1
|
Zhang X, Yuan Z, Lin Z, Bian Z, Wang M, Yang S, Zhang Y, Liu M, Luo L, Zeng L, Yang X, Liu A. Covalent Coupling-Regulated rGO/VN Nanocomposite Enabling Nitrogen Defects to Remarkably Boost the Peroxidase-Like Catalytic Efficiency for the Ultrasensitive Colorimetric Assay of Uric Acid. Anal Chem 2025; 97:5771-5780. [PMID: 40059305 DOI: 10.1021/acs.analchem.4c07058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
It remains challenging to rationally design superior nanozymes and understand the underlying mechanism. Herein, a facile covalent coupling-modulated nitrogen defect is reported for significantly boosting peroxidase (POD)-like activity. Vanadium nitride (VN) nanoparticles are grown on graphene oxide (GO) via C-N bonding to form VN/rGO nanocomposites by varying with the VOx/GO ratio. The initial increasing GO amount enables formation of the C-N bond, dramatically boosting POD-like activity. Nevertheless, with a higher GO amount, the nitrogen defects decrease due to forming mainly V2O3. The defect-rich VN/rGO nanocomposite with 20 wt % GO (VG-2) exhibits the best catalytic efficiency (Vmax/Km = 0.0187 s-1), which is 778-fold higher than that of natural horseradish peroxidase. Theoretical calculations and structure characterization reveal that the rich-N defects originate from VN covalent binding onto rGO with an rich-electron structure, impeding VN agglomeration, which greatly reduces the energy barrier of the rate-determining step of the catalytic reaction. Finally, coupling urate oxidase with VG-2 as an enzyme cascade, an ultrasensitive and selective colorimetric detection was developed for uric acid (UA), one of the indicators of kidney function or gout attacks, with a linear detection ranging 1-100 μM and 0.1-2.5 mM with a limit of detection of 0.24 μM UA (S/N = 3). The proposed method was applicable to detecting UA in human serum samples satisfactorily. This work could inspire more effective insights into designing other robust nanozymes through covalent coupling for a variety of biochemical analysis and biocatalysis applications.
Collapse
Affiliation(s)
- Xin Zhang
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Ziyan Yuan
- College of Environmental and Resources, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Ziting Lin
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zihan Bian
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Shuqing Yang
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yujiao Zhang
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mingjun Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Luteng Luo
- College of Environmental and Resources, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Lingxing Zeng
- College of Environmental and Resources, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Xuhui Yang
- College of Environmental and Resources, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
2
|
Wu X, Zhang H, Yanghe J, Liu S. VN Quantum Dots Anchored onto Carbon Nanofibers as a Superior Anode for Sodium Ion Storage. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6004. [PMID: 39685439 DOI: 10.3390/ma17236004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Vanadium-based compounds exhibit a high theoretical capacity to be used as anode materials in sodium-ion batteries, but the volume change in the active ions during the process of release leads to structural instability during the cycle. The structure of carbon nanofibers is stable, while it is difficult to deform. At the same time, the huge specific surface area energy of quantum dot materials can speed up the electrochemical reaction rate. Here, we coupled quantum-grade VN nanodots with carbon nanofibers. The strong coupling of VN quantum dots and carbon nanofibers makes the material have a network structure of interwoven nanofibers. Secondly, the carbon skeleton provides a three-dimensional channel for the rapid migration of sodium ions, and the material has low charge transfer resistance, which promotes the diffusion, intercalation and release of sodium ions, and significantly improves the electrochemical activity of sodium storage. When the material is used as the anode material in sodium ion batteries, the specific capacity is stable at 230.3 mAh g-1 after 500 cycles at 0.5 A g-1, and the specific capacity is still maintained at 154.7 mAh g-1 after 1000 cycles at 2 A g-1.
Collapse
Affiliation(s)
- Xiaoyu Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Haimin Zhang
- Hunan Zoomlion Neo Material Technology Co., Ltd., Changsha 410083, China
| | - Jiachen Yanghe
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Sainan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
3
|
Wu B, Zhang Y, Wang Z, Wang Z, Dong Z, Zeng Q, Hui KN, Liu Z, Peng Z. A High-Rate and Ultrastable Re 2Te 5/MXene Anode for Potassium Storage Enabled by Amorphous/Crystalline Heterointerface Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407134. [PMID: 39267461 DOI: 10.1002/adma.202407134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/05/2024] [Indexed: 09/17/2024]
Abstract
The pursuit of anode materials capable of rapid and reversible potassium storage performance is a challenging yet fascinating target. Herein, a heterointerface engineering strategy is proposed to prepare a novel superstructure composed of amorphous/crystalline Re2Te5 anchored on MXene substrate (A/C-Re2Te5/MXene) as an advanced anode for potassium-ion batteries (KIBs). The A/C-Re2Te5/MXene anode exhibits outstanding reversible capacity (350.4 mAh g-1 after 200 cycles at 0.2 A g-1), excellent rate capability (162.5 mAh g-1 at 20 A g-1), remarkable long-term cycling capability (186.1 mAh g-1 at 5 A g-1 over 5000 cycles), and reliable operation in flexible full KIBs, outperforming state-of-the-art metal chalcogenides-based devices. Experimental and theoretical investigations attribute this high performance to the synergistic effect of the A/C-Re2Te5 with a built-in electric field and the elastic MXene, enabling improved pseudocapacitive contribution, accelerated charge transfer behavior, and high K+ ion adsorption/diffusion ability. Meanwhile, a combination of intercalation and conversion reactions mechanism is observed within A/C-Re2Te5/MXene. This work offers a new approach for developing metal tellurides- and MXene-based anodes for achieving stable cyclability and fast-charging KIBs.
Collapse
Affiliation(s)
- Bangjun Wu
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Yelong Zhang
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Zhongquan Wang
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Zhonghua Wang
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Zhen Dong
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Qingguang Zeng
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Kwun Nam Hui
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China
| | - Zheng Liu
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Zhangquan Peng
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
- Laboratory of Advanced Spectro-Electrochemistry and Lithium-Ion Batteries, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| |
Collapse
|
4
|
Qin Y, Zhang H, Yanghe J, Yang J, Li W, Zhao X, Liu S. Vanadium Nitride Nanoparticles Grown on Carbon Fiber Cloth as an Advanced Binder-Free Anode for the Storage of Sodium and Potassium Ions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5820. [PMID: 37687513 PMCID: PMC10488474 DOI: 10.3390/ma16175820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
The escalating demand for sustainable and high-performance energy storage systems has led to the exploration of alternative battery technologies for lithium-ion batteries. Sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) have emerged as promising candidates because of their abundant Na/K resources, inexpensive costs, and similar chemistries to lithium-ion batteries. However, inherent challenges, such as large ionic radii, sluggish kinetics, and serious volume expansion, necessitate the development of robust and efficient anode materials for SIBs and PIBs. Vanadium nitride has attracted increasing attention as a viable anode due to its high electronic conductivity and potential capacity. In this study, we report on a flexible electrode for SIBs and PIBs that creates binder-free anodes by synthesizing vanadium nitride nanoparticles grown directly on carbon fiber cloths (VN/CFC). The unique architecture and binder-free nature of this anode ensure a robust electrode-electrolyte interface and enhance its electron/ion transport kinetics. The results demonstrate that the material exhibits an outstanding specific discharge capacity of 227 mAh g-1 after undergoing 1000 cycles at a current density of 2 A g-1 for SIBs. An electrochemical analysis indicated that the excellent performance of the material is attributed to the bind-free structure of carbon fiber cloth and the fast kinetics of surface pseudo-capacitive contribution. Furthermore, the material continues to demonstrate an impressive performance, even for PIBs, with a specific discharge capacity of 125 mAh g-1 after 1000 cycles at a current density of 1 A g-1. This study provides a new perspective for designing and developing advanced binder-free anodes for the storage of sodium and potassium ions, paving the way for high-performance energy storage applications.
Collapse
Affiliation(s)
- Yiwei Qin
- School of Materials Science and Engineering, Central South University, Changsha 410083, China;
| | - Haimin Zhang
- Hunan Zoomlion Neo Material Technology Co., Ltd., Changsha 410083, China;
| | - Jiachen Yanghe
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (J.Y.); (J.Y.)
| | - Jing Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (J.Y.); (J.Y.)
| | - Wei Li
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China;
| | - Xiaojun Zhao
- School of Materials Science and Engineering, Central South University, Changsha 410083, China;
| | - Sainan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (J.Y.); (J.Y.)
| |
Collapse
|
5
|
Yuan Z, Yang X, Lin C, Xiong P, Su A, Fang Y, Chen X, Fan H, Xiao F, Wei M, Qian Q, Chen Q, Zeng L. Progressive activation of porous vanadium nitride microspheres with intercalation-conversion reactions toward high performance over a wide temperature range for zinc-ion batteries. J Colloid Interface Sci 2023; 640:487-497. [PMID: 36871513 DOI: 10.1016/j.jcis.2023.02.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
Rechargeable aqueous zinc-ion batteries have great promise for becoming next-generation storage systems, although the irreversible intercalation of Zn2+ and sluggish reaction kinetics impede their wide application. Therefore, it is urgent to develop highly reversible zinc-ion batteries. In this work, we modulate the morphology of vanadium nitride (VN) with different molar amounts of cetyltrimethylammonium bromide (CTAB). The optimal electrode has porous architecture and excellent electrical conductivity, which can alleviate volume expansion/contraction and allow for fast ion transmission during the Zn2+ storage process. Furthermore, the CTAB-modified VN cathode undergoes a phase transition that provides a better framework for vanadium oxide (VOx). With the same mass of VN and VOx, VN provides more active material after phase conversion due to the molar mass of the N atom being less than that of the O atom, thus increasing the capacity. As expected, the cathode displays an excellent electrochemical performance of 272 mAh g-1 at 5 A g-1, high cycling stability up to 7000 cycles, and excellent performance over a wide temperature range. This discovery creates new possibilities for the development of high-performance multivalent ion aqueous cathodes with rapid reaction mechanisms.
Collapse
Affiliation(s)
- Ziyan Yuan
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China
| | - Xuhui Yang
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China
| | - Chuyuan Lin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China
| | - Peixun Xiong
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Anmin Su
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yixing Fang
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China
| | - Xiaochuan Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China.
| | - Haosen Fan
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China
| | - Fuyu Xiao
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China
| | - Mingdeng Wei
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Qingrong Qian
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Weijin Road No. 94, Tianjin 300071, China
| | - Qinghua Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Weijin Road No. 94, Tianjin 300071, China.
| | - Lingxing Zeng
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Weijin Road No. 94, Tianjin 300071, China.
| |
Collapse
|
6
|
Lv J, Ren H, Cheng Z, Joo SW, Huang J. Polyaniline-Coated Porous Vanadium Nitride Microrods for Enhanced Performance of a Lithium-Sulfur Battery. Molecules 2023; 28:molecules28041823. [PMID: 36838812 PMCID: PMC9967358 DOI: 10.3390/molecules28041823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
To solve the slow kinetics of polysulfide conversion reaction in Li-S battery, many transition metal nitrides were developed for sulfur hosts. Herein, novel polyaniline-coated porous vanadium nitride (VN) microrods were synthesized via a calcination, washing and polyaniline-coating process, which served as sulfur host for Li-S battery exhibited high electrochemical performance. The porous VN microrods with high specific surface area provided enough interspace to overcome the volume change of the cathode. The outer layer of polyaniline as a conductive shell enhanced the cathode conductivity, effectively blocked the shuttle effect of polysulfides, thus improving the cycling capacity of Li-S battery. The cathode exhibited an initial capacity of 1007 mAh g-1 at 0.5 A g-1, and the reversible capacity remained at 735 mAh g-1 over 150 cycles.
Collapse
Affiliation(s)
- Jingjie Lv
- Key Laboratory of Functional Molecular Solids of the Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Haibo Ren
- School of Materials Science and Engineering, Modern Technology Center, Anhui Polytechnic University, Wuhu 241000, China
- Correspondence: (H.R.); (S.W.J.); (J.H.)
| | - Ziyan Cheng
- Key Laboratory of Functional Molecular Solids of the Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 712749, Republic of Korea
- Correspondence: (H.R.); (S.W.J.); (J.H.)
| | - Jiarui Huang
- Key Laboratory of Functional Molecular Solids of the Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
- Correspondence: (H.R.); (S.W.J.); (J.H.)
| |
Collapse
|
7
|
Wang L, Sun C, Ji S, Linkov V, Wang H. Highly‐Dispersed Vanadium Nitride Supported on Porous Nitrogen‐Doped Carbon Material as a High‐Performance Cathode for Lithium‐Sulfur Batteries. ChemistrySelect 2022. [DOI: 10.1002/slct.202202879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Li Wang
- School of Chemistry & Environmental Engineering Pingdingshan University Pingdingshan 467000 China
| | - Chaoyang Sun
- State Key Laboratory Base for Eco-Chemical Engineering College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Shan Ji
- College of Biological Chemical Science and Engineering Jiaxing University Jiaxing 314001 China
| | - Vladimir Linkov
- South African Institute for Advanced Materials Chemistry University of the Western Cape Cape Town 7535 South Africa
| | - Hui Wang
- State Key Laboratory Base for Eco-Chemical Engineering College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| |
Collapse
|
8
|
Yuan J, Qiu M, Hu X, Liu Y, Zhong G, Zhan H, Wen Z. Pseudocapacitive Vanadium Nitride Quantum Dots Modified One-Dimensional Carbon Cages Enable Highly Kinetics-Compatible Sodium Ion Capacitors. ACS NANO 2022; 16:14807-14818. [PMID: 35981317 DOI: 10.1021/acsnano.2c05662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The kinetics incompatibility between battery-type anode and capacitive-type cathode for sodium ion hybrid capacitors (SIHCs) seriously hinders their overall performance output. Herein, we construct a SIHCs device by coupling with quantum grade vanadium nitride (VN) nanodots anchored in one-dimensional N/F co-doped carbon nanofiber cages hybrids (VNQDs@PCNFs-N/F) as the freestanding anode and the corresponding activated N/F co-doped carbon nanofiber cages (APCNFs-N/F) as cathode. The strong coupling of VN quantum dots with N/F co-doped 1D conductive carbon cages effectively facilitates the ion/electron transport and intercalation-conversion-deintercalation reactions, ensuring fast sodium storage to surmount aforesaid kinetics incompatibility. Additionally, density functional theory calculations cogently manifest that the abundant active sites in the VNQDs@PCNFs-N/F configuration boost the Na+ adsorption/reaction activity well which will promote both "intrinsic" and "extrinsic" pseudocapacitance and further improve anode kinetics. Consequently, the assembled SIHCs device can achieve high energy densities of 157.1 and 95.0 Wh kg-1 at power densities of 198.8 and 9100.5 W kg-1, respectively, with an ultralong cycling life over 8000 cycles. This work further verified the feasibility of kinetics-compatible electrode design strategy toward metal ion hybrid capacitors.
Collapse
Affiliation(s)
- Jun Yuan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- College of Materials Science and Engineering. Fuzhou University, Fuzhou 350108, China
| | - Min Qiu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350000, China
| | - Xiang Hu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yangjie Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- College of Materials Science and Engineering. Fuzhou University, Fuzhou 350108, China
| | - Guobao Zhong
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- College of Materials Science and Engineering. Fuzhou University, Fuzhou 350108, China
| | - Hongbing Zhan
- College of Materials Science and Engineering. Fuzhou University, Fuzhou 350108, China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
9
|
Li X, Liang H, Qin B, Wang M, Zhang Y, Fan H. Rational design of heterostructured bimetallic sulfides (CoS2/NC@VS4) with VS4 nanodots decorated on CoS2 dodecahedron for high-performance sodium and potassium ion batteries. J Colloid Interface Sci 2022; 625:41-49. [DOI: 10.1016/j.jcis.2022.05.155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 10/31/2022]
|
10
|
Niu L, Cai Y, Dong T, Zhang Y, Liu X, Zhang X, Zeng L, Liu A. Vanadium nitride@carbon nanofiber composite: Synthesis, cascade enzyme mimics and its sensitive and selective colorimetric sensing of superoxide anion. Biosens Bioelectron 2022; 210:114285. [PMID: 35489274 DOI: 10.1016/j.bios.2022.114285] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 01/04/2023]
Abstract
Nanozymes featuring with favorable activity, good stability and easy scale-up production, are promising to replace natural enzymes for various applications. However, it remains a challenge to explore the cascade reactions of multi-enzyme mimics, aiming at synergistic catalysis for various applications. Herein, vanadium nitride nanoparticles deposited on carbon nanofibers (VN@CNFs) composite was facilely prepared by typical electrospinning route with subsequently ammonia reduction process. The nanocomposite showed excellent peroxidase (POD)-like and superoxide dismutase (SOD)-like activities. Additionally, their catalytic mechanisms were systematically researched. Coupling of SOD-like with POD-like as cascade enzyme, a selective and sensitive colorimetric detection of superoxide anion (O2•-) was explored, which has two linear parts, 0.05-30 μM and 30-250 μM O2•- with the LOD of 0.0167 μM (S/N = 3). The as-proposed method was applicable to practical samples detection with satisfactory accuracy and recovery. Therefore, the VN@CNFs composite shows great prospect in biosensing, superoxide anion removal and biocatalysis.
Collapse
Affiliation(s)
- Lingxi Niu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Yuanyuan Cai
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China; School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Yujiao Zhang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Xuxin Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Xin Zhang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Lingxing Zeng
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| |
Collapse
|
11
|
Zheng F, Yao G, Lin M, Yang J, Wei L, Niu H, Luo QQ, Chen Q. Stabilizing V2O3 in carbon nanofiber flexible films for ultrastable potassium storage. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01611c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vanadium oxides, such as V2O3 and VO2, are expected to be potential anode materials for potassium-ion batteries (KIBs) on account of their high theoretical capacity, low price and natural abundance....
Collapse
|
12
|
VN nanoparticle-assembled hollow microspheres/N-doped carbon nanofibers: An anode material for superior potassium storage. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Dual carbon decorated germanium-carbon composite as a stable anode for sodium/potassium-ion batteries. J Colloid Interface Sci 2021; 584:372-381. [PMID: 33080499 DOI: 10.1016/j.jcis.2020.09.083] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022]
Abstract
In the present work, we introduce a dual carbon accommodated structure in which germanium nanoparticles are encapsulated into an ordered mesoporous carbon matrix (Ge-CMK) and further coated with an amorphous carbon layer (Ge@C-CMK) through a nano-casting route followed by chemical vapor deposition (CVD) treatment. In the resultant Ge@C-CMK composite, the unique lane-like pore structure that cooperates with the amorphous carbon surface can not only mitigate the volume expansion of germanium particles, but also improve the electrical conductivity of germanium as well as facilitate Na+/K+ diffusion. When employed as the anode of sodium-ion batteries, the Ge@C-CMK electrode exhibits stable capacity as well as long-term cycling stability (a stable capacity of 176 mAh g-1 at 1 A g-1 after 5000 cycles). Furthermore, it also delivers a reversible capacity when used as the anode of potassium-ion batteries. This demonstrates that the Ge@C-CMK electrode possesses promising application potential as an alternative anode in sodium and potassium ion storage applications.
Collapse
|
14
|
Integrating amorphous vanadium oxide into carbon nanofibers via electrospinning as high-performance anodes for alkaline ion (Li+/Na+/K+) batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137711] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Chen X, Xu L, Zeng L, Wang Y, Zeng S, Li H, Li X, Qian Q, Wei M, Chen Q. Synthesis of the Se-HPCF composite via a liquid-solution route and its stable cycling performance in Li-Se batteries. Dalton Trans 2020; 49:14536-14542. [PMID: 33048101 DOI: 10.1039/d0dt03035j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In pursuit of a one-dimensional (1D) porous carbon framework to restrain selenium for advanced lithium-selenium batteries, the Se-hierarchical porous carbon fiber composite (Se-HPCF) is synthesized via a liquid-solution route followed by calcination treatment. The unique architecture of the HPCF, which exhibits a large surface area and high pore volume, is fabricated using sodium lignosulfonate (LN) as a green pore-forming agent via electrospinning. As a cathode material for Li-Se batteries, the Se-HPCF composite exhibits superior electrochemical performance. A reversible capacity of 533 mA h g-1 is maintained at a rate of 0.2C after 50 cycles. In addition, the Se-HPCF composite delivers high rate performance with a high specific capacity of 351 mA h g-1 at 5C. The enhanced capacity retention and rate performance of Se-HPCF is generated by the 1D structure characteristics, and the liquid phase melting diffusion method could be applied to produce other related materials.
Collapse
Affiliation(s)
- Xi Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Lihong Xu
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Lingxing Zeng
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China. and Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China
| | - Yiyi Wang
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Shihan Zeng
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Hongzhou Li
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Xinye Li
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Qingrong Qian
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China. and Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China
| | - Mingdeng Wei
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Qinghua Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China. and Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China and Fuqing Branch of Fujian Normal University, Fuqing, Fujian 350300, China
| |
Collapse
|
16
|
Wu J, Tang A, Huang S, Li J, Zeng L, Wei M. In Situ Confined Co 5Ge 3 Alloy Nanoparticles in Nitrogen-Doped Carbon Nanotubes for Boosting Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46247-46253. [PMID: 32990421 DOI: 10.1021/acsami.0c15942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ge-based materials have garnered much attention in lithium-ion batteries (LIBs) for their high theoretical capacity, but these materials suffer from huge volume changes and serious pulverization, which cause insufficient lithium storage performance. Herein, a composite composed of Co5Ge3- and nitrogen-doped carbon nanotube (Co5Ge3/N-CNT) was successfully synthesized using ZIF-67 and GeO2 as precursors. There are interactions between the Co5Ge3 alloy nanoparticles and carbon nanotubes in the growth process, in which the Co5Ge3 alloy nanoparticles were confined in situ in N-CNTs and the in situ growth of N-CNTs was boosted in the existence of the Co5Ge3 catalyst. Density functional theory calculations revealed that the electronic conductivity of the Co5Ge3 alloy is much higher than that of Ge and the Li+ interaction energy of the former is lower than that of the latter. In addition, the interconnected carbon nanotubes not only offer Li+ diffusion pathways and electronic networks but also increase electronic conductivity. Importantly, carbon nanotubes and Co metal have a synergistic effect of buffering volume charge of Ge in the process of Li+ intercalation/deintercalation. As expected, the Co5Ge3/N-CNT composite demonstrated a high reversible capacity of 853.7 mA h g-1 at 2 A g-1 after 1500 cycles and attractive rate performance of up to 10 A g-1.
Collapse
Affiliation(s)
- Junxiu Wu
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350116, China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Anwen Tang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Shuping Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Junming Li
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350116, China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lingxing Zeng
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Mingdeng Wei
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350116, China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|