1
|
Zhang J, Read JE, Mittal G, Poston RN, Reilly J, Howling G, Golland B, Sukhorukov GB, Gould D. Injectable biodegradable microchamber array films for long-term delivery of glucocorticoids. J Control Release 2025; 381:113590. [PMID: 40023228 DOI: 10.1016/j.jconrel.2025.113590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/26/2024] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Glucocorticoids (GCs) are widely recognized for their potent anti-inflammatory and analgesic effects. Although they can cause an array of side effects when delivered systemically these are generally avoided when delivered locally at disease sites such as the eyes, lungs and joints. Glucocorticoid formulations for local use range from crystals and particles through to non-biodegradable implants. In many formulations burst release means that their effectiveness does not persist for more than a few weeks. Novel delivery methods that achieve prolonged delivery of GCs along with sequential degradation of the polymer vehicle has the potential to enhance the effectiveness of these drugs and achieve better control of disease. In this study we use a soft lithography method to produce polymer microchamber array films (MCAs) containing crystals of GCs. We demonstrate that the rate of glucocorticoid release can be adjusted through the choice of polymer used in the manufacture of films with rapid release observed with PLGA 50/50 over the course of 9 weeks and the longest duration of release observed with PLA films which continued beyond a year. Importantly, these release studies do not show evidence of burst release and all films displayed a significant duration of zero order release kinetics. Observations of film degradation were made through changes in their size, microscopic appearance and liberation of lactic acid from the films during the course of experiments demonstrated the association with GC release kinetics. These flexible films can be rolled into fibers with little change in release kinetics and the rolled MCAs can also be injected in vivo through a syringe needle to a delivery site. We envisage that this study could lead to an innovative approach to achieve prolonged release of GCs from biodegradable formulations at disease sites.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Jordan E Read
- Endocrinology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Gayatri Mittal
- Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, United Kingdom
| | - Robin N Poston
- Centre for Microvascular Research, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - John Reilly
- University of Kent, Canterbury, Kent CT2 7NZ, United Kingdom
| | - Graeme Howling
- Medipex Ltd, 4100 Park Approach, Thorpe Park, Leeds LS15 8GB, United Kingdom
| | - Ben Golland
- Queen Mary Innovation Ltd, The QMB Innovation Centre, 42 New Road, Whitechapel, London E1 2AX, United Kingdom
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - David Gould
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom.
| |
Collapse
|
2
|
Kudryavtseva V, Otero M, Zhang J, Bukatin A, Gould D, Sukhorukov GB. Drug-Eluting Sandwich Hydrogel Lenses Based on Microchamber Film Drug Encapsulation. ACS NANOSCIENCE AU 2023; 3:256-265. [PMID: 37360846 PMCID: PMC10288497 DOI: 10.1021/acsnanoscienceau.2c00066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/28/2023]
Abstract
Corticosteroids are widely used as an anti-inflammatory treatment for eye inflammation, but the current methods used in clinical practice for delivery are in the form of eye drops which is usually complicated for patients or ineffective. This results in an increase in the risk of detrimental side effects. In this study, we demonstrated proof-of-concept research for the development of a contact lens-based delivery system. The sandwich hydrogel contact lens consists of a polymer microchamber film made via soft lithography with an encapsulated corticosteroid, in this case, dexamethasone, located inside the contact lens. The developed delivery system showed sustained and controlled release of the drug. The central visual part of the lenses was cleared from the polylactic acid microchamber in order to maintain a clean central aperture similar to the cosmetic-colored hydrogel contact lenses.
Collapse
Affiliation(s)
- Valeriya Kudryavtseva
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
- National
Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian
Federation
| | - Mariana Otero
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Jiaxin Zhang
- Biochemical
Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, U.K.
| | - Anton Bukatin
- Alferov
Saint Petersburg National Research Academic University of the Russian
Academy of Sciences, 8/3A Khlopina str., Saint Petersburg 194021, Russian
Federation
- Institute
for Analytical Instrumentation of the Russian Academy of Sciences, 31-33 A, Ivana Chernykh str., Saint Petersburg 198095, Russia
| | - David Gould
- Biochemical
Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, U.K.
| | - Gleb B. Sukhorukov
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
- Skolkovo
Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russian
Federation
- Siberian
State Medical University, Moskovskiy Trakt, 2, Tomsk 634050, Russian Federation
| |
Collapse
|
3
|
Tan H, Park SY. One-step fabrication of pH-responsive microcapsules with aqueous cargo using aqueous two-phase system. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Cini N, Calisir F. Layer-by-layer self-assembled emerging systems for nanosized drug delivery. Nanomedicine (Lond) 2022; 17:1961-1980. [PMID: 36645082 DOI: 10.2217/nnm-2022-0254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
New frontiers in the development of stimuli-responsive surfaces that offer switchable properties according to the end-use application have added a new dimension to the design of drug-delivery systems (DDS). In this respect, layer-by-layer (LbL) self-assembled technologies have attracted interest in nano-DDS (NDDS) design due to the advantage of encapsulating different drug types either individually or in multiple formulations as an easy-to-apply and cost-effective strategy. LbL-based microcapsules and core-shell structures in the form of polyelectrolyte multilayers (PEMs) have been proposed as versatile vehicles for NDDS over the last quarter. This review aims to provide a global view of LbL-PEMs used as templates in NDDS for the last 5 years with an emphasis on emerging drug loading and release strategies.
Collapse
Affiliation(s)
- Nejla Cini
- Istanbul Technical University, Science and Letters Faculty, Chemistry Department, Maslak, Istanbul, 34469, Turkiye
| | - Ferah Calisir
- Istanbul Technical University, Science and Letters Faculty, Chemistry Department, Maslak, Istanbul, 34469, Turkiye
| |
Collapse
|
5
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022; 14:pharmaceutics14061132. [PMID: 35745705 PMCID: PMC9230665 DOI: 10.3390/pharmaceutics14061132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy;
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia;
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
6
|
Stimuli-controllable iron oxide nanoparticle assemblies: Design, manipulation and bio-applications. J Control Release 2022; 345:231-274. [DOI: 10.1016/j.jconrel.2022.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023]
|
7
|
Yuan Y, He N, Dong L, Guo Q, Zhang X, Li B, Li L. Multiscale Shellac-Based Delivery Systems: From Macro- to Nanoscale. ACS NANO 2021; 15:18794-18821. [PMID: 34806863 DOI: 10.1021/acsnano.1c07121] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Delivery systems play a crucial role in enhancing the activity of active substances; however, they require complex processing techniques and raw material design to achieve the desired properties. In this regard, raw materials that can be easily processed for different delivery systems are garnering attention. Among these raw materials, shellac, which is the only pharmaceutically used resin of animal origin, has been widely used in the development of various delivery systems owing to its pH responsiveness, biocompatibility, and degradability. Notably, shellac performs better on encapsulating hydrophobic active substances than other natural polymers, such as polysaccharides and proteins. In addition, specially designed shellac-based delivery systems can also be used for the codelivery of hydrophilic and hydrophobic active substances. Shellac is most widely used for oral administration, as shellac-based delivery systems can form a compact structure through hydrophobic interaction, protecting transported active substances from the harsh environment of the stomach to achieve targeted delivery in the small intestine or colon. In this review, the advantages of shellac in delivery systems are discussed in detail. Multiscale shellac-based delivery systems from the macroscale to nanoscale are comprehensively introduced, including matrix tablets, films, enteric coatings, hydrogels, microcapsules, microparticles (beads/spheres), nanoparticles, and nanofibers. Furthermore, the hotspots, deficiencies, and future perspectives of shellac-based delivery system development are also analyzed. We hoped this review will increase the understanding of shellac-based delivery systems and inspire their further development.
Collapse
Affiliation(s)
- Yi Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Ni He
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Liya Dong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Qiyong Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xia Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Bing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
8
|
Huang J, Zhang X, Fu K, Wei G, Su Z. Stimulus-responsive nanomaterials under physical regulation for biomedical applications. J Mater Chem B 2021; 9:9642-9657. [PMID: 34807221 DOI: 10.1039/d1tb02130c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer is a growing threat to human beings. Traditional treatments for malignant tumors usually involve invasive means to healthy human tissues, such as surgical treatment and chemotherapy. In recent years the use of specific stimulus-responsive materials in combination with some non-contact, non-invasive stimuli can lead to better efficacy and has become an important area of research. It promises to develop personalized treatment systems for four types of physical stimuli: light, ultrasound, magnetic field, and temperature. Nanomaterials that are responsive to these stimuli can be used to enhance drug delivery, cancer treatment, and tissue engineering. This paper reviews the principles of the stimuli mentioned above, their effects on materials, and how they work with nanomaterials. For this aim, we focus on specific applications in controlled drug release, cancer therapy, tissue engineering, and virus detection, with particular reference to recent photothermal, photodynamic, sonodynamic, magnetothermal, radiation, and other types of therapies. It is instructive for the future development of stimulus-responsive nanomaterials for these aspects.
Collapse
Affiliation(s)
- Jinzhu Huang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Kun Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
9
|
Nanoparticle-Doped Hybrid Polyelectrolyte Microcapsules with Controlled Photoluminescence for Potential Bioimaging Applications. Polymers (Basel) 2021; 13:polym13234076. [PMID: 34883579 PMCID: PMC8658880 DOI: 10.3390/polym13234076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Fluorescent imaging is widely used in the diagnosis and tracking of the distribution, interaction, and transformation processes at molecular, cellular, and tissue levels. To be detectable, delivery systems should exhibit a strong and bright fluorescence. Quantum dots (QDs) are highly photostable fluorescent semiconductor nanocrystals with wide absorption spectra and narrow, size-tunable emission spectra, which make them suitable fluorescent nanolabels to be embedded into microparticles used as bioimaging and theranostic agents. The layer-by-layer deposition approach allows the entrapping of QDs, resulting in bright fluorescent microcapsules with tunable surface charge, size, rigidity, and functional properties. Here, we report on the engineering and validation of the structural and photoluminescent characteristics of nanoparticle-doped hybrid microcapsules assembled by the deposition of alternating oppositely charged polyelectrolytes, water-soluble PEGylated core/shell QDs with a cadmium selenide core and a zinc sulfide shell (CdSe/ZnS), and carboxylated magnetic nanoparticles (MNPs) onto calcium carbonate microtemplates. The results demonstrate the efficiency of the layer-by-layer approach to designing QD-, MNP-doped microcapsules with controlled photoluminescence properties, and pave the way for the further development of next-generation bioimaging agents based on hybrid materials for continuous fluorescence imaging.
Collapse
|
10
|
Kupikowska-Stobba B, Grzeczkowicz M, Lewińska D. A one-step in vitro continuous flow assessment of protein release from core-shell polymer microcapsules designed for therapeutic protein delivery. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Vikulina AS, Campbell J. Biopolymer-Based Multilayer Capsules and Beads Made via Templating: Advantages, Hurdles and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2502. [PMID: 34684943 PMCID: PMC8537085 DOI: 10.3390/nano11102502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
One of the undeniable trends in modern bioengineering and nanotechnology is the use of various biomolecules, primarily of a polymeric nature, for the design and formulation of novel functional materials for controlled and targeted drug delivery, bioimaging and theranostics, tissue engineering, and other bioapplications. Biocompatibility, biodegradability, the possibility of replicating natural cellular microenvironments, and the minimal toxicity typical of biogenic polymers are features that have secured a growing interest in them as the building blocks for biomaterials of the fourth generation. Many recent studies showed the promise of the hard-templating approach for the fabrication of nano- and microparticles utilizing biopolymers. This review covers these studies, bringing together up-to-date knowledge on biopolymer-based multilayer capsules and beads, critically assessing the progress made in this field of research, and outlining the current challenges and perspectives of these architectures. According to the classification of the templates, the review sequentially considers biopolymer structures templated on non-porous particles, porous particles, and crystal drugs. Opportunities for the functionalization of biopolymer-based capsules to tailor them toward specific bioapplications is highlighted in a separate section.
Collapse
Affiliation(s)
- Anna S. Vikulina
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg, 1, 14476 Potsdam, Germany
- Bavarian Polymer Institute, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Dr.-Mack-Straße, 77, 90762 Fürth, Germany
| | - Jack Campbell
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| |
Collapse
|
12
|
Sun X, Yang P, Wang S, Xing H. Multifunctional zinc phthalocyanine‐phenolic resin (
ZnPc‐PFR
)@
MSN
nanocomposite based fluorescent imaging, photothermal therapy, and
pH
‐sensitive drug release. J Appl Polym Sci 2021. [DOI: 10.1002/app.50854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiangfei Sun
- School of Chemical Engineering Anhui University of Science and Technology Huainan Anhui China
| | - Ping Yang
- School of Chemical Engineering Anhui University of Science and Technology Huainan Anhui China
| | - Shaohua Wang
- School of Chemical Engineering Anhui University of Science and Technology Huainan Anhui China
| | - Honglong Xing
- School of Chemical Engineering Anhui University of Science and Technology Huainan Anhui China
| |
Collapse
|
13
|
Borbora A, Manna U. Impact of chemistry on the preparation and post-modification of multilayered hollow microcapsules. Chem Commun (Camb) 2021; 57:2110-2123. [PMID: 33587065 DOI: 10.1039/d0cc06917e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the last few years, various chemical bondings and interactions were rationally adopted to develop different multilayered microcapsules, where the empty interior accommodated various important cargoes, including bioactive molecules, nanoparticles, antibodies, enzymes, etc., and the thin membrane protected/controlled the release of the loaded cargo. Eventually, such materials are with immense potential for a wide range of prospective applications related to targeted drug delivery, sensing, bio-imaging, developing biomimetic microreactors, and so on. The emphasis on the use of various chemistries for the development of functional and useful microcapsules is rarely illustrated in the literature in the past. In this feature article, the rational uses of different chemistries for (a) preparing and (b) post-modifying various functional microcapsules are accounted. The appropriate selection of chemical bondings/interactions, including electrostatic interaction, host-guest interaction, hydrogen bonding, and covalent bonding, allowed the integration of essential constituents during the layer-by-layer deposition process for 'in situ' tailoring of the relevant and diverse properties of the hollow microcapsules. Recently, different chemically reactive hollow microcapsules were also introduced through the strategic association of 'click chemistry', ring-opening azlactone reaction, thiol-ene reaction, and 1,4-conjugate addition reaction for facile and desired post covalent modifications of the multilayer membrane. The strategic selection of chemistry remained as the key basis to synthesize smart and useful microcapsules.
Collapse
Affiliation(s)
- Angana Borbora
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India and Centre for Nanotechnology, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| |
Collapse
|
14
|
Kudryavtseva V, Boi S, Read J, Guillemet R, Zhang J, Udalov A, Shesterikov E, Tverdokhlebov S, Pastorino L, Gould DJ, Sukhorukov GB. Biodegradable Defined Shaped Printed Polymer Microcapsules for Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2371-2381. [PMID: 33404209 DOI: 10.1021/acsami.0c21607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work describes the preparation and characterization of printed biodegradable polymer (polylactic acid) capsules made in two different shapes: pyramid and rectangular capsules about 1 and 11 μm in size. Obtained core-shell capsules are described in terms of their morphology, loading efficiency, cargo release profile, cell cytotoxicity, and cell uptake. Both types of capsules showed monodisperse size and shape distribution and were found to provide sufficient stability to encapsulate small water-soluble molecules and to retain them for several days and ability for intracellular delivery. Capsules of 1 μm size can be internalized by HeLa cells without causing any toxicity effect. Printed capsules show unique characteristics compared with other drug delivery systems such as a wide range of possible cargoes, triggered release mechanism, and highly controllable shape and size.
Collapse
Affiliation(s)
- Valeriya Kudryavtseva
- Nanoforce Technology Ltd, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
| | - Stefania Boi
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via all'Opera Pia 13, 16145 Genoa, Italy
| | - Jordan Read
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Raphael Guillemet
- THALES Research & Technology, 1 Avenue Augustin Fresnel, 91767 Palaiseau, France
| | - Jiaxin Zhang
- Nanoforce Technology Ltd, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Andrei Udalov
- V.E. Zuev Institute of Atmospheric Optics SB RAS, 1 Academician Zuev Square, Tomsk 634055, Russian Federation
| | - Evgeny Shesterikov
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
- V.E. Zuev Institute of Atmospheric Optics SB RAS, 1 Academician Zuev Square, Tomsk 634055, Russian Federation
- Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Avenue, Tomsk 634050, Russian Federation
| | - Sergei Tverdokhlebov
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
| | - Laura Pastorino
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via all'Opera Pia 13, 16145 Genoa, Italy
| | - David J Gould
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Gleb B Sukhorukov
- Nanoforce Technology Ltd, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow 143025, Russian Federation
| |
Collapse
|
15
|
Nanoparticles in Polyelectrolyte Multilayer Layer-by-Layer (LbL) Films and Capsules—Key Enabling Components of Hybrid Coatings. COATINGS 2020. [DOI: 10.3390/coatings10111131] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Originally regarded as auxiliary additives, nanoparticles have become important constituents of polyelectrolyte multilayers. They represent the key components to enhance mechanical properties, enable activation by laser light or ultrasound, construct anisotropic and multicompartment structures, and facilitate the development of novel sensors and movable particles. Here, we discuss an increasingly important role of inorganic nanoparticles in the layer-by-layer assembly—effectively leading to the construction of the so-called hybrid coatings. The principles of assembly are discussed together with the properties of nanoparticles and layer-by-layer polymeric assembly essential in building hybrid coatings. Applications and emerging trends in development of such novel materials are also identified.
Collapse
|