularization by inhibiting proangiogenic factor production from infiltrating macrophages. Exp Eye Res 2021; 213:108823. [PMID: 34752817 DOI: 10.1016/j.exer.2021.108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/20/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Choroidal neovascularization (CNV), a feature of neovasular age-related macular degeneration (AMD), acts as a leading cause of vision loss in the elderly. Shikonin (SHI), a natural bioactive compound extracted from Chinese herb radix arnebiae, exerts anti-inflammatory and anti-angiogenic roles and also acts as a potential pyruvate kinase M2 (PKM2) inhibitor in macrophages. The major immune cells macrophages infiltrate the CNV lesions, where the production of pro-angiognic cytokines from macrophage facilitates the development of CNV. PKM2 contributes to the neovascular diseases. In this study, we found that SHI oral gavage alleviated the leakage, area and volume of mouse laser-induced CNV lesion and inhibited macrophage infiltration without ocular cytotoxicity. Moreover, SHI inhibited the secretion of pro-angiogenic cytokine, including basic fibroblast growth factor (FGF2), insulin-like growth factor-1 (IGF1), chemokine (C-C motif) ligand 2 (CCL2), placental growth factor and vascular endothelial growth factor (VEGF), from primary human macrophages by down-regulating PKM2/STAT3/CD163 pathway, indicating a novel potential therapy strategy for CNV.
Collapse
Affiliation(s)
- Ying Wang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Ophthalmology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Laiqing Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yang Guo
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuanyuan Tu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yamei Zhou
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Jia Zeng
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Linling Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shu Du
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhenzhen Wang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuting Zhang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China.
| | - E Song
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
8
|
Li M, Yu Y. Innate immune receptor clustering and its role in immune regulation. J Cell Sci 2021; 134:134/4/jcs249318. [PMID: 33597156 DOI: 10.1242/jcs.249318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The discovery of receptor clustering in the activation of adaptive immune cells has revolutionized our understanding of the physical basis of immune signal transduction. In contrast to the extensive studies of adaptive immune cells, particularly T cells, there is a lesser, but emerging, recognition that the formation of receptor clusters is also a key regulatory mechanism in host-pathogen interactions. Many kinds of innate immune receptors have been found to assemble into nano- or micro-sized domains on the surfaces of cells. The clusters formed between diverse categories of innate immune receptors function as a multi-component apparatus for pathogen detection and immune response regulation. Here, we highlight these pioneering efforts and the outstanding questions that remain to be answered regarding this largely under-explored research topic. We provide a critical analysis of the current literature on the clustering of innate immune receptors. Our emphasis is on studies that draw connections between the phenomenon of receptor clustering and its functional role in innate immune regulation.
Collapse
Affiliation(s)
- Miao Li
- Department of Chemistry, Indiana University, Bloomington, IN 47401, USA
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47401, USA
| |
Collapse
|
9
|
Lelek M, Gyparaki MT, Beliu G, Schueder F, Griffié J, Manley S, Jungmann R, Sauer M, Lakadamyali M, Zimmer C. Single-molecule localization microscopy. NATURE REVIEWS. METHODS PRIMERS 2021; 1:39. [PMID: 35663461 PMCID: PMC9160414 DOI: 10.1038/s43586-021-00038-x] [Citation(s) in RCA: 397] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Single-molecule localization microscopy (SMLM) describes a family of powerful imaging techniques that dramatically improve spatial resolution over standard, diffraction-limited microscopy techniques and can image biological structures at the molecular scale. In SMLM, individual fluorescent molecules are computationally localized from diffraction-limited image sequences and the localizations are used to generate a super-resolution image or a time course of super-resolution images, or to define molecular trajectories. In this Primer, we introduce the basic principles of SMLM techniques before describing the main experimental considerations when performing SMLM, including fluorescent labelling, sample preparation, hardware requirements and image acquisition in fixed and live cells. We then explain how low-resolution image sequences are computationally processed to reconstruct super-resolution images and/or extract quantitative information, and highlight a selection of biological discoveries enabled by SMLM and closely related methods. We discuss some of the main limitations and potential artefacts of SMLM, as well as ways to alleviate them. Finally, we present an outlook on advanced techniques and promising new developments in the fast-evolving field of SMLM. We hope that this Primer will be a useful reference for both newcomers and practitioners of SMLM.
Collapse
Affiliation(s)
- Mickaël Lelek
- Imaging and Modeling Unit, Department of Computational
Biology, Institut Pasteur, Paris, France
- CNRS, UMR 3691, Paris, France
| | - Melina T. Gyparaki
- Department of Biology, University of Pennsylvania,
Philadelphia, PA, USA
| | - Gerti Beliu
- Department of Biotechnology and Biophysics Biocenter,
University of Würzburg, Würzburg, Germany
| | - Florian Schueder
- Faculty of Physics and Center for Nanoscience, Ludwig
Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried,
Germany
| | - Juliette Griffié
- Laboratory of Experimental Biophysics, Institute of
Physics, École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland
| | - Suliana Manley
- Laboratory of Experimental Biophysics, Institute of
Physics, École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland
- ;
;
;
;
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig
Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried,
Germany
- ;
;
;
;
| | - Markus Sauer
- Department of Biotechnology and Biophysics Biocenter,
University of Würzburg, Würzburg, Germany
- ;
;
;
;
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, USA
- ;
;
;
;
| | - Christophe Zimmer
- Imaging and Modeling Unit, Department of Computational
Biology, Institut Pasteur, Paris, France
- CNRS, UMR 3691, Paris, France
- ;
;
;
;
| |
Collapse
|
10
|
Li M, Wang H, Li W, Xu XG, Yu Y. Macrophage activation on "phagocytic synapse" arrays: Spacing of nanoclustered ligands directs TLR1/2 signaling with an intrinsic limit. SCIENCE ADVANCES 2020; 6:eabc8482. [PMID: 33268354 PMCID: PMC7821875 DOI: 10.1126/sciadv.abc8482] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/19/2020] [Indexed: 05/02/2023]
Abstract
The activation of Toll-like receptor heterodimer 1/2 (TLR1/2) by microbial components plays a critical role in host immune responses against pathogens. TLR1/2 signaling is sensitive to the chemical structure of ligands, but its dependence on the spatial distribution of ligands on microbial surfaces remains unexplored. Here, we reveal the quantitative relationship between TLR1/2-triggered immune responses and the spacing of ligand clusters by designing an artificial "phagocytic synapse" nanoarray platform to mimic the cell-microbe interface. The ligand spacing dictates the proximity of receptor clusters on the cell surface and consequently the pro-inflammatory responses of macrophages. However, cell responses reach their maximum at small ligand spacings when the receptor nanoclusters become adjacent to one another. Our study demonstrates the feasibility of using spatially patterned ligands to modulate innate immunity. It shows that the receptor clusters of TLR1/2 act as a driver in integrating the spatial cues of ligands into cell-level activation events.
Collapse
Affiliation(s)
- Miao Li
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Haomin Wang
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Wenqian Li
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Xiaoji G Xu
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
11
|
Li J, Qin Y, Chen Y, Zhao P, Liu X, Dong H, Zheng W, Feng S, Mao X, Li C. Mechanisms of the lipopolysaccharide-induced inflammatory response in alveolar epithelial cell/macrophage co-culture. Exp Ther Med 2020; 20:76. [PMID: 32968433 PMCID: PMC7500047 DOI: 10.3892/etm.2020.9204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
The interaction between alveolar epithelial cells (EpCs) and macrophages (MPs) serves an important role in initiating and maintaining inflammation in chronic pulmonary diseases. The aim of the present study was to investigate the molecular mechanisms of the inflammatory response in co-cultured EpCs and MPs. Briefly, a co-culture system of A549 (EpCs) and THP-1 (monocyte/MPs) cells was established in a filter-separated Transwell plate to evaluate the inflammatory response. Following lipopolysaccharide (LPS) treatment, cytokine levels were measured using ELISAs, NF-κB transcription factor activity was detected using EMSA and protein expression levels were analyzed using Western blot assays subsequently in EpCs and MPs. Co-cultured EpCs/MPs were found to secrete increased levels of interleukin (IL)-6, IL-1β, IL-8 and tumor necrosis factor (TNF)-α following LPS exposure for 6, 12, 24 and 48 h compared with either EpC or MP monocultures. Concurrently, NF-κB was revealed to be activated in MPs at 6 and 12 h, and in EpCs at 24 h. NF-κB DNA binding, Toll-like receptor 4 expression levels and the p65 phosphorylation status were also increased, which may contribute to the inflammatory response in the EpC/MP co-cultures. Notably, cytokine levels decreased following the inhibition of NF-κB expression with pyrrolidinedithiocarbamate. In conclusion, the present study successfully established an EpC/MP co-culture system using LPS, which may be a useful model for studying chronic inflammation in vitro.
Collapse
Affiliation(s)
- Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Yanqin Qin
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Yulong Chen
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Peng Zhao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Xuefang Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Haoran Dong
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Wanchun Zheng
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Suxiang Feng
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Xiaoning Mao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Congcong Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| |
Collapse
|
12
|
Ziegler K, Kunert AT, Reinmuth-Selzle K, Leifke AL, Widera D, Weller MG, Schuppan D, Fröhlich-Nowoisky J, Lucas K, Pöschl U. Chemical modification of pro-inflammatory proteins by peroxynitrite increases activation of TLR4 and NF-κB: Implications for the health effects of air pollution and oxidative stress. Redox Biol 2020; 37:101581. [PMID: 32739154 PMCID: PMC7767743 DOI: 10.1016/j.redox.2020.101581] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 01/05/2023] Open
Abstract
Environmental pollutants like fine particulate matter can cause adverse health effects through oxidative stress and inflammation. Reactive oxygen and nitrogen species (ROS/RNS) such as peroxynitrite can chemically modify proteins, but the effects of such modifications on the immune system and human health are not well understood. In the course of inflammatory processes, the Toll-like receptor 4 (TLR4) can sense damage-associated molecular patterns (DAMPs). Here, we investigate how the TLR4 response and pro-inflammatory potential of the proteinous DAMPs α-Synuclein (α-Syn), heat shock protein 60 (HSP60), and high-mobility-group box 1 protein (HMGB1), which are relevant in neurodegenerative and cardiovascular diseases, changes upon chemical modification with peroxynitrite. For the peroxynitrite-modified proteins, we found a strongly enhanced activation of TLR4 and the pro-inflammatory transcription factor NF-κB in stable reporter cell lines as well as increased mRNA expression and secretion of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-8 in human monocytes (THP-1). This enhanced activation of innate immunity via TLR4 is mediated by covalent chemical modifications of the studied DAMPs. Our results show that proteinous DAMPs modified by peroxynitrite more potently amplify inflammation via TLR4 activation than the native DAMPs, and provide first evidence that such modifications can directly enhance innate immune responses via a defined receptor. These findings suggest that environmental pollutants and related ROS/RNS may play a role in promoting acute and chronic inflammatory disorders by structurally modifying the body's own DAMPs. This may have important consequences for chronic neurodegenerative, cardiovascular or gastrointestinal diseases that are prevalent in modern societies, and calls for action, to improve air quality and climate in the Anthropocene. Pollutants and oxidative stress can cause protein nitration and oligomerization. Peroxynitrite amplifies inflammatory potential of disease-related proteins in vitro. Chemical modification of damage-associated molecular patterns (DAMPs). Positive feedback of modified DAMPs via pattern recognition receptor (TLR4). Air pollution may promote inflammatory disorders in the Anthropocene.
Collapse
Affiliation(s)
- Kira Ziegler
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany
| | - Anna T Kunert
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany
| | | | - Anna Lena Leifke
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, RG6 6AP, Reading, UK
| | - Michael G Weller
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, MA, 02215, USA
| | | | - Kurt Lucas
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany.
| | - Ulrich Pöschl
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany.
| |
Collapse
|
13
|
Wen L, Fan Z, Mikulski Z, Ley K. Imaging of the immune system - towards a subcellular and molecular understanding. J Cell Sci 2020; 133:133/5/jcs234922. [PMID: 32139598 DOI: 10.1242/jcs.234922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immune responses involve many types of leukocytes that traffic to the site of injury, recognize the insult and respond appropriately. Imaging of the immune system involves a set of methods and analytical tools that are used to visualize immune responses at the cellular and molecular level as they occur in real time. We will review recent and emerging technological advances in optical imaging, and their application to understanding the molecular and cellular responses of neutrophils, macrophages and lymphocytes. Optical live-cell imaging provides deep mechanistic insights at the molecular, cellular, tissue and organism levels. Live-cell imaging can capture quantitative information in real time at subcellular resolution with minimal phototoxicity and repeatedly in the same living cells or in accessible tissues of the living organism. Advanced FRET probes allow tracking signaling events in live cells. Light-sheet microscopy allows for deeper tissue penetration in optically clear samples, enriching our understanding of the higher-level organization of the immune response. Super-resolution microscopy offers insights into compartmentalized signaling at a resolution beyond the diffraction limit, approaching single-molecule resolution. This Review provides a current perspective on live-cell imaging in vitro and in vivo with a focus on the assessment of the immune system.
Collapse
Affiliation(s)
- Lai Wen
- Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Zbigniew Mikulski
- Microscopy Core Facility, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Klaus Ley
- Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA .,Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|