1
|
Peng S, Wang R, Yang Y, Wang S, Liang E, Han B, Li J, Yu X, Zhang Q. sp 2 Carbon-Conjugated Covalent Organic Frameworks (sp 2c-COFs): Synthesis and Application in Photocatalytic Water Splitting. Macromol Rapid Commun 2025; 46:e2400967. [PMID: 39923235 DOI: 10.1002/marc.202400967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/12/2025] [Indexed: 02/11/2025]
Abstract
Preparation of irreversible sp2 carbon-conjugated covalent organic frameworks (sp2c-COFs) with specific porosity, easy structural functionalization, high chemical stability, and unique Ï-electron conjugation structure (especially the combination of Ï-Ï stacking interactions and conjugation system), can remove the barrier of electron transfer and provide a unique advantage for photocatalytic water splitting. Herein, based on three kinds of reactions (Aldol condensation reaction, Knoevenagel condensation reaction, and Horner-Wadsworth-Emmons reaction) and guided by the precise modulation of ligand structure and topology, this review summarizes the synthesis of sp2c-COFs and their applications in photoelectrocatalytic water splitting (hydrogen evolution and oxygen evolution reactions). Furthermore, challenges and possible research directions for sp2c-COFs in photocatalytic water splitting are also provided.
Collapse
Affiliation(s)
- Shiqiong Peng
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Renjie Wang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Yao Yang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Shuyan Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - En Liang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Bing Han
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Junbo Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Xianglin Yu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy, City University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
2
|
Sarkar M, Das D, Yesepu E, Gupta NK, Patra A. Metal-free Amorphous Cross-Linked Porous Organic Polymers for Photocatalytic Hydrogen Evolution and Carbon Dioxide Reduction. Chem Asian J 2025; 20:e202401368. [PMID: 39895047 DOI: 10.1002/asia.202401368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/24/2025] [Accepted: 02/02/2025] [Indexed: 02/04/2025]
Abstract
The use of solar energy to produce valuable chemicals has gained significant attention in recent years. In this area, photocatalytic hydrogen evolution and carbon dioxide reduction have become key focal points. Recently, amorphous cross-linked porous organic polymers (CPOPs) have emerged as promising photocatalysts due to their tunable band gaps, broad light absorption range, and high porosity. In this article, we highlight recent advancements in cutting-edge metal-free amorphous CPOPs for photocatalytic hydrogen evolution and carbon dioxide reduction. We examine the design principles, synthetic strategies, and structure-property relationships of various cross-linked porous polymers to achieve high photocatalytic performance. Additionally, we propose future research directions and offer insights to further advance CPOP-based photocatalysts for efficient solar-driven hydrogen evolution and carbon dioxide reduction.
Collapse
Affiliation(s)
- Madhurima Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Debayati Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Enika Yesepu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Nishesh Kumar Gupta
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
3
|
Huang C, Bao W, Huang S, Wang B, Wang C, Han S, Lu C, Qiu F. Asymmetric Push-Pull Type Co(II) Porphyrin for Enhanced Electrocatalytic CO 2 Reduction Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010150. [PMID: 36615343 PMCID: PMC9822202 DOI: 10.3390/molecules28010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Molecular electrocatalysts for electrochemical carbon dioxide (CO2) reduction has received more attention both by scientists and engineers, owing to their well-defined structure and tunable electronic property. Metal complexes via coordination with many Ï-conjugated ligands exhibit the unique electrocatalytic CO2 reduction performance. The symmetric electronic structure of this metal complex may play an important role in the CO2 reduction. In this work, two novel dimethoxy substituted asymmetric and cross-symmetric Co(II) porphyrin (PorCo) have been prepared as the model electrocatalyst for CO2 reduction. Owing to the electron donor effect of methoxy group, the intramolecular charge transfer of these push-pull type molecules facilitates the electron mobility. As electrocatalysts at -0.7 V vs. reversible hydrogen electrode (RHE), asymmetric methoxy-substituted Co(II) porphyrin shows the higher CO2-to-CO Faradaic efficiency (FECO) of ~95â% and turnover frequency (TOF) of 2880 h-1 than those of control materials, due to its push-pull type electronic structure. The density functional theory (DFT) calculation further confirms that methoxy group could ready to decrease to energy level for formation *COOH, leading to high CO2 reduction performance. This work opens a novel path to the design of molecular catalysts for boosting electrocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Chenjiao Huang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Wenwen Bao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Senhe Huang
- The Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Bin Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Chenchen Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
- Correspondence: (S.H.); (C.L.); (F.Q.)
| | - Chenbao Lu
- The Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Correspondence: (S.H.); (C.L.); (F.Q.)
| | - Feng Qiu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
- Correspondence: (S.H.); (C.L.); (F.Q.)
| |
Collapse
|
4
|
Covalent Organic Frameworks with trans-Dimensionally Vinylene-linked Ï-Conjugated Motifs. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2010-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Mushtaq S, Bi S, Zhang F, Naseer MM. Fully unsaturated all-carbon bifluorenylidene-based polymeric frameworks: synthesis and efficient photocatalysis. NEW J CHEM 2022. [DOI: 10.1039/d2nj02405e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugated porous polymers with fully unsaturated all-carbon frameworks possess strong visible light-absorbing abilities, enabling efficient photodegradation of dye pollutants.
Collapse
Affiliation(s)
- Sidra Mushtaq
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shuai Bi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | | |
Collapse
|
6
|
Yang J, Zhai MM, Qin JJ, Liu YA, Hu WB, Yang H, Wen K. Pyrene- and 1,3,5-triazine-based DâA two-dimensional polymers for sunlight-driven hydrogen evolution: the influence of the linking pattern. Polym Chem 2022. [DOI: 10.1039/d2py00807f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two conjugated organic polymers constructed from electron-rich pyrenes and electron-deficient 2,4,6-triphenyl-1,3,5-triazine demonstrated good photocatalytic hydrogen evolution activity.
Collapse
Affiliation(s)
- Jie Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Ming-Ming Zhai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Jun-Jie Qin
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Yahu A. Liu
- Medicinal Chemistry, ChemBridge Research Laboratories, San Diego, California, 92127, USA
| | - Wei-Bo Hu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Hui Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Ke Wen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| |
Collapse
|
7
|
Yang J, Zeng Q, Qin B, Huang J, Guo X, Wang L. Electropolymerization process dependent poly(1,4-di(2-thienyl)benzene) based full spectrum activated photocathodes for efficient photoelectrochemical hydrogen evolution. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Lee TL, Elewa AM, Kotp MG, Chou HH, El-Mahdy AFM. Carbazole- and thiophene-containing conjugated microporous polymers with different planarity for enhanced photocatalytic hydrogen evolution. Chem Commun (Camb) 2021; 57:11968-11971. [PMID: 34704990 DOI: 10.1039/d1cc04551b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the synthesis of two carbazole-thiophene-based conjugated microporous polymers (Cz-3Th and Cz-4Th CMPs) with different degrees of planarity for photocatalytic hydrogen evolution from water. Depending upon the building linker's planarity, we found that the porous structure, hydrogen-evolution rate, and photocatalytic stability of the resultant CMPs varied.
Collapse
Affiliation(s)
- Tsung-Lin Lee
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| | - Ahmed M Elewa
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan.
| | - Mohammed G Kotp
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan.
| | - Ahmed F M El-Mahdy
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
9
|
Liu Y, Li B, Xiang Z. Pathways towards Boosting Solar-Driven Hydrogen Evolution of Conjugated Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007576. [PMID: 34160904 DOI: 10.1002/smll.202007576] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/16/2021] [Indexed: 06/13/2023]
Abstract
Photocatalytic H2 evolution under solar illumination has been considered to be a promising technology for green energy resources. Developing highly efficient photocatalysts for photocatalytic water splitting is long-term desired but still challenging. Conjugated polymers (CPs) have attracted ongoing attention and have been considered to be promising alternatives for solar-driven H2 production due to the excellent merits of the large Ï-conjugated system, versatile structures, tunable photoelectric properties, and well-defined chemical composites. The excellent merits have offered numerous methods for boosting photocatalytic hydrogen evolution (PHE) of initial CP-based photocatalysts, whose apparent quantum yield is dramatically increased from <1Â to >20%Â in recent five years. According to the photocatalytic mechanism, this review herein systematically summarizes three major strategies for boosting photocatalytic H2 production of CPs: 1) enhancing visible light absorption, 2) suppressing recombination of electron-hole pairs, and 3) boosting surface catalytic reaction, mainly involving eleven methods, that is, copolymerization, modifying cross-linker, constructing a donor-acceptor structure, functionalization, fabricating organic heterojunction, loading cocatalyst, and surface modification. Finally, the perspectives towards the future development of PHE are proposed.
Collapse
Affiliation(s)
- Yaoyao Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bingjie Li
- The First Affiliated Hospital Zhengzhou University, 1 Jianshe Street, Zhengzhou, Henan, 450052, P. R. China
| | - Zhonghua Xiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
10
|
Ma W, He Y, Liu H. Olefin-linked Conjugated Porous Networks and Their Visible-Light-Driven Hydrogen Evolution Performance. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21030121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Xu J, Yang C, Bi S, Wang W, He Y, Wu D, Liang Q, Wang X, Zhang F. VinyleneâLinked Covalent Organic Frameworks (COFs) with SymmetryâTuned Polarity and Photocatalytic Activity. Angew Chem Int Ed Engl 2020; 59:23845-23853. [DOI: 10.1002/anie.202011852] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Junsong Xu
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China),
| | - Can Yang
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou 350002 China
| | - Shuai Bi
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China),
| | - Wenyan Wang
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou 350002 China
| | - Yafei He
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China),
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China),
| | - Qifeng Liang
- Department of Physics Shaoxing University Shaoxing 312000 China
| | - Xinchen Wang
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou 350002 China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China),
| |
Collapse
|
12
|
Xu J, Yang C, Bi S, Wang W, He Y, Wu D, Liang Q, Wang X, Zhang F. VinyleneâLinked Covalent Organic Frameworks (COFs) with SymmetryâTuned Polarity and Photocatalytic Activity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011852] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junsong Xu
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China),
| | - Can Yang
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou 350002 China
| | - Shuai Bi
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China),
| | - Wenyan Wang
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou 350002 China
| | - Yafei He
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China),
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China),
| | - Qifeng Liang
- Department of Physics Shaoxing University Shaoxing 312000 China
| | - Xinchen Wang
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou 350002 China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China),
| |
Collapse
|
13
|
Bi S, Thiruvengadam P, Wei S, Zhang W, Zhang F, Gao L, Xu J, Wu D, Chen JS, Zhang F. Vinylene-Bridged Two-Dimensional Covalent Organic Frameworks via Knoevenagel Condensation of Tricyanomesitylene. J Am Chem Soc 2020; 142:11893-11900. [DOI: 10.1021/jacs.0c04594] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shuai Bi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Palani Thiruvengadam
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shice Wei
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenbei Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lusha Gao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junsong Xu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Zhang Z, Liu H, Sun Q, Shao F, Pan Q, Zhuang T, Zhao Y. Interfacial Synthesis of a Monolayered Fluorescent Two-Dimensional Polymer through Dynamic Imine Chemistry. ChemistryOpen 2020; 9:381-385. [PMID: 32215235 PMCID: PMC7092776 DOI: 10.1002/open.202000041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/21/2020] [Indexed: 12/31/2022] Open
Abstract
A fluorescent monolayered two-dimensional polymer (2DP) containing both tetraphenylethylene (TPE) and imine linkages is synthesized at air-water interface using the Langmuir-Blodgett method. We designed TPE-based monomers with long distances between the TPE and the imine linkages to avoid the charge transfer and therefore keep the fluorescence. A monolayered 2DP provided with more than 104â
ÎŒm2 in domain size and around 0.8â
nm thickness was obtained through a successive Schiff base reaction at air-water interface. The nanostructures and fluorescent property of 2DP films were characterized by optical microscopy, SEM, TEM, AFM and fluorescence spectrum. Most importantly, the tip-enhanced Raman spectroscopy (TERS) was utilized here to confirm the success of the polycondensation of monolayered 2DP.
Collapse
Affiliation(s)
- Zhaohui Zhang
- College of Polymer Science and EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Hui Liu
- College of Polymer Science and EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Qingzhu Sun
- College of Polymer Science and EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Feng Shao
- Department of Chemistry, Faculty of ScienceNational University of Singapore3 Science Drive 3Singapore117543.
| | - Qingyan Pan
- College of Polymer Science and EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Tao Zhuang
- College of Polymer Science and EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Yingjie Zhao
- College of Polymer Science and EngineeringQingdao University of Science and TechnologyQingdao266042China
| |
Collapse
|
15
|
Shu C, Zhao Y, Zhang C, Gao X, Ma W, Ren SB, Wang F, Chen Y, Zeng JH, Jiang JX. Bisulfone-Functionalized Organic Polymer Photocatalysts for High-Performance Hydrogen Evolution. CHEMSUSCHEM 2020; 13:369-375. [PMID: 31755236 DOI: 10.1002/cssc.201902797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Conjugated polymers show great potential in the application of photocatalysis, particularly for the photoreduction reaction of water to generate hydrogen. Molecular structure design is a key part for building a high-performance organic photocatalyst. Herein, two bisulfone-containing conjugated polymer photocatalysts were constructed with 1D or 3D polymer structures, and the effect of polymer geometry on photocatalytic activity was studied. It was found that the linear polymer PySEO-1 exhibited increased photocatalytic performance compared with the 3D polymer network PySEO-2 because the enhanced coplanarity of the polymeric chain in PySEO-1 promoted the photogenerated charge-carrier transmission along the 1D main chain. As a result, an attractive hydrogen generation rate of 9477â
ÎŒmolâh-1 âg-1 was obtained with PySEO-1 under broadband light irradiation. PySEO-1 also exhibited a high external quantum efficiency of 4.1â% at an incident light wavelength of 400â
nm, demonstrating that the bisulfone-containing polymers are attractive as organic photocatalysts for hydrogen production.
Collapse
Affiliation(s)
- Chang Shu
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Yongbo Zhao
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Chong Zhang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Xiaomin Gao
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Wenyan Ma
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Shi-Bin Ren
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 317000, P. R. China
| | - Feng Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430073, P. R. China
| | - Yu Chen
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Jing Hui Zeng
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Jia-Xing Jiang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| |
Collapse
|
16
|
Shu C, Zhao Y, Zhang C, Gao X, Ma W, Ren SB, Wang F, Chen Y, Zeng JH, Jiang JX. Bisulfone-Functionalized Organic Polymer Photocatalysts for High-Performance Hydrogen Evolution. CHEMSUSCHEM 2020; 13:369-375. [PMID: 31755236 DOI: 10.1039/c9ta13212k] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/11/2019] [Indexed: 05/24/2023]
Abstract
Conjugated polymers show great potential in the application of photocatalysis, particularly for the photoreduction reaction of water to generate hydrogen. Molecular structure design is a key part for building a high-performance organic photocatalyst. Herein, two bisulfone-containing conjugated polymer photocatalysts were constructed with 1D or 3D polymer structures, and the effect of polymer geometry on photocatalytic activity was studied. It was found that the linear polymer PySEO-1 exhibited increased photocatalytic performance compared with the 3D polymer network PySEO-2 because the enhanced coplanarity of the polymeric chain in PySEO-1 promoted the photogenerated charge-carrier transmission along the 1D main chain. As a result, an attractive hydrogen generation rate of 9477â
ÎŒmolâh-1 âg-1 was obtained with PySEO-1 under broadband light irradiation. PySEO-1 also exhibited a high external quantum efficiency of 4.1â% at an incident light wavelength of 400â
nm, demonstrating that the bisulfone-containing polymers are attractive as organic photocatalysts for hydrogen production.
Collapse
Affiliation(s)
- Chang Shu
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Yongbo Zhao
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Chong Zhang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Xiaomin Gao
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Wenyan Ma
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Shi-Bin Ren
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 317000, P. R. China
| | - Feng Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430073, P. R. China
| | - Yu Chen
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Jing Hui Zeng
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Jia-Xing Jiang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| |
Collapse
|
17
|
Jayakumar J, Chou H. Recent Advances in VisibleâLightâDriven Hydrogen Evolution from Water using Polymer Photocatalysts. ChemCatChem 2020. [DOI: 10.1002/cctc.201901725] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jayachandran Jayakumar
- Department of Chemical EngineeringNational Tsing Hua University No. 101, Sec. 2, Kuang-Fu Road Hsinchu 30013 Taiwan
| | - HoâHsiu Chou
- Department of Chemical EngineeringNational Tsing Hua University No. 101, Sec. 2, Kuang-Fu Road Hsinchu 30013 Taiwan
| |
Collapse
|
18
|
Meier C, Clowes R, Berardo E, Jelfs KE, Zwijnenburg MA, Sprick RS, Cooper AI. Structurally Diverse Covalent Triazine-Based Framework Materials for Photocatalytic Hydrogen Evolution from Water. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:8830-8838. [PMID: 32063679 PMCID: PMC7011753 DOI: 10.1021/acs.chemmater.9b02825] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/27/2019] [Indexed: 05/27/2023]
Abstract
A structurally diverse family of 39 covalent triazine-based framework materials (CTFs) are synthesized by Suzuki-Miyaura polycondensation and tested as hydrogen evolution photocatalysts using a high-throughput workflow. The two best-performing CTFs are based on benzonitrile and dibenzo[b,d]thiophene sulfone linkers, respectively, with catalytic activities that are among the highest for this material class. The activities of the different CTFs are rationalized in terms of four variables: the predicted electron affinity, the predicted ionization potential, the optical gap, and the dispersibility of the CTFs particles in solution, as measured by optical transmittance. The electron affinity and dispersibility in solution are found to be the best predictors of photocatalytic hydrogen evolution activity.
Collapse
Affiliation(s)
- Christian
B. Meier
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
| | - Rob Clowes
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
| | - Enrico Berardo
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W12 0BZ, U.K.
| | - Kim E. Jelfs
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W12 0BZ, U.K.
| | - Martijn A. Zwijnenburg
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Reiner Sebastian Sprick
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
| | - Andrew I. Cooper
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
| |
Collapse
|