1
|
Brako F, Boateng J. Transmucosal drug delivery: prospects, challenges, advances, and future directions. Expert Opin Drug Deliv 2025; 22:525-553. [PMID: 39976299 DOI: 10.1080/17425247.2025.2470224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/18/2025] [Indexed: 02/21/2025]
Abstract
INTRODUCTION Traditional administration routes have limitations including first-pass metabolism and gastrointestinal degradation for sensitive drugs (oral) and pain associated with parenteral injections, which also require trained personnel and refrigeration, making them expensive. This has increased interest in alternative routes, with mucosal surfaces being of high priority. AREAS COVERED Mucosal routes include ocular, oral (buccal/sublingual), nasal and vaginal mucosae which avoid the limitations of the oral and parenteral routes. Though mucosal routes show great potential, they are still hindered by several barriers, especially for systemic absorption, resulting in the development of more advanced novel drug delivery systems to overcome these limitations and achieve therapeutic actions both locally and systemically, similar to or exceeding the oral route. This paper systematically reviews and compares the different mucosal routes, challenges, and recent advances in advanced novel drug delivery system design for emerging clinical challenges including the advent of large biological macromolecules (proteins, peptides, and RNA) for treatment and prevention of diseases. The review also focuses on current challenges and future perspectives. EXPERT OPINION Among the various transmucosal routes discussed, nose-to-brain drug delivery has the greatest translational potential to go beyond the current state of the art and achieve significant clinical impact for neurological diseases.
Collapse
Affiliation(s)
- Francis Brako
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham, Maritime, UK
| | - Joshua Boateng
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham, Maritime, UK
| |
Collapse
|
2
|
Pal S, Rakshit T, Saha S, Jinagal D. Glucose-Responsive Materials for Smart Insulin Delivery: From Protein-Based to Protein-Free Design. ACS MATERIALS AU 2025; 5:239-252. [PMID: 40093833 PMCID: PMC11907299 DOI: 10.1021/acsmaterialsau.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 03/19/2025]
Abstract
Over the last four decades, glucose-responsive materials have emerged as promising candidates for developing smart insulin delivery systems, offering an alternative approach to treating diabetes. These materials replicate the pancreas's natural "closed loop" insulin secretion function by detecting changes in blood glucose levels and releasing insulin accordingly. This perspective highlights the evolution of glucose-responsive materials from protein-based materials, such as glucose oxidase (GOx), and glucose-binding proteins, such as concanavalin A (ConA), to protein-free materials, including phenylboronic acid (PBA) and their applications in smart insulin delivery. We first describe protein-based glucose-responsive systems that depend on different macromolecules, including enzymes and proteins, that interact directly with glucose to promote insulin release. However, these systems encounter significant stability, scalability, and immunogenicity challenges. In contrast, protein-free systems include hydrogels, nanogels/microgels, and microneedle patches, offering long-term stability and storability. In this direction, we discuss the design principles, mechanisms of glucose/pH sensitivity, and the disintegration of both protein-based and protein-free systems into different glucose environments. Finally, we outline the key challenges, potential solutions, and prospects for developing smart insulin delivery systems.
Collapse
Affiliation(s)
- Suchetan Pal
- Department
of Bioscience and Biomedical Engineering, Indian Institute of Technology-Bhilai, Durg, 491002, CG India
- Department
of Chemistry, Indian Institute of Technology-Bhilai, Durg, 491002, CG India
| | - Tatini Rakshit
- Department
of Chemistry, Shiv Nadar Institution of
Eminence, Greater
Noida, 201314, UP India
| | - Sunita Saha
- Department
of Chemistry, Indian Institute of Technology-Bhilai, Durg, 491002, CG India
| | - Dharmesh Jinagal
- Department
of Chemistry, Indian Institute of Technology-Bhilai, Durg, 491002, CG India
| |
Collapse
|
3
|
Gupta J, Sharma G. Nanogel: A versatile drug delivery system for the treatment of various diseases and their future perspective. Drug Deliv Transl Res 2025; 15:455-482. [PMID: 39103593 DOI: 10.1007/s13346-024-01684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Nanogel (NG) drug delivery systems have emerged as promising tools for targeted and controlled drug release, revolutionizing treatment approaches across various diseases. Their unique physicochemical properties, such as nano size, high surface area, biocompatibility, stability, and tunable drug release, make them ideal carriers for a wide range of therapeutic agents. Nanogels (NGs), characterized by their 3D network of crosslinked polymers, offer unique edges like high drug loading capacity, controlled release, and targeted delivery. Additionally, the diverse applications of NGs in medical therapeutics highlight their versatility and potential impact on improving patient outcomes. Their application spans cancer treatment, infectious diseases, and chronic conditions, allowing for precise drug delivery to specific tissues or cells, minimizing side effects, and enhancing therapeutic efficacy. Despite their potential, challenges such as scalability, manufacturing reproducibility, and regulatory hurdles must be addressed. Achieving clinical translation requires overcoming these obstacles to ensure therapeutic payloads' safe and efficient delivery. Strategies such as surface modification and incorporating stimuli-responsive elements enhanced NG performance and addressed specific therapeutic challenges. Advances in nanotechnology, biomaterials, and targeted drug design offer opportunities to improve the performance of NGs and address current limitations. Tailoring NGs for exploring combination therapies and integrating diagnostics for real-time monitoring represent promising avenues for future research. In conclusion, NG drug delivery systems have demonstrated tremendous potential in diverse disease applications. Overcoming challenges and leveraging emerging technologies will pave the way for their widespread clinical implementation, ushering in a new era of precision medicine and improved patient care.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India.
| | - Gaurang Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
4
|
Veg E, Hashmi K, Raza S, Joshi S, Rahman Khan A, Khan T. The Role of Nanomaterials in Diagnosis and Targeted Drug Delivery. Chem Biodivers 2025; 22:e202401581. [PMID: 39313849 DOI: 10.1002/cbdv.202401581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Nanomaterials have evolved into the most useful resources in all spheres of life. Their small size imparts them with unique properties and they can also be designed and engineered according to the specific need. The use of nanoparticles (NPs) in medicine is particularly quite revolutionary as it has opened new therapeutic avenues to diagnose, treat and manage diseases in an efficient and timely manner. The review article presents the biomedical applications of nanomaterials including bioimaging, magnetic hypothermia and photoablation therapy, with a particular focus on disease diagnosis and targeted drug delivery. Nanobiosensors are highly specific and can be delivered into cells to investigate important biomarkers. They are also used for targeted drug delivery and deliver theranostic agents to specific sites of interest. Other than these factors, the review also explores the role of nano-based drug delivery systems for the management and treatment of nervous system disorders, tuberculosis and orthopaedics. The nano-capsulated drugs can be transported by blood to the targeted site for a sustained release over a prolonged period. Some other applications like their role in invasive surgery, photodynamic therapy and quantum dot imaging have also been explored. Despite that, the safety concerns related to nanomedicine are also pertinent to comprehend as well as the biodistribution of NPs in the body and the mechanistic insight.
Collapse
Affiliation(s)
- Ekhlakh Veg
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Kulsum Hashmi
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Saman Raza
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Seema Joshi
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| |
Collapse
|
5
|
Ma Y, Yang J, Ma Y, Yang R, Han F, He M, Liu W, Qian H, Chen W, Huang D. Glucose Oxidase-Immobilized Dually-Crosslinked Nanogels for Rapid-Responsive Insulin Delivery. Adv Healthc Mater 2024; 13:e2402556. [PMID: 39319484 DOI: 10.1002/adhm.202402556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/30/2024] [Indexed: 09/26/2024]
Abstract
Despite the potential benefits of close-looped insulin delivery systems in regulating glycemic homeostasis and effectively alleviating diabetes, they still encounter challenges such as limited effectiveness in preventing low glycemic episodes due to sluggish glucose response, and issues with the instability of enzymes and carriers. In this study, dually-crosslinked and glucose oxidase (GOx)-immobilized insulin nanogels (DC-NGs@Ins) are developed for rapid-responsive and sustained hypoglycemic therapy. The DC-NGs@Ins with the phenylborate ester linker enabled the insulin release in a close-looped fashion, and moreover, immobilized GOx-generated hydrogen peroxide (H2O2) by consuming the glucose, which can further bind to phenylborate ester for enhancing glucose response and accelerating the insulin release. The dually-crosslinked structure (phenylboronic ester and UV-crosslinking) effectively minimized the initial burst release of insulin, thus preventing the potential risk of hypoglycemia. More interestingly, GOx immobilized in the nanogels mitigated GOx leakage and enhanced its multiple utilization compared to free GOx. In vivo study demonstrated that DC-NGs@Ins effectively maintained glycemic levels (BGLs) below 200 mg dL-1 for at least 8 h compared to singly-crosslinked nanogels (SC-NGs@Ins). Therefore, this intelligent insulin delivery system shows potential applications in diabetes treatment.
Collapse
Affiliation(s)
- Yuhong Ma
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Jingru Yang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Yukun Ma
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Rui Yang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Fuwei Han
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Mujiao He
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Wei Liu
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, P. R. China
| |
Collapse
|
6
|
Bernal-Martínez AM, Bedrina B, Angulo-Pachón CA, Galindo F, Miravet JF, Castelletto V, Hamley IW. pH-Induced conversion of bolaamphiphilic vesicles to reduction-responsive nanogels for enhanced Nile Red and Rose Bengal delivery. Colloids Surf B Biointerfaces 2024; 242:114072. [PMID: 39024718 DOI: 10.1016/j.colsurfb.2024.114072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
This study details the preparation and investigation of molecular nanogels formed by the self-assembly of bolaamphiphilic dipeptide derivatives containing a reduction-sensitive disulfide unit. The described bolaamphiphiles, featuring amino acid terminal groups, generate cationic vesicles at pH 4, which evolve into gel-like nanoparticles at pH 7. The critical aggregation concentration has been determined, and the nanogels' size and morphology have been characterized through Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). Circular Dichroism (CD) spectroscopy reveals substantial molecular reconfigurations accompanying the pH shift. These nanogels enhance the in vitro cellular uptake of the lipophilic dye Nile Red and the ionic photosensitizer Rose Bengal into Human colon adenocarcinoma (HT-29) cells, eliminating the need for organic co-solvents in the former case. Fluorescence measurements with Nile Red as a probe indicate the reduction-sensitive disassembly of the nanogels. In photodynamic therapy (PDT) applications, Rose Bengal-loaded nanogels demonstrate notable improvements, with flow cytometry analysis evidencing increased apoptotic activity in the study with HT-29 cells.
Collapse
Affiliation(s)
- Ana M Bernal-Martínez
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain
| | - Begoña Bedrina
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain
| | - César A Angulo-Pachón
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain; Departamento de Química Orgánica y Bio-orgánica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Las Rozas, Madrid 28232, Spain
| | - Francisco Galindo
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain
| | - Juan F Miravet
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain.
| | - Valeria Castelletto
- School of Chemistry, Pharmacy and Food Biosciences, University of Reading, Reading RG6 6AD, UK
| | - Ian W Hamley
- School of Chemistry, Pharmacy and Food Biosciences, University of Reading, Reading RG6 6AD, UK
| |
Collapse
|
7
|
Dehchani A, Jafari A, Shahi F. Nanogels in Biomedical Engineering: Revolutionizing Drug Delivery, Tissue Engineering, and Bioimaging. POLYM ADVAN TECHNOL 2024; 35. [DOI: 10.1002/pat.6595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/14/2024] [Indexed: 01/06/2025]
Abstract
ABSTRACTNanogels represent a significant innovation in the fields of nanotechnology and biomedical engineering, combining the properties of hydrogels and nanoparticles to create versatile platforms for drug delivery, tissue engineering, bioimaging, and other biomedical applications. These nanoscale hydrogels, typically ranging from 10 to 1000 nm, possess unique characteristics such as high water content, biocompatibility, and the ability to encapsulate both hydrophilic and hydrophobic molecules. The review explores the synthesis, structural configurations, and stimuli‐responsive nature of nanogels, highlighting their adaptability for targeted drug delivery, including across challenging barriers like the blood–brain barrier. Furthermore, the paper delves into the biomedical applications of nanogels, particularly in drug delivery systems, tissue engineering, and bioimaging, demonstrating their potential to revolutionize these fields. Despite the promising preclinical results, challenges remain in translating these technologies into clinical practice, including issues related to stability, scalability, and regulatory approval. The review concludes by discussing future perspectives, emphasizing the need for further research to optimize the properties and applications of nanogels, ultimately aiming to enhance their efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Atieh Janmaleki Dehchani
- Department of Polymer Engineering and Color Technology Amirkabir University of Technology Tehran Iran
| | - Aliakbar Jafari
- Department of Polymer Engineering and Color Technology Amirkabir University of Technology Tehran Iran
| | - Farangis Shahi
- Department of Chemical Engineering Amirkabir University of Technology Tehran Iran
| |
Collapse
|
8
|
Ma Y, Wang W, He M, Liu Y, Li C, Zhong Y, Bu Q, Huang D, Qian H, Chen W. PVA-based bulk microneedles capable of high insulin loading and pH-triggered degradation for multi-responsive and sustained hypoglycemic therapy. Biomater Sci 2024; 12:507-517. [PMID: 38088652 DOI: 10.1039/d3bm01760e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
"Closed-loop" insulin-loaded microneedle patche shows great promise for improving therapeutic outcomes and life quality for diabetes patients. However, it is typically hampered by limited insulin loading capacity, random degradation, and intricate preparation procedures for the independence of the "closed-loop" bulk microneedles. In this study, we combined the solubility of microneedles and "closed-loop" systems and designed poly(vinyl alcohol)-based bulk microneedles (MNs@GI) through in situ photopolymerization for multi-responsive and sustained hypoglycemic therapy, which significantly simplified the preparation process and improved insulin loading. GOx/insulin co-encapsulated MNs@GI with a phenylboronic ester structure improved glycemic responsiveness to control the insulin release under high glucose conditions and reduced inflammation risk in the normal skin. MNs@GI could further degrade to increase insulin release due to the crosslinked acetal-linkage hydrolysis in the presence of gluconic acid, which was caused by GOx-mediated glucose-oxidation in a hyperglycemic environment. The in vivo results showed that MNs@GI effectively regulated glycemic levels within the normal range for approximately 10 h compared to that of only insulin-loaded microneedles (MNs@INS). Consequently, the highly insulin-loaded, multi-responsive, and pH-triggered MN system has tremendous potential for diabetes treatment.
Collapse
Affiliation(s)
- Yuhong Ma
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Wei Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Mujiao He
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Yunzhu Liu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Caihua Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Quanmin Bu
- Department of Public Security and Management, Jiangsu Police Institute, Nanjing 210031, Jiangsu, China.
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| |
Collapse
|
9
|
Kumar N, Singh S, Sharma P, Kumar B, Kumar A. Single-, Dual-, and Multi-Stimuli-Responsive Nanogels for Biomedical Applications. Gels 2024; 10:61. [PMID: 38247784 PMCID: PMC10815403 DOI: 10.3390/gels10010061] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
In recent years, stimuli-responsive nanogels that can undergo suitable transitions under endogenous (e.g., pH, enzymes and reduction) or exogenous stimuli (e.g., temperature, light, and magnetic fields) for on-demand drug delivery, have received significant interest in biomedical fields, including drug delivery, tissue engineering, wound healing, and gene therapy due to their unique environment-sensitive properties. Furthermore, these nanogels have become very popular due to some of their special properties such as good hydrophilicity, high drug loading efficiency, flexibility, and excellent biocompatibility and biodegradability. In this article, the authors discuss current developments in the synthesis, properties, and biomedical applications of stimulus-responsive nanogels. In addition, the opportunities and challenges of nanogels for biomedical applications are also briefly predicted.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Chemistry, S.D. College Muzaffarnagar, Muzaffarnagar 251001, Uttar Pradesh, India
| | - Sauraj Singh
- College of Pharmacy, Gachon University, Incheon 13120, Republic of Korea;
| | - Piyush Sharma
- Department of Zoology, S.D. College Muzaffarnagar, Muzaffarnagar 251001, Uttar Pradesh, India;
| | - Bijender Kumar
- Creative Research Center for Nanocellulose Future Composites, Department of Mechanical Engineering, Inha University, Incheon 22212, Republic of Korea;
| | - Anuj Kumar
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
10
|
López-Iglesias C, Klinger D. Rational Design and Development of Polymeric Nanogels as Protein Carriers. Macromol Biosci 2023; 23:e2300256. [PMID: 37551821 DOI: 10.1002/mabi.202300256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Proteins have gained significant attention as potential therapeutic agents owing to their high specificity and reduced toxicity. Nevertheless, their clinical utility is hindered by inherent challenges associated with stability during storage and after in vivo administration. To overcome these limitations, polymeric nanogels (NGs) have emerged as promising carriers. These colloidal systems are capable of efficient encapsulation and stabilization of protein cargoes while improving their bioavailability and targeted delivery. The design of such delivery systems requires a comprehensive understanding of how the synthesis and formulation processes affect the final performance of the protein. This review highlights critical aspects involved in the development of NGs for protein delivery, with specific emphasis on loading strategies and evaluation techniques. For example, factors influencing loading efficiency and release kinetics are discussed, along with strategies to optimize protein encapsulation through protein-carrier interactions to achieve the desired therapeutic outcomes. The discussion is based on recent literature examples and aims to provide valuable insights for researchers working toward the advancement of protein-based therapeutics.
Collapse
Affiliation(s)
- Clara López-Iglesias
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Straße 2-4, 14195, Berlin, Germany
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Campus Vida s/n, Santiago de Compostela, 15782, Spain
| | - Daniel Klinger
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Straße 2-4, 14195, Berlin, Germany
| |
Collapse
|
11
|
Zhao J, Zhang J, Xu Y, Dong J, Dong Q, Zhao G, Shi Y. Nanotechnological approaches for the treatment of placental dysfunction: recent trends and future perspectives. Nanomedicine (Lond) 2023; 18:1961-1978. [PMID: 37990993 DOI: 10.2217/nnm-2023-0194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
The transitory placenta develops during pregnancy and mediates the blood flow between the mother and the developing baby. Placental dysfunction, including but not limited to placenta accreta spectrum, fetal growth restriction, preeclampsia and gestational trophoblastic disease, arises from abnormal placental development and can result in significant adverse maternal and fetal health outcomes. Unfortunately, there is a lack of treatment alternatives for these disorders. Nanocarriers offer versatility, including extended circulation, organ-specific targeting and intracellular transport, finely tuning therapeutic placental interactions. This thorough review explores nanotechnological strategies for addressing placental disorders, encompassing dysfunction insights, potential drug-delivery targets and recent strides in placenta-targeted nanoparticle (NP) therapies, instilling hope for effective placental malfunction treatment.
Collapse
Affiliation(s)
- Jian Zhao
- Delivery Rooms, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China
| | - Jungang Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Yan Xu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Juan Dong
- Delivery Rooms, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China
| | - Qichao Dong
- Delivery Rooms, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China
| | - Guoqiang Zhao
- Delivery Rooms, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China
| | - Ying Shi
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| |
Collapse
|
12
|
Duan QY, Zhu YX, Jia HR, Wang SH, Wu FG. Nanogels: Synthesis, properties, and recent biomedical applications. PROGRESS IN MATERIALS SCIENCE 2023; 139:101167. [DOI: 10.1016/j.pmatsci.2023.101167] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Yang D, Cai C, Liu K, Peng Z, Yan C, Xi J, Xie F, Li X. Recent advances in glucose-oxidase-based nanocomposites for diabetes diagnosis and treatment. J Mater Chem B 2023; 11:7582-7608. [PMID: 37522237 DOI: 10.1039/d3tb01097j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Glucose oxidase (GOx) has attracted a lot of attention in the field of diabetes diagnosis and treatment in recent years owing to its inherent biocompatibility and glucose-specific catalysis. GOx can effectively catalyze the oxidation of glucose in the blood to hydrogen peroxide (H2O2) and glucuronic acid and can be used as a sensitive element in biosensors to detect blood glucose concentrations. Nanomaterials based on the immobilization of GOx can significantly improve the performance of glucose sensors through, for example, reduced electron tunneling distance. Moreover, various insulin-loaded nanomaterials (e.g., metal-organic backbones, and mesoporous silica nanoparticles) have been developed for the control of blood glucose concentrations based on GOx catalytic chemistry. These nano-delivery carriers are capable of releasing insulin in response to GOx-mediated changes in the microenvironment, allowing for a rapid return of the blood microenvironment to a normal state. Therefore, glucose biosensors and insulin delivery vehicles immobilized with GOx are important tools for the diagnosis and treatment of diabetes. This paper reviews the characteristics of various GOx-based nanomaterials developed for glucose biosensing and insulin-responsive release as well as research progress, and also highlights the current challenges and opportunities facing this field.
Collapse
Affiliation(s)
- Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China.
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
14
|
Zhou S, Yang R, Xie X, Wang L, Zheng S, Li N, Tang S, Zan X. pH-Responsive Hexa-Histidine Metal Assembly (HmA) with Enhanced Biocatalytic Cascades as the Vehicle for Glucose-Mediated Long-Acting Insulin Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301771. [PMID: 37269054 PMCID: PMC10427356 DOI: 10.1002/advs.202301771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/26/2023] [Indexed: 06/04/2023]
Abstract
Diabetes has been listed as one of the three major diseases that endanger human health. Accurately injecting insulin (Ins) depending on the level of blood glucose (LBG) is the standard treatment, especially controlling LBG in the long-term by a single injection. Herein, the pH-responsive hexa-histidine metal assembly (HmA) encapsulated with enzymes (GOx and CAT) and Ins (HmA@GCI) is engineered as the vehicle for glucose-mediated insulin delivery. HmA not only shows high proteins loading efficiency, but also well retained proteins activity and protect proteins from protease damage. Within HmA, the biocatalytic activities of enzymes and the efficiency of the cascade reaction between GOx and CAT are enhanced, leading to a super response to the change of LBG with insulin release and efficient clearance of harmful byproducts of GOx (H2 O2 ). In the treatment of diabetic mice, HmA@GCI reduces LBG to normal in half an hour and maintains for more than 5 days by a single subcutaneous injection, and nearly 24 days with four consecutive injections. During the test period, no symptoms of hypoglycemia and toxicity to tissues and organs are observed. These results indicate that HmA@GCI is a safe and long-acting hypoglycemic agent with prospective clinical application.
Collapse
Affiliation(s)
- Sijie Zhou
- School of Ophthalmology and OptometryEye HospitalSchool of Biomedical EngineeringWenzhou Medical UniversityWenzhou325035China
- Wenzhou InstituteWenzhou Key Laboratory of Perioperative MedicineUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Ruhui Yang
- School of Ophthalmology and OptometryEye HospitalSchool of Biomedical EngineeringWenzhou Medical UniversityWenzhou325035China
| | - Xiaoling Xie
- School of Ophthalmology and OptometryEye HospitalSchool of Biomedical EngineeringWenzhou Medical UniversityWenzhou325035China
- Wenzhou InstituteWenzhou Key Laboratory of Perioperative MedicineUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Liwen Wang
- Department of OphthalmologyHuzhou Central HospitalAffiliated Central hospital Huzhou UniversityHuzhou313000China
| | - Shengwu Zheng
- Wenzhou Celecare Medical Instruments Co., LtdWenzhou325000China
| | - Na Li
- Wenzhou InstituteWenzhou Key Laboratory of Perioperative MedicineUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Sicheng Tang
- Wenzhou InstituteWenzhou Key Laboratory of Perioperative MedicineUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Xingjie Zan
- School of Ophthalmology and OptometryEye HospitalSchool of Biomedical EngineeringWenzhou Medical UniversityWenzhou325035China
- Wenzhou InstituteWenzhou Key Laboratory of Perioperative MedicineUniversity of Chinese Academy of SciencesWenzhou325001China
| |
Collapse
|
15
|
Shen D, Yu H, Wang L, Wang Y, Hong Y, Li C. Molecular Docking-Guided Design on Glucose-Responsive Nanoparticles for Microneedle Fabrication and "Three-Meal-per-Day" Blood-Glucose Regulation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37339143 DOI: 10.1021/acsami.3c06483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
It was greatly significant, but difficult, to develop stimulus-responsive polymeric nanoparticles with efficient protein-loading and protein-delivering properties. Crucial obstacles were the ambiguous protein/nanoparticle-interacting mechanisms and the corresponding inefficient trial-and-error strategies, which brought large quantities of experiments in design and optimization. In this work, a molecular docking-guided universal "segment-functional group-polymer" process was proposed to simplify the previous laborious experimental step. The insulin-delivering glucose-responsive polymeric nanoparticles for diabetic treatments were taken as the examples. The molecular docking study obtained insights from the insulin/segment interactions. It was then experimentally confirmed in six functional groups for insulin-loading performances of their corresponding polymers. The optimization formulation was further proved effective in blood-glucose stabilization on the diabetic rats under the "three-meal-per-day" mode. It was believed that the molecular docking-guided designing process was promising in the protein-delivering field.
Collapse
Affiliation(s)
- Di Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yichuan Hong
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chengjiang Li
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| |
Collapse
|
16
|
Ma Y, Li Q, Yang J, Cheng Y, Li C, Zhao C, Chen W, Huang D, Qian H. Crosslinked zwitterionic microcapsules to overcome gastrointestinal barriers for oral insulin delivery. Biomater Sci 2023; 11:975-984. [PMID: 36541189 DOI: 10.1039/d2bm01606k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Oral insulin delivery has been extensively considered to achieve great patient compliance and convenience as well as favourable glucose homeostasis. However, its application is highly limited by the low insulin bioavailability owing to gastrointestinal barriers. Herein, we developed crosslinked zwitterionic microcapsules (CB-MCs@INS) based on a carboxyl betaine (CB)-modified poly(acryloyl carbonate-co-caprolactone) copolymer via the combination of microfluidics and UV-crosslinking to improve oral insulin delivery. CB-MC@INS microcapsules with high drug loading capacity (>40%) protected insulin from acid degradation in the harsh gastric environment. Through the introduction of CB-moieties, CB-MCs@INS possessed superior affinity for epithelial cells and improved insulin transport as compared to non-CB modified MCs@INS (5.15-fold), which was mainly attributed to the CB-mediated cell surface transporter via the PAT1 pathway. Moreover, the oral administration of CB-MCs@INS exhibited an excellent hypoglycaemic effect and maintained normoglycemia for up to 8 h in diabetic mice, demonstrating the great potential of crosslinked zwitterionic microcapsules as an oral insulin delivery platform for diabetes therapy.
Collapse
Affiliation(s)
- Yuhong Ma
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Qihang Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Jingru Yang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yuan Cheng
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Caihua Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Changshun Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
17
|
Duan QY, Zhu YX, Jia HR, Guo Y, Zhang X, Gu R, Li C, Wu FG. Platinum-Coordinated Dual-Responsive Nanogels for Universal Drug Delivery and Combination Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203260. [PMID: 36333101 DOI: 10.1002/smll.202203260] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Developing a universal nanoplatform for efficient delivery of various drugs to target sites is urgent for overcoming various biological barriers and realizing combinational cancer treatment. Nanogels, with the advantages of both hydrogels and nanoparticles, may hold potential for addressing the above issue. Here, a dual-responsive nanogel platform (HPC nanogel) is constructed using β-cyclodextrin-conjugated hyaluronic acid (HA-βCD), polyethyleneimine (PEI), and cisplatin. HA-βCD and PEI compose the skeleton of the nanogel, and cisplatin molecules provide the junctions inside the skeleton, thus affording a multiple interactions-based nanogel. Besides, HA endows the nanogel with hyaluronidase (HAase)-responsiveness, and cisplatin guarantees the glutathione (GSH)-responsive ability, which make the nanogel a dual-responsive platform that can degrade and release the loaded drugs when encountering HAase or GSH. Additionally, the HPC nanogel possesses excellent small-molecule drug and protein loading and intracellular delivery capabilities. Especially, for proteins, their intracellular delivery via nanogels is not hindered by serum proteins, and the enzymes delivered into cells still maintain their catalytic activities. Furthermore, the nanogel can codeliver different cargoes to achieve "cocktail" chemotherapeutic efficacy and realize combination cancer therapy. Overall, the HPC nanogel can serve as a multifunctional platform capable of delivering desired drugs to treat cancer or other diseases.
Collapse
Affiliation(s)
- Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xinping Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Ruihan Gu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
18
|
Chen WH, Chen QW, Chen Q, Cui C, Duan S, Kang Y, Liu Y, Liu Y, Muhammad W, Shao S, Tang C, Wang J, Wang L, Xiong MH, Yin L, Zhang K, Zhang Z, Zhen X, Feng J, Gao C, Gu Z, He C, Ji J, Jiang X, Liu W, Liu Z, Peng H, Shen Y, Shi L, Sun X, Wang H, Wang J, Xiao H, Xu FJ, Zhong Z, Zhang XZ, Chen X. Biomedical polymers: synthesis, properties, and applications. Sci China Chem 2022; 65:1010-1075. [PMID: 35505924 PMCID: PMC9050484 DOI: 10.1007/s11426-022-1243-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
Biomedical polymers have been extensively developed for promising applications in a lot of biomedical fields, such as therapeutic medicine delivery, disease detection and diagnosis, biosensing, regenerative medicine, and disease treatment. In this review, we summarize the most recent advances in the synthesis and application of biomedical polymers, and discuss the comprehensive understanding of their property-function relationship for corresponding biomedical applications. In particular, a few burgeoning bioactive polymers, such as peptide/biomembrane/microorganism/cell-based biomedical polymers, are also introduced and highlighted as the emerging biomaterials for cancer precision therapy. Furthermore, the foreseeable challenges and outlook of the development of more efficient, healthier and safer biomedical polymers are discussed. We wish this systemic and comprehensive review on highlighting frontier progress of biomedical polymers could inspire and promote new breakthrough in fundamental research and clinical translation.
Collapse
Affiliation(s)
- Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350 China
| | - Shun Duan
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Yongyuan Kang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Yun Liu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215 China
| | - Chengqiang Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Meng-Hua Xiong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006 China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123 China
| | - Kuo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Zhanzhan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xu Zhen
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Xiqun Jiang
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350 China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215 China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006 China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| |
Collapse
|
19
|
Wu L, Pan W, Ye H, Liang N, Zhao L. Sensitive fluorescence detection for hydrogen peroxide and glucose using biomass carbon dots: Dual-quenching mechanism insight. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Xu X, Ran Y, Huang C, Yin Z. Glucose and H 2O 2 Dual-Responsive Nanocomplex Grafted with Insulin Prodrug for Blood Glucose Regulation. Biomacromolecules 2022; 23:1765-1776. [PMID: 35275618 DOI: 10.1021/acs.biomac.2c00016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although "closed-loop" smart insulin delivery systems have been extensively investigated, the majority of them suffer from low insulin loading efficiency and slow glucose response. Here, we constructed a novel nanocomplex (NC), which was prepared by electrostatic interaction between negatively charged insulin prodrug nanoparticles (NPs) and positively charged polycaprolactone-polyethylenimine (PCL-PEI) micelles. The insulin prodrug was linked to acetalated dextran (AD) via borate ester bonds to form IAD NPs, and glucose oxidase (GOx) was encapsulated in PCL-PEI micelles. The NC was negatively charged with a high insulin grafting rate (0.473 mg/mg), and in vitro experiments revealed that IAD was sensitive to hyperglycemia and H2O2, whereas GOx significantly improved the response to glucose by altering the microenvironment to promote sustained insulin release. Furthermore, compared with free insulin and IAD NPs, subcutaneously injected NCs in diabetic rats had long-term hypoglycemic effects, showing excellent biocompatibility in vitro and in vivo, which had good potential in insulin self-regulation delivery.
Collapse
Affiliation(s)
- Xiaowen Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yu Ran
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chengyuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Liu Y, Zou P, Huang J, Cai J. Co-immobilization of glucose oxidase and catalase in porous magnetic chitosan microspheres for production of sodium gluconate. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2022. [DOI: 10.1515/ijcre-2021-0237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Abstract
In the process of immobilizing the enzyme, the overflow of enzyme and the decrease of enzyme activity are very serious. In order to improve the stable binding between enzyme and carrier, a kind of porous magnetic chitosan microsphere with appropriate pore size was successfully prepared by adjusting the size of pore-forming agent in this paper. The rough porous structure is favorable for the adsorption of enzyme and the catalytic action of enzyme on substrate. The results showed that when the pore size of the microspheres was at 790.15 ± 250.91 nm, the protein loading and enzyme activity of GOD could be increased effectively, which could reach 58.28 ± 2.64 mg/g and 16.93 ± 0.14 U, respectively. The co-immobilization of CAT and GOD eliminated the harmful by-product H2O2 in time and effectively solved the problem of continuous deactivation of GOD in the reaction process. When the mass ratio of PMCSM/GOD/CAT was 100/6.02/10.96 (mg/mg/mg), the relative enzyme activity of GOD reached the highest (133.32 ± 0.68%). The thermal stability and pH stability of the enzyme were greatly improved after co-immobilization. The relative enzyme activity of PMCSM@GOD@CAT was 57.27 ± 3.04% at 60 °C, while that of free GOD was only 28.76 ± 4.10%. The relative enzyme activity of PMCSM@GOD@CAT was above 63% at pH 5–10, while the relative enzyme activity of free GOD was only 4.98 ± 0.72% at pH 10. The yield of sodium gluconate from 50 mL 250 mg/mL glucose catalyzed by PMCSM@GOD@CAT loading 60.2 mg GOD was 96.19 ± 0.79% at pH 6.0 and 30 °C, and the reaction lasted 6 h. The relative enzyme activity of PMCSM@GOD@CAT remained 69.77 ± 0.78% after repeated use for 10 times. After 30 days of storage, PMCSM@GOD@CAT maintained its initial activity of 76.52 ± 1.41%. The immobilized process studied in this paper provides a theoretical basis for the production of sodium gluconate by double enzyme directly catalyzing and lays a certain foundation for the application of immobilized enzyme in the future chemical industry and food industry.
Collapse
Affiliation(s)
- Youcai Liu
- School of Bioengineering and Food , Hubei University of Technology , Wuhan , 430068 , China
| | - Pengpeng Zou
- School of Bioengineering and Food , Hubei University of Technology , Wuhan , 430068 , China
| | - Juan Huang
- School of Bioengineering and Food , Hubei University of Technology , Wuhan , 430068 , China
| | - Jun Cai
- School of Bioengineering and Food , Hubei University of Technology , Wuhan , 430068 , China
| |
Collapse
|
22
|
Liu Y, Zeng S, Ji W, Yao H, Lin L, Cui H, Santos HA, Pan G. Emerging Theranostic Nanomaterials in Diabetes and Its Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102466. [PMID: 34825525 PMCID: PMC8787437 DOI: 10.1002/advs.202102466] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/03/2021] [Indexed: 05/14/2023]
Abstract
Diabetes mellitus (DM) refers to a group of metabolic disorders that are characterized by hyperglycemia. Oral subcutaneously administered antidiabetic drugs such as insulin, glipalamide, and metformin can temporarily balance blood sugar levels, however, long-term administration of these therapies is associated with undesirable side effects on the kidney and liver. In addition, due to overproduction of reactive oxygen species and hyperglycemia-induced macrovascular system damage, diabetics have an increased risk of complications. Fortunately, recent advances in nanomaterials have provided new opportunities for diabetes therapy and diagnosis. This review provides a panoramic overview of the current nanomaterials for the detection of diabetic biomarkers and diabetes treatment. Apart from diabetic sensing mechanisms and antidiabetic activities, the applications of these bioengineered nanoparticles for preventing several diabetic complications are elucidated. This review provides an overall perspective in this field, including current challenges and future trends, which may be helpful in informing the development of novel nanomaterials with new functions and properties for diabetes diagnosis and therapy.
Collapse
Affiliation(s)
- Yuntao Liu
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Siqi Zeng
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Wei Ji
- Department of PharmaceuticsSchool of PharmacyJiangsu UniversityZhenjiangJiangsu212013China
| | - Huan Yao
- Sichuan Institute of Food InspectionChengdu610097China
| | - Lin Lin
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Haiying Cui
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Department of Biomedical Engineering and W.J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of Groningen/University Medical Center GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangJiangsu212013China
| |
Collapse
|
23
|
Sun X, Ji W, Zhang B, Ma L, Fu W, Qian W, Zhang X, Li J, Sheng E, Tao Y, Zhu D. Theranostic microneedle array patch for integrated glycemia sensing and self-regulated release of insulin. Biomater Sci 2022; 10:1209-1216. [DOI: 10.1039/d1bm01834e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diabetes can cause various complications and affect the normal functioning of the human body. A theranostic and diagnostic platform for real-time glycemia sensing and simultaneous self-regulated release of insulin is...
Collapse
|
24
|
Najmeddine AA, Saeed M, Beadham IG, ElShaer A. Efficacy and safety of glucose sensors for delivery of insulin: A Systematic Review. PHARMANUTRITION 2021. [DOI: 10.1016/j.phanu.2021.100280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
|
26
|
Banach Ł, Williams GT, Fossey JS. Insulin Delivery Using Dynamic Covalent Boronic Acid/Ester‐Controlled Release. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Łukasz Banach
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| | - George T. Williams
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| | - John S. Fossey
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| |
Collapse
|
27
|
Du X, Gao Y, Kang Q, Xing J. Design and Applications of Tumor Microenvironment-Responsive Nanogels as Drug Carriers. Front Bioeng Biotechnol 2021; 9:771851. [PMID: 34746113 PMCID: PMC8569621 DOI: 10.3389/fbioe.2021.771851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 12/03/2022] Open
Abstract
In recent years, the exploration of tumor microenvironment has provided a new approach for tumor treatment. More and more researches are devoted to designing tumor microenvironment-responsive nanogels loaded with therapeutic drugs. Compared with other drug carriers, nanogel has shown great potential in improving the effect of chemotherapy, which is attributed to its stable size, superior hydrophilicity, excellent biocompatibility, and responsiveness to specific environment. This review primarily summarizes the common preparation techniques of nanogels (such as free radical polymerization, covalent cross-linking, and physical self-assembly) and loading ways of drug in nanogels (including physical encapsulation and chemical coupling) as well as the controlled drug release behaviors. Furthermore, the difficulties and prospects of nanogels as drug carriers are also briefly described.
Collapse
Affiliation(s)
- Xinjing Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yuting Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Qi Kang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinfeng Xing
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
28
|
Peng Y, Wang Z, Peña J, Guo Z, Xing J. Effect of TEOA on the Process of Photopolymerization at 532 nm and Properties of Nanogels. Photochem Photobiol 2021; 98:132-140. [PMID: 34390000 DOI: 10.1111/php.13505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
Nanogel is an important kind of biomaterials applied for wound dressings, drug delivery, medical diagnostics and biosensors. The properties of nanogels closely depend on the density of the crosslinking network. In this study, the role of triethanolamine (TEOA) in the effect on the crosslinking degree of nanogels based on poly(ethylene glycol) diacrylate (PEGDA) was investigated and illustrated. The effect of TEOA on the process of photopolymerization at 532 nm and properties of the nanogels was systematically investigated by using UV-vis spectroscopy, FT-IR spectroscopy, 1 H NMR, DLS, SEM, AFM and DSC. In brief, the double bond conversion of photopolymerization and the crosslinking degree of nanogels can be effectively regulated by TEOA.
Collapse
Affiliation(s)
- Yuanyuan Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Zhipeng Wang
- Tianjin Institute of Metrological Supervision and Testing, Tianjin, 300192, China
| | - Jhair Peña
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Zhiming Guo
- Tianjin Institute of Metrological Supervision and Testing, Tianjin, 300192, China
| | - Jinfeng Xing
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
29
|
Shen D, Yu H, Wang L, Chen X, Feng J, Zhang Q, Xiong W, Pan J, Han Y, Liu X. Biodegradable phenylboronic acid-modified ε-polylysine for glucose-responsive insulin delivery via transdermal microneedles. J Mater Chem B 2021; 9:6017-6028. [PMID: 34259305 DOI: 10.1039/d1tb00880c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microneedles with insulin-loaded glucose-responsive particles are promising to control the blood glucose levels of diabetic patients. In particular, the long-term usage of these microneedles calls for biodegradable and cost-effective particles, which are still large challenges. In this paper, glucose-responsive 4-carboxy-3-fluorophenylboronic acid-grafted ε-polylysine (CFPBA-g-PL) was synthesized to meet these requirements. CFPBA-g-PL had low cytotoxicity, good hemocompatibility and no tissue reaction. The pharmacokinetics of CFPBA-g-PL were also studied. The self-assembled particles of CFPBA-g-PL were prepared via simple ultrasonic treatment. The insulin-loaded particles of CFPBA-g-PL (named INS/GRP-12.8) presented a glucose-responsive insulin delivery performance based on the disassembly-related mechanism in vitro. The INS/GRP-12.8-encapsulated microneedle patch with a uniform morphology and moderate skin penetration performance was prepared via a molding strategy. INS/GRP-12.8 lasted for more than 8 hours of normoglycemia on STZ-induced diabetic SD rats via subcutaneous injection and the INS/GRP-12.8-encapsulated microneedle patch also showed a blood-glucose-level-lowering performance in vivo via transdermal administration.
Collapse
Affiliation(s)
- Di Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Xiang Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Jingyi Feng
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| | - Qian Zhang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| | - Wei Xiong
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| | - Jin Pan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| | - Yin Han
- Zhejiang Institute of Medical Device Testing, Hangzhou 310018, P. R. China
| | - Xiaowei Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| |
Collapse
|
30
|
Nauck MA, Wefers J, Meier JJ. Treatment of type 2 diabetes: challenges, hopes, and anticipated successes. Lancet Diabetes Endocrinol 2021; 9:525-544. [PMID: 34181914 DOI: 10.1016/s2213-8587(21)00113-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Despite the successful development of new therapies for the treatment of type 2 diabetes, such as glucagon-like peptide-1 (GLP-1) receptor agonists and sodium-glucose cotransporter-2 inhibitors, the search for novel treatment options that can provide better glycaemic control and at reduce complications is a continuous effort. The present Review aims to present an overview of novel targets and mechanisms and focuses on glucose-lowering effects guiding this search and developments. We discuss not only novel developments of insulin therapy (eg, so-called smart insulin preparation with a glucose-dependent mode of action), but also a group of drug classes for which extensive research efforts have not been rewarded with obvious clinical impact. We discuss the potential clinical use of the salutary adipokine adiponectin and the hepatokine fibroblast growth factor (FGF) 21, among others. A GLP-1 peptide receptor agonist (semaglutide) is now available for oral absorption, and small molecules activating GLP-1 receptors appear on the horizon. Bariatric surgery and its accompanying changes in the gut hormonal milieu offer a background for unimolecular peptides interacting with two or more receptors (for GLP-1, glucose-dependent insulinotropic polypeptide, glucagon, and peptide YY) and provide more substantial glycaemic control and bodyweight reduction compared with selective GLP-1 receptor agonists. These and additional approaches will help expand the toolbox of effective medications needed for optimising the treatment of well delineated subgroups of type 2 diabetes or help develop personalised approaches for glucose-lowering drugs based on individual characteristics of our patients.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital, Ruhr University Bochum, Bochum, Germany.
| | - Jakob Wefers
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Juris J Meier
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
31
|
Fu Y, Liu P, Chen M, Jin T, Wu H, Hei M, Wang C, Xu Y, Qian X, Zhu W. On-demand transdermal insulin delivery system for type 1 diabetes therapy with no hypoglycemia risks. J Colloid Interface Sci 2021; 605:582-591. [PMID: 34343731 DOI: 10.1016/j.jcis.2021.07.126] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 12/31/2022]
Abstract
Diabetes is a metabolic disease that is affecting an ever-increasing number of people worldwide, resulting in increased burdens on healthcare systems and societies. Constant monitoring of blood glucose levels is required to prevent serious or even deadly complications. One major challenge of diabetes management is the simple and timely administration of insulin to facilitate consistent blood glucose regulation and reduce the incidence of hypoglycemia. With this research, we construct an insulin delivery system, the delivery system is comprised of phenylboronic acid based fluorescent probes, which is used as glucose responsive linkers, mesoporous silica nanoparticles providing an insulin reservoir, and zinc oxide nanoparticles used as gate keepers. The system with glucose sensitive responsive linker exhibits controlled release of insulin under high glucose concentrations, providing prolonged blood glucose regulation and no risks of hypoglycemia. Furthermore, the system is combined with a hyaluronic-acid based microneedle patch, which exhibit efficient skin penetration for transdermal delivery. With our system, the nanoparticles provide outstanding in vivo glucose regulation when administrated by subcutaneous injection or via transdermal microneedle patch. We anticipate that our biocompatible smart glucose responsive microneedle patch (SGRM patch) will facilitate the development of clinically useful systems.
Collapse
Affiliation(s)
- Yun Fu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Peng Liu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Key Laboratory of Diabetes, 600 Yishan Road, Shanghai 200233, China
| | - Meng Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Tongxia Jin
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Huijing Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mingyang Hei
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Congrong Wang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Key Laboratory of Diabetes, 600 Yishan Road, Shanghai 200233, China; Department of Endocrinology & Metabolism, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Yufang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weiping Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
32
|
Responsive Polymeric Nanoparticles for Biofilm-infection Control. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2610-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
He M, Yu P, Hu Y, Zhang J, He M, Nie C, Chu X. Erythrocyte-Membrane-Enveloped Biomineralized Metal-Organic Framework Nanoparticles Enable Intravenous Glucose-Responsive Insulin Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19648-19659. [PMID: 33890785 DOI: 10.1021/acsami.1c01943] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A "closed-loop" insulin delivery system that can mimic the dynamic and glucose-responsive insulin secretion as islet β-cells is desirable for the therapy of type 1 and advanced type 2 diabetes mellitus (T1DM and T2DM). Herein, we introduced a kind of "core-shell"-structured glucose-responsive nanoplatform to achieve intravenous "smart" insulin delivery. A finely controlled one-pot biomimetic mineralization method was utilized to coencapsulate insulin, glucose oxidase (GOx), and catalase (CAT) into the ZIF-8 nanoparticles (NPs) to construct the "inner core", where an efficient enzyme cascade system (GOx/CAT group) served as an optimized glucose-responsive module that could rapidly catalyze glucose to yield gluconic acid to lower the local pH and effectively consume the harmful byproduct hydrogen peroxide (H2O2), inducing the collapse of pH-sensitive ZIF-8 NPs to release insulin. The erythrocyte membrane, a sort of natural biological derived lipid bilayer membrane which has intrinsic biocompatibility, was enveloped onto the surface of the "inner core" as the "outer shell" to protect them from elimination by the immune system, thus making the NPs intravenously injectable and could stably maintain a long-term existence in blood circulation. The in vitro and in vivo results indicate that our well-designed nanoplatform possesses an excellent glucose-responsive property and can maintain the blood glucose levels of the streptozocin (STZ)-induced type 1 diabetic mice at the normoglycemic state for up to 24 h after being intravenously administrated, confirming an intravenous insulin delivery strategy to overcome the deficits of conventional daily multiple subcutaneous insulin administration and offering a potential candidate for long-term T1DM treatment.
Collapse
Affiliation(s)
- Mengyun He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Pei Yu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yanlei Hu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Juan Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Manman He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Cunpeng Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
34
|
Nelson KM, Irvin-Choy N, Hoffman MK, Gleghorn JP, Day ES. Diseases and conditions that impact maternal and fetal health and the potential for nanomedicine therapies. Adv Drug Deliv Rev 2021; 170:425-438. [PMID: 33002575 DOI: 10.1016/j.addr.2020.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
Abstract
Maternal mortality rates in the United States have steadily increased since 1987 to the current rate of over 16 deaths per 100,000 live births. Whereas most of these deaths are related to an underlying condition, such as cardiovascular disease, many pregnant women die from diseases that emerge as a consequence of pregnancy. Both pre-existing and emergent diseases and conditions are difficult to treat in pregnant women because of the potential harmful effects of the treatment on the developing fetus. Often the health of the woman and the health of the baby are at odds and must be weighed against each other when medical treatment is needed, frequently leading to iatrogenic preterm birth. However, the use of engineered nanomedicines has the potential to fill the treatment gap for pregnant women. This review describes several conditions that may afflict pregnant women and fetuses and introduces how engineered nanomedicines may be used to treat these illnesses. Although the field of maternal-fetal nanomedicine is in its infancy, with additional research and development, engineered nanotherapeutics may greatly improve outcomes for pregnant women and their offspring in the future.
Collapse
|
35
|
Li C, Wan L, Luo J, Jiang M, Wang K. Advances in Subcutaneous Delivery Systems of Biomacromolecular Agents for Diabetes Treatment. Int J Nanomedicine 2021; 16:1261-1280. [PMID: 33628020 PMCID: PMC7898203 DOI: 10.2147/ijn.s283416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/09/2021] [Indexed: 12/31/2022] Open
Abstract
Diabetes mellitus is a major threat to human health. Both its incidence and prevalence have been rising steadily over the past few decades. Biomacromolecular agents such as insulin and glucagon-like peptide 1 receptor agonists are commonly used hypoglycemic drugs that play important roles in the treatment of diabetes. However, their traditional frequent administration may cause numerous side effects, such as pain, infection or local tissue necrosis. To address these issues, many novel subcutaneous delivery systems have been developed in recent years. In this review, we survey recent developments in subcutaneous delivery systems of biomacromolecular hypoglycemic drugs, including sustained-release delivery systems and stimuli-responsive delivery systems, and summarize the advantages and limitations of these systems. Future opportunities and challenges are discussed as well.
Collapse
Affiliation(s)
- Chen Li
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China.,School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China
| | - Long Wan
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China.,School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China
| | - Jie Luo
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China.,School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China
| | - Mingyan Jiang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China.,School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China
| | - Keke Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China.,School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China
| |
Collapse
|
36
|
Gong Y, Mohd S, Wu S, Liu S, Pei Y, Luo X. pH-Responsive Cellulose-Based Microspheres Designed as an Effective Oral Delivery System for Insulin. ACS OMEGA 2021; 6:2734-2741. [PMID: 33553891 PMCID: PMC7860066 DOI: 10.1021/acsomega.0c04946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/14/2021] [Indexed: 05/06/2023]
Abstract
Functional modified cellulose microsphere (CMs) materials exhibit great application potential in drug various fields. Here, we designed pH-responsive carboxylated cellulose microspheres (CCMs) by the citric/hydrochloric acid hydrolysis method to enhance oral bioavailability of insulin by a green route. The CMs were high purity cellulose that dissolved and regenerated from a green solvent by the green sol-gel method. The prepared microspheres were characterized by spectroscopic techniques, such as field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectrum (FT-IR), X-ray diffraction (XPS), etc. The spherical porous structure and carboxylation of cellulose were confirmed by FESEM and FT-IR, respectively. Insulin was loaded into the CCMs by electrostatic interactions, and the insulin release was controlled through ionization of carboxyl groups and proton balance. In vitro insulin release profiles demonstrated the suppression of insulin release in artificial gastric fluid (AGF), while a significant increase at artificial intestinal fluid (AIF) was observed. The insulin release profile was fitted in Korsmeyer-Peppas kinetic model, and insulin release was governed by the Fickian diffusion mechanism. The stability of the secondary structure of insulin was studied by dichroism circular. Excellent biocompatibility and no cytotoxicity of designed CCMs cast them as a potential oral insulin carrier.
Collapse
Affiliation(s)
- Yaqi Gong
- School
of Chemical Engineering and Pharmacy, Wuhan
Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu
New & High Technology Development Zone, Wuhan, 430205 Hubei Province, P.R. China
| | - Shabbir Mohd
- School
of Chemical Engineering and Pharmacy, Wuhan
Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu
New & High Technology Development Zone, Wuhan, 430205 Hubei Province, P.R. China
| | - Simei Wu
- School
of Chemical Engineering and Pharmacy, Wuhan
Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu
New & High Technology Development Zone, Wuhan, 430205 Hubei Province, P.R. China
| | - Shilin Liu
- College
of Food Science and Technology, Huazhong
Agricultural University, Wuhan, 430205 Hubei Province, China
- School
of Materials Science and Engineering, Zhengzhou
University, No.100 Science Avenue, Zhengzhou City, 450001 Henan Province, P.R. China
| | - Ying Pei
- School
of Materials Science and Engineering, Zhengzhou
University, No.100 Science Avenue, Zhengzhou City, 450001 Henan Province, P.R. China
- . Tel.: +86-182-39907053
| | - Xiaogang Luo
- School
of Chemical Engineering and Pharmacy, Wuhan
Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu
New & High Technology Development Zone, Wuhan, 430205 Hubei Province, P.R. China
- School
of Materials Science and Engineering, Zhengzhou
University, No.100 Science Avenue, Zhengzhou City, 450001 Henan Province, P.R. China
- ; . Tel.: +86-139-86270668
| |
Collapse
|
37
|
Gurzov EN, Ke PC, Ahlgren U, Garcia Ribeiro RS, Gotthardt M. Novel Strategies to Protect and Visualize Pancreatic β Cells in Diabetes. Trends Endocrinol Metab 2020; 31:905-917. [PMID: 33160815 DOI: 10.1016/j.tem.2020.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
A common feature in the pathophysiology of different types of diabetes is the reduction of β cell mass and/or impairment of β cell function. Diagnosis and treatment of type 1 and type 2 diabetes is currently hampered by a lack of reliable techniques to restore β cell survival, to improve insulin secretion, and to quantify β cell mass in patients. Current new approaches may allow us to precisely and specifically visualize β cells in vivo and provide viable therapeutic strategies to preserve, recover, and regenerate β cells. In this review, we discuss recent protective approaches for β cells and the advantages and limitations of current imaging probes in the field.
Collapse
Affiliation(s)
- Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels 1070, Belgium.
| | - Pu Chun Ke
- Zhongshan Hospital, Fudan University, Xuhui District, Shanghai 200032, China; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ulf Ahlgren
- Umeå Centre for Molecular Medicine, Umeå University, Umeå S-90187, Sweden
| | - Rita S Garcia Ribeiro
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels 1070, Belgium
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| |
Collapse
|
38
|
Preman NK, Barki RR, Vijayan A, Sanjeeva SG, Johnson RP. Recent developments in stimuli-responsive polymer nanogels for drug delivery and diagnostics: A review. Eur J Pharm Biopharm 2020; 157:121-153. [PMID: 33091554 DOI: 10.1016/j.ejpb.2020.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
|
39
|
Zhang H, Ba S, Lee JY, Xie J, Loh TP, Li T. Cancer Biomarker-Triggered Disintegrable DNA Nanogels for Intelligent Drug Delivery. NANO LETTERS 2020; 20:8399-8407. [PMID: 33118827 DOI: 10.1021/acs.nanolett.0c03671] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Even though various techniques have been developed thus far for targeted delivery of therapeutics, design and fabrication of cancer biomarker-triggered disintegrable nanogels, which are exclusively composed of nucleic acid macromolecules, are still challenging nowadays. Here, we describe for the first time our creation of intelligent DNA nanogels whose backbones are sorely disintegrable by flap endonuclease 1 (FEN1), an enzymatic biomarker that is highly overexpressed in most cancer cells but not in their normal counterparts. It is the catalytic actions of intracellular FEN1 on bifurcated DNA structures that lead to the cancer-specific disintegration of our DNA nanogels and controlled release of drugs in target cancer cells. Consequently, the brand-new strategies introduced in the current report could break new ground in designing drug carriers for eliminating unwanted side effects of chemotherapeutic agents and live-cell probes for cancer risk assessment, diagnosis, and prognosis.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of Advanced Synthesis (IAS), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Yangtze River Delta Research Institute, Northwestern Polytechnical University (NPU), 27 Zigang Road, Taicang, Jiangsu 215400, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Sai Ba
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jasmine Yiqin Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jianping Xie
- Department of Chemical and Biomolecular and Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Teck-Peng Loh
- Institute of Advanced Synthesis (IAS), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Tianhu Li
- Institute of Advanced Synthesis (IAS), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
40
|
Gonzaga RV, do Nascimento LA, Santos SS, Machado Sanches BA, Giarolla J, Ferreira EI. Perspectives About Self-Immolative Drug Delivery Systems. J Pharm Sci 2020; 109:3262-3281. [DOI: 10.1016/j.xphs.2020.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/27/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
|
41
|
Lin Y, Hu W, Bai X, Ju Y, Cao C, Zou S, Tong Z, Cen C, Jiang G, Kong X. Glucose- and pH-Responsive Supramolecular Polymer Vesicles Based on Host-Guest Interaction for Transcutaneous Delivery of Insulin. ACS APPLIED BIO MATERIALS 2020; 3:6376-6383. [PMID: 35021768 DOI: 10.1021/acsabm.0c00813] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Smart insulin delivery platforms having the ability of mimicking pancreatic cells are highly expected for diabetes treatment. Herein, a smart glucose-sensitive insulin delivery platform on the basis of transcutaneous microneedles has been designed. The as-prepared microneedles are composed of glucose- and pH-responsive supramolecular polymer vesicles (PVs) as the drug storage and water soluble polymers as the matrix. The well-defined PVs are constructed from the host-guest inclusion complex between water-soluble pillar[5]arene (WP5) with pH-responsiveness and paraquat-ended poly(phenylboronic acid) (PPBA-G) with glucose-sensitivity. The drug-loaded PVs, including insulin and glucose oxidase (GOx) can quickly respond to elevated glucose level, accompanied by the disassociation of PVs and fast release of encapsulated insulin. Moreover, the insulin release rate is further accelerated by GOx, which generates gluconic acid at high glucose levels, thus decreasing the local pH. Therefore, the host-guest interaction between WP5 and PPBA-G is destroyed and a total structure disassociation of PVs takes place, contributing to a fast release of encapsulated insulin. The in vivo insulin delivery to diabetic rats displays a quick response to hyperglycemic levels and then can fast regulate the blood glucose concentrations to normal levels, which demonstrates that the obtained smart insulin device has a highly potential application in the treatment of diabetes.
Collapse
Affiliation(s)
- Yonghui Lin
- College of Materials Science and Engineering & Institute of Smart Biomedical Materials & Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wei Hu
- College of Materials Science and Engineering & Institute of Smart Biomedical Materials & Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaowen Bai
- College of Materials Science and Engineering & Institute of Smart Biomedical Materials & Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanshan Ju
- College of Materials Science and Engineering & Institute of Smart Biomedical Materials & Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Cong Cao
- College of Materials Science and Engineering & Institute of Smart Biomedical Materials & Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shufen Zou
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology, and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Zaizai Tong
- College of Materials Science and Engineering & Institute of Smart Biomedical Materials & Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chao Cen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Guohua Jiang
- College of Materials Science and Engineering & Institute of Smart Biomedical Materials & Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiangdong Kong
- College of Materials Science and Engineering & Institute of Smart Biomedical Materials & Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
42
|
Chai Z, Dong H, Sun X, Fan Y, Wang Y, Huang F. Development of glucose oxidase-immobilized alginate nanoparticles for enhanced glucose-triggered insulin delivery in diabetic mice. Int J Biol Macromol 2020; 159:640-647. [DOI: 10.1016/j.ijbiomac.2020.05.097] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/28/2022]
|
43
|
Lemmerman LR, Das D, Higuita-Castro N, Mirmira RG, Gallego-Perez D. Nanomedicine-Based Strategies for Diabetes: Diagnostics, Monitoring, and Treatment. Trends Endocrinol Metab 2020; 31:448-458. [PMID: 32396845 PMCID: PMC7987328 DOI: 10.1016/j.tem.2020.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/13/2022]
Abstract
Traditional methods for diabetes management require constant and tedious glucose monitoring (GM) and insulin injections, impacting quality of life. The global diabetic population is expected to increase to 439 million, with approximately US$490 billion in healthcare expenditures by 2030, imposing a significant burden on healthcare systems worldwide. Recent advances in nanotechnology have emerged as promising alternative strategies for the management of diabetes. For example, implantable nanosensors are being developed for continuous GM, new nanoparticle (NP)-based imaging approaches that quantify subtle changes in β cell mass can facilitate early diagnosis, and nanotechnology-based insulin delivery methods are being explored as novel therapies. Here, we provide a holistic summary of this rapidly advancing field compiling all aspects pertaining to the management of diabetes.
Collapse
Affiliation(s)
- Luke R Lemmerman
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA
| | - Devleena Das
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA
| | - Natalia Higuita-Castro
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA; The Ohio State University, Department of Surgery, Columbus, OH 43210, USA
| | - Raghavendra G Mirmira
- The University of Chicago, Kovler Diabetes Center and the Department of Medicine, Chicago, IL 60637, USA
| | - Daniel Gallego-Perez
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA; The Ohio State University, Department of Surgery, Columbus, OH 43210, USA.
| |
Collapse
|
44
|
Shah S, Rangaraj N, Laxmikeshav K, Sampathi S. “Nanogels as drug carriers – Introduction, chemical aspects, release mechanisms and potential applications”. Int J Pharm 2020; 581:119268. [DOI: 10.1016/j.ijpharm.2020.119268] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 12/28/2022]
|
45
|
Shen D, Yu H, Wang L, Khan A, Haq F, Chen X, Huang Q, Teng L. Recent progress in design and preparation of glucose-responsive insulin delivery systems. J Control Release 2020; 321:236-258. [DOI: 10.1016/j.jconrel.2020.02.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
|
46
|
Li C, Liu X, Zhang Y, Lv J, Huang F, Wu G, Liu Y, Ma R, An Y, Shi L. Nanochaperones Mediated Delivery of Insulin. NANO LETTERS 2020; 20:1755-1765. [PMID: 32069419 DOI: 10.1021/acs.nanolett.9b04966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Insulin would undergo unfolding and fibrillation under stressed conditions, which may cause serious biotechnological and medical problems. Herein, by mimicking the structure and functions of natural chaperones HSP70s, self-assembled polymeric micelles are used as nanochaperones for the delivery of insulin. The confined hydrophobic domains on the surface of nanochaperones adsorb partially unfolded insulin, inhibiting the aggregation and fibrillation and enhancing the stability of insulin. The bioactivity of insulin is well-reserved after incubation with the nanochaperones at 37 °C for 7 d or heating at 70 °C for 1 h. The stealthy poly(ethylene glycol) chains around the confined domains protect the adsorbed insulin from enzymatic degradation and prolong the circulation time. More importantly, the excellent glucose sensitivity of the hydrophobic domains enables the nanochaperones to release and refold insulin in native form in response to hyperglycemia. This kind of nanochaperone may offer a hopeful strategy for the protection and delivery of insulin.
Collapse
Affiliation(s)
| | | | | | | | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | | | | | | | | | | |
Collapse
|
47
|
Jamaledin R, Di Natale C, Onesto V, Taraghdari ZB, Zare EN, Makvandi P, Vecchione R, Netti PA. Progress in Microneedle-Mediated Protein Delivery. J Clin Med 2020; 9:E542. [PMID: 32079212 PMCID: PMC7073601 DOI: 10.3390/jcm9020542] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
The growing demand for patient-compliance therapies in recent years has led to the development of transdermal drug delivery, which possesses several advantages compared with conventional methods. Delivering protein through the skin by transdermal patches is extremely difficult due to the presence of the stratum corneum which restricts the application to lipophilic drugs with relatively low molecular weight. To overcome these limitations, microneedle (MN) patches, consisting of micro/miniature-sized needles, are a promising tool to perforate the stratum corneum and to release drugs and proteins into the dermis following a non-invasive route. This review investigates the fabrication methods, protein delivery, and translational considerations for the industrial scaling-up of polymeric MNs for dermal protein delivery.
Collapse
Affiliation(s)
- Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
| | - Concetta Di Natale
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
| | - Valentina Onesto
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
| | - Zahra Baghban Taraghdari
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
| | | | - Pooyan Makvandi
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
- Institute for polymers, Composites and biomaterials (IPCB), National research council (CNR), 80125 Naples, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, P.O. Box: 61537-53843, Ahvaz, Iran
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
| |
Collapse
|
48
|
Liu X, Li C, Lv J, Huang F, An Y, Shi L, Ma R. Glucose and H2O2 Dual-Responsive Polymeric Micelles for the Self-Regulated Release of Insulin. ACS APPLIED BIO MATERIALS 2020; 3:1598-1606. [DOI: 10.1021/acsabm.9b01185] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xiaoyu Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chang Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Juan Lv
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yingli An
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center1 of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Rujiang Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
49
|
Agazzi ML, Herrera SE, Cortez ML, Marmisollé WA, Tagliazucchi M, Azzaroni O. Insulin Delivery from Glucose‐Responsive, Self‐Assembled, Polyamine Nanoparticles: Smart “Sense‐and‐Treat” Nanocarriers Made Easy. Chemistry 2020; 26:2456-2463. [DOI: 10.1002/chem.201905075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Maximiliano L. Agazzi
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - Santiago E. Herrera
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - M. Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - Waldemar A. Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - Mario Tagliazucchi
- Departamento de Química Inorgánica, Analítica y Química FísicaINQUIMAE-CONICETFacultad de Ciencias Exactas y NaturalesCiudad Universitaria Pabellón 2 Buenos Aires C1428EHA Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| |
Collapse
|
50
|
Kornecki JF, Carballares D, Tardioli PW, Rodrigues RC, Berenguer-Murcia Á, Alcántara AR, Fernandez-Lafuente R. Enzyme production ofd-gluconic acid and glucose oxidase: successful tales of cascade reactions. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00819b] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review mainly focuses on the use of glucose oxidase in the production ofd-gluconic acid, which is a reactant of undoubtable interest in different industrial areas. As example of diverse enzymatic cascade reactions.
Collapse
Affiliation(s)
- Jakub F. Kornecki
- Departamento de Biocatálisis
- ICP-CSIC
- Campus UAM-CSIC
- 28049 Madrid
- Spain
| | - Diego Carballares
- Departamento de Biocatálisis
- ICP-CSIC
- Campus UAM-CSIC
- 28049 Madrid
- Spain
| | - Paulo W. Tardioli
- Postgraduate Program in Chemical Engineering (PPGEQ)
- Department of Chemical Engineering
- Federal University of São Carlos
- 13565-905 São Carlos
- Brazil
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Lab
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales
- Universidad de Alicante
- Alicante 03080
- Spain
| | - Andrés R. Alcántara
- Departamento de Química en Ciencias Farmacéuticas
- Facultad de Farmacia
- Universidad Complutense de Madrid
- 28040-Madrid
- Spain
| | | |
Collapse
|