1
|
Dong W, Luo Y, Zhang J, Zhang W, Song N, Xia M, Finn MG, Geng Z. Covalent Adaptable Networks Mediated by Redox-Responsive Neighboring-Group-Participating Transalkylation. Angew Chem Int Ed Engl 2025:e202507680. [PMID: 40242962 DOI: 10.1002/anie.202507680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/18/2025]
Abstract
Covalent adaptable networks (CANs) typically require external catalysts to facilitate efficient crosslinker exchange, which can limit the reprocessability of the network due to leaching and degradation of the catalyst. In this study, the use of catalysts was avoided by employing a bicyclo[3.3.1]nonane (BCN) bis-alkyl halide crosslinker with selenium-based neighboring-group-participation (NGP) to enhance the rate of bond exchange. This thermally mediated C─N alkyl exchange and the associated flow behavior enabled the intrinsically ionic network (which possesses antimicrobial properties) to be both chemically recycled and repaired and reprocessed under mild conditions. Furthermore, the dynamic behavior of the network can be regulated by the reversible redox responsiveness of selenium atoms within the network. This novel type of NGP-based CAN therefore has the potential to enrich designs for catalyst-free dynamic networks with high performance and modulated dynamicity.
Collapse
Affiliation(s)
- Wenyu Dong
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuxin Luo
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Junlu Zhang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Wenchao Zhang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ningning Song
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Min Xia
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - M G Finn
- School of Chemistry & Biochemistry, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Zhishuai Geng
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
2
|
Pugliese D, Malucelli G. Current State-of-the-Art and Perspectives in the Design and Application of Vitrimeric Systems. Molecules 2025; 30:569. [PMID: 39942673 PMCID: PMC11820278 DOI: 10.3390/molecules30030569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
To fulfill the current circular economy concept, the academic and industrial communities are devoting significant efforts to plastic materials' end-of-life. Unlike thermoplastics, which are easy to recover and re-valorize, recycling thermosets is still difficult and challenging. Conversely, because of their network structure, thermosetting polymer systems exhibit peculiar features that make these materials preferable for several applications where high mechanical properties, chemical inertness, and thermal stability, among others, are demanded. In this view, vitrimers have quite recently attracted the attention of the scientific community, as they can form dynamic covalent adaptive networks that provide the properties typical of thermosets while keeping the possibility of being processed (and, therefore, mechanically recycled) beyond a certain temperature. This review aims to provide an overview of vitrimers, elucidating their most recent advances and applications and posing some perspectives for the forthcoming years.
Collapse
Affiliation(s)
- Diego Pugliese
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, 10135 Torino, Italy
| | - Giulio Malucelli
- Department of Applied Science and Technology, Politecnico di Torino, Viale Teresa Michel 5, 15121 Alessandria, Italy;
| |
Collapse
|
3
|
Sotoyama Y, Iwata N, Furumi S. Covalent Adaptable Networks from Polyacrylates Based on Oxime-Urethane Bond Exchange Reaction. Int J Mol Sci 2024; 25:12897. [PMID: 39684608 DOI: 10.3390/ijms252312897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Covalent adaptable networks (CANs) are polymer networks cross-linked via dynamic covalent bonds that can proceed with bond exchange reactions upon applying external stimuli. In this report, a series of cross-linked polyacrylate films were fabricated by changing the combination of acrylate monomer and the amount of diacrylate cross-linker possessing oxime-urethane bonds as a kind of dynamic covalent bond to evaluate their rheological relaxation properties. Model analysis of the experimental relaxation curves of cross-linked polyacrylate films was conducted by assuming that they consist of two types of relaxation, one of which is related to the oxime-urethane bond exchange reaction, and another of which is associated with the melting of the aggregated cross-linker. It was found that the contribution from the relaxation due to the bond exchange reaction becomes dominant only when the normal-alkyl acrylates are used as a monomer. The relaxation time was almost constant even when the amount of the cross-linker was adjusted. Moreover, it was also indicated that the miscibility of the cross-linker is very important for the fabrication of CANs with good self-healing ability and reprocessability.
Collapse
Affiliation(s)
- Yu Sotoyama
- Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Naoto Iwata
- Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Seiichi Furumi
- Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
4
|
Nishiie N, Kawatani R, Tezuka S, Mizuma M, Hayashi M, Kohsaka Y. Vitrimer-like elastomers with rapid stress-relaxation by high-speed carboxy exchange through conjugate substitution reaction. Nat Commun 2024; 15:8657. [PMID: 39368967 PMCID: PMC11455856 DOI: 10.1038/s41467-024-53043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
We report vitrimer-like elastomers that exhibit significantly fast stress relaxation using carboxy exchange via the conjugate substitution reaction of α-(acyloxymethyl) acrylate skeletons. This network design is inspired by a small-molecule model that shows the carboxy exchange reaction even at ambient temperature in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO). The acrylate and acrylic acid copolymers are cross-linked using bis[α-(bromomethyl)acrylates] and doped with 10 wt% DABCO, exhibiting processability to obtain a transparent film by hot pressing. The high-speed bond exchange in the network, validated by stress-relaxation tests, allows quick molding with household iron. In addition, the material is applied as an adhesion sheet for plastic and metal substrates. Because dynamic cross-linking with the proposed bond exchange mechanism can be implemented for any polymer bearing carboxyl pendants, our approach can be applied to versatile backbones, which must thus be meaningful in the practical sense.
Collapse
Affiliation(s)
- Natsumi Nishiie
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Ryo Kawatani
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Sae Tezuka
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Miu Mizuma
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Mikihiro Hayashi
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya, Aichi, 466-8555, Japan.
| | - Yasuhiro Kohsaka
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan.
- Research Initiative for Supra-Materials (RISM), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan.
| |
Collapse
|
5
|
Templ J, Schnürch M. Strategies for Using Quaternary Ammonium Salts as Alternative Reagents in Alkylations. Chemistry 2024; 30:e202400675. [PMID: 38587031 DOI: 10.1002/chem.202400675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/09/2024]
Abstract
Alkylation reactions are pivotal in organic chemistry, with wide-ranging utilization across various fields of applied synthetic chemistry. However, conventional reagents employed in alkylations often pose substantial health and exposure risks. Quaternary ammonium salts (QAS) present a promising alternative for these transformations offering significantly reduced hazards as they are non-cancerogenic, non-mutagenic, non-flammable, and non-corrosive. Despite their potential, their use in direct organic transformations remains relatively unexplored. This review outlines strategies for utilizing QAS as alternative reagents in alkylation reactions, providing researchers with safer approaches to chemical synthesis.
Collapse
Affiliation(s)
- Johanna Templ
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163, 1060, Wien, AUSTRIA
| | - Michael Schnürch
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163, 1060, Wien, AUSTRIA
| |
Collapse
|
6
|
Li Q, Yan F, Texter J. Polymerized and Colloidal Ionic Liquids─Syntheses and Applications. Chem Rev 2024; 124:3813-3931. [PMID: 38512224 DOI: 10.1021/acs.chemrev.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The breadth and importance of polymerized ionic liquids (PILs) are steadily expanding, and this review updates advances and trends in syntheses, properties, and applications over the past five to six years. We begin with an historical overview of the genesis and growth of the PIL field as a subset of materials science. The genesis of ionic liquids (ILs) over nano to meso length-scales exhibiting 0D, 1D, 2D, and 3D topologies defines colloidal ionic liquids, CILs, which compose a subclass of PILs and provide a synthetic bridge between IL monomers (ILMs) and micro to macro-scale PIL materials. The second focus of this review addresses design and syntheses of ILMs and their polymerization reactions to yield PILs and PIL-based materials. A burgeoning diversity of ILMs reflects increasing use of nonimidazolium nuclei and an expanding use of step-growth chemistries in synthesizing PIL materials. Radical chain polymerization remains a primary method of making PILs and reflects an increasing use of controlled polymerization methods. Step-growth chemistries used in creating some CILs utilize extensive cross-linking. This cross-linking is enabled by incorporating reactive functionalities in CILs and PILs, and some of these CILs and PILs may be viewed as exotic cross-linking agents. The third part of this update focuses upon some advances in key properties, including molecular weight, thermal properties, rheology, ion transport, self-healing, and stimuli-responsiveness. Glass transitions, critical solution temperatures, and liquidity are key thermal properties that tie to PIL rheology and viscoelasticity. These properties in turn modulate mechanical properties and ion transport, which are foundational in increasing applications of PILs. Cross-linking in gelation and ionogels and reversible step-growth chemistries are essential for self-healing PILs. Stimuli-responsiveness distinguishes PILs from many other classes of polymers, and it emphasizes the importance of segmentally controlling and tuning solvation in CILs and PILs. The fourth part of this review addresses development of applications, and the diverse scope of such applications supports the increasing importance of PILs in materials science. Adhesion applications are supported by ionogel properties, especially cross-linking and solvation tunable interactions with adjacent phases. Antimicrobial and antifouling applications are consequences of the cationic nature of PILs. Similarly, emulsion and dispersion applications rely on tunable solvation of functional groups and on how such groups interact with continuous phases and substrates. Catalysis is another significant application, and this is an historical tie between ILs and PILs. This component also provides a connection to diverse and porous carbon phases templated by PILs that are catalysts or serve as supports for catalysts. Devices, including sensors and actuators, also rely on solvation tuning and stimuli-responsiveness that include photo and electrochemical stimuli. We conclude our view of applications with 3D printing. The largest components of these applications are energy related and include developments for supercapacitors, batteries, fuel cells, and solar cells. We conclude with our vision of how PIL development will evolve over the next decade.
Collapse
Affiliation(s)
- Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Feng Yan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - John Texter
- Strider Research Corporation, Rochester, New York 14610-2246, United States
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
7
|
Kito T, Hayashi M. Trapping bond exchange phenomenon revealed for off-stoichiometry cross-linking of phase-separated vitrimer-like materials. SOFT MATTER 2024; 20:2961-2968. [PMID: 38469887 DOI: 10.1039/d4sm00074a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Vitrimer materials combined with nano-phase separated structures have attracted attention, expanding the tuning range of physical properties, such as flow and creep properties. We recently demonstrated a preparation of vitrimer-like materials with phase-separated nanodomains in which dissociative bond exchange via trans-N-alkylation of quaternized pyridine was operated. In this study, we demonstrate a new finding about the bond exchange mechanism: that is, the trapping bond exchange phenomenon. The component polymer is a poly(acrylate) containing pyridine side groups randomly along the chain, which is cross-linked by diiodo molecules via pyridine-iodo quaternization, where the quaternized pyridines are aggregated to form nano-size domains. When the cross-linking reaction is performed at an off-stoichiometric pyridine : iodo ratio (i.e., an excess of pyridine groups), free pyridine groups are located in the matrix phase. Since the bond exchange in the present system progresses in an inter-domain manner, the dissociated unit bearing pendant iodo is trapped by the free pyridine groups in the matrix, which generates other small aggregates. This trapping phenomenon greatly affects the relaxation and creep properties, which are very different from those found in conventional knowledge about vitrimer physics.
Collapse
Affiliation(s)
- Takumi Kito
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya-city, Aichi, 466-8555, Japan.
| | - Mikihiro Hayashi
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya-city, Aichi, 466-8555, Japan.
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
8
|
Bai J, Shi Z. Dynamic Covalent Structure for the Design of Recyclable Polyurethane Based on the Diketone Chemistry. Macromol Rapid Commun 2023; 44:e2200663. [PMID: 36271744 DOI: 10.1002/marc.202200663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/11/2022] [Indexed: 11/08/2022]
Abstract
Herein, the rational design of an enaminone compound is reported which can be easily and conveniently designed and obtained via the reaction of amine and diketone. The dynamic enaminoneamide structure is formed via the reaction between isocyanate and enaminone in fabricating a novel dynamic crosslinked polyurethane. The new kind of polyurethane can be efficiently recycled via the shifting between crosslinked structure and oligomer for the reversible dissociation of the enaminoneamide structure. Besides remolding itself via the thermal treatment, oligomers liberated from recycled-polyurethane can directly take part in constructing a new polyurethane without further purification. Therefore, the recyclability of this polyurethane shows high-value characteristics. The ease with which polyurethane can be produced, used, recycled, and reused without losing value offers a new green solution in designing sustainable polymer materials with a high economic value and a minimal environmental burden.
Collapse
Affiliation(s)
- Jing Bai
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zixing Shi
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
9
|
Sustainable Polyurethane Networks with High Self‐Healing and Mechanical Properties Based on Dual Dynamic Covalent Bonds. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Berne D, Ladmiral V, Leclerc E, Caillol S. Thia-Michael Reaction: The Route to Promising Covalent Adaptable Networks. Polymers (Basel) 2022; 14:4457. [PMID: 36298037 PMCID: PMC9609322 DOI: 10.3390/polym14204457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
While the Michael addition has been employed for more than 130 years for the synthesis of a vast diversity of compounds, the reversibility of this reaction when heteronucleophiles are involved has been generally less considered. First applied to medicinal chemistry, the reversible character of the hetero-Michael reactions has recently been explored for the synthesis of Covalent Adaptable Networks (CANs), in particular the thia-Michael reaction and more recently the aza-Michael reaction. In these cross-linked networks, exchange reactions take place between two Michael adducts by successive dissociation and association steps. In order to understand and precisely control the exchange in these CANs, it is necessary to get an insight into the critical parameters influencing the Michael addition and the dissociation rates of Michael adducts by reconsidering previous studies on these matters. This review presents the progress in the understanding of the thia-Michael reaction over the years as well as the latest developments and plausible future directions to prepare CANs based on this reaction. The potential of aza-Michael reaction for CANs application is highlighted in a specific section with comparison with thia-Michael-based CANs.
Collapse
Affiliation(s)
| | | | - Eric Leclerc
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Sylvain Caillol
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| |
Collapse
|
11
|
Robinson LL, Taddese ES, Self JL, Bates CM, Read de Alaniz J, Geng Z, Hawker CJ. Neighboring Group Participation in Ionic Covalent Adaptable Networks. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lindsay L. Robinson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Eden S. Taddese
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Jeffrey L. Self
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Christopher M. Bates
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- California NanoSystems Institute, University of California, Santa Barbara, California 93106, United States
| | - Zhishuai Geng
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Craig J. Hawker
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
- California NanoSystems Institute, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
12
|
Bakkali-Hassani C, Berne D, Ladmiral V, Caillol S. Transcarbamoylation in Polyurethanes: Underestimated Exchange Reactions? Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Dimitri Berne
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | |
Collapse
|
13
|
Weerathaworn S, Abetz V. Tailor‐made Vinylogous Urethane Vitrimers Based on Binary and Ternary Block and Random Copolymers: An Approach toward Reprocessable Materials. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Siraphat Weerathaworn
- Institute of Physical Chemistry Universität Hamburg Grindelallee 117 20146 Hamburg Germany
| | - Volker Abetz
- Institute of Physical Chemistry Universität Hamburg Grindelallee 117 20146 Hamburg Germany
- Institute of Membrane Research Helmholtz‐Zentrum Hereon Max‐Planck‐Straße 1 21502 Geesthacht Germany
| |
Collapse
|
14
|
Dugas LD, Walker WD, Shankar R, Hoppmeyer KS, Thornell TL, Morgan SE, Storey RF, Patton DL, Simon YC. Diketoenamine-based Vitrimers via Thiol-ene photopolymerization. Macromol Rapid Commun 2022; 43:e2200249. [PMID: 35856189 DOI: 10.1002/marc.202200249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/21/2022] [Indexed: 11/06/2022]
Abstract
Likened to both thermosets and thermoplastics, vitrimers are a unique class of materials that combine remarkable stability, healability, and reprocessability. Herein, we describe a photopolymerized thiol-ene-based vitrimer that undergoes dynamic covalent exchanges through uncatalyzed transamination of enamines derived from cyclic β-triketones, whereby the low energy barrier for exchange facilitates reprocessing and enables rapid depolymerization. Accordingly, we devised an alkene-functionalized β-triketone, 5,5-dimethyl-2-(pent-4-enoyl)cyclohexane-1,3-dione, which was reacted with 1,6-diaminohexane in a stoichiometrically imbalanced fashion (∼1:0.85 primary amine:triketone). The resulting networks exhibited subambient glass transition temperature (Tg = 5.66°C) by differential scanning calorimetry (DSC). Using a Maxwell stress-relaxation fit, the topology freezing temperature (Tv ) was calculated to be -32°C. Small-amplitude oscillatory shear (SAOS) rheological analysis enabled us to identify a practical critical temperature above which the vitrimer could be successfully reprocessed (Tv,eff ). Via the introduction of excess primary amines, we could readily degrade the networks into monomeric precursors, which were in turn reacted with diamines to regenerate reprocessable networks. Photopolymerization provides unique spatiotemporal control over the network topology, thereby opening the path for further investigation of vitrimer properties. As such, this work expands the toolbox of chemical upcycling of networks and enables their wider implementation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Logan D Dugas
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - William D Walker
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Rahul Shankar
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Keely S Hoppmeyer
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Travis L Thornell
- US Army, Engineering Research & Development Center, Geotechnical and Structures Laboratory, Vicksburg, MS, 39180, USA
| | - Sarah E Morgan
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Robson F Storey
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Derek L Patton
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Yoan C Simon
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| |
Collapse
|
15
|
Dworakowska S, Lorandi F, Gorczyński A, Matyjaszewski K. Toward Green Atom Transfer Radical Polymerization: Current Status and Future Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106076. [PMID: 35175001 PMCID: PMC9259732 DOI: 10.1002/advs.202106076] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 05/13/2023]
Abstract
Reversible-deactivation radical polymerizations (RDRPs) have revolutionized synthetic polymer chemistry. Nowadays, RDRPs facilitate design and preparation of materials with controlled architecture, composition, and functionality. Atom transfer radical polymerization (ATRP) has evolved beyond traditional polymer field, enabling synthesis of organic-inorganic hybrids, bioconjugates, advanced polymers for electronics, energy, and environmentally relevant polymeric materials for broad applications in various fields. This review focuses on the relation between ATRP technology and the 12 principles of green chemistry, which are paramount guidelines in sustainable research and implementation. The green features of ATRP are presented, discussing the environmental and/or health issues and the challenges that remain to be overcome. Key discoveries and recent developments in green ATRP are highlighted, while providing a perspective for future opportunities in this area.
Collapse
Affiliation(s)
- Sylwia Dworakowska
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of Chemical Engineering and TechnologyCracow University of TechnologyWarszawska 24Cracow31‐155Poland
| | - Francesca Lorandi
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Department of Industrial EngineeringUniversity of Padovavia Marzolo 9Padova35131Italy
| | - Adam Gorczyński
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of ChemistryAdam Mickiewicz UniversityUniwersytetu Poznańskiego 8Poznań61‐614Poland
| | | |
Collapse
|
16
|
Design, Synthesis and Characterization of Vitrimers with Low Topology Freezing Transition Temperature. Polymers (Basel) 2022; 14:polym14122456. [PMID: 35746032 PMCID: PMC9229622 DOI: 10.3390/polym14122456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 01/30/2023] Open
Abstract
Vitrimers are crosslinked polymeric materials that behave like fluids when heated, regulated by the kinetics of internal covalent bond-exchange that occurs rapidly at or above the topology freezing transition temperature (Tv) of the vitrimer, making these materials readily reprocessable and recyclable. We report two novel multiphase vitrimeric materials prepared by the cross-linking of two polymers, namely poly(triethylene glycol sebacate) and poly(2-hydroxyethyl acrylate), using zinc acetate or tin(II) 2-ethylhexanoate as catalysts, which exhibit significantly low Tv temperatures of 39 °C and 29 °C, respectively. The transesterification reactions allow rapid and pronounced stress relaxation at high temperatures, following the Arrhenius law. The lower Tv of these vitrimers could be attributable to the flexible long chains of these polymers and the significant excess of OH moieties present along the main chain of the polymer. The design of such multiphase vitrimers is not only useful for the practical application of vitrimers to reduce plastic waste but could also facilitate further development of functional polymer materials that can be reprocessed at low temperatures.
Collapse
|
17
|
Kimura T, Hayashi M. Exploring the effects of bound rubber phase on the physical properties of nano-silica composites with a vitrimer-like bond exchangeable matrix. Polym J 2022. [DOI: 10.1038/s41428-022-00654-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Oba Y, Kimura T, Hayashi M, Yamamoto K. Correlation between Self-Assembled Nanostructures and Bond Exchange Properties for Polyacrylate-Based Vitrimer-like Materials with a Trans- N-Alkylation Bond Exchange Mechanism. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yuta Oba
- Department of Life Science and Applied Chemistry, Graduated School of Engineering,Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Takahiro Kimura
- Department of Life Science and Applied Chemistry, Graduated School of Engineering,Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Mikihiro Hayashi
- Department of Life Science and Applied Chemistry, Graduated School of Engineering,Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Katsuhiro Yamamoto
- Department of Life Science and Applied Chemistry, Graduated School of Engineering,Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
19
|
Li Z, Li Y, He M, Wang W, Li J. Effects of the species of crosslinking reagents on the structures and properties of biodegradable poly (butanediol sebacate ‐ butanediol terephthalate) copolyester. J Appl Polym Sci 2022. [DOI: 10.1002/app.52145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Zhimao Li
- School of Materials Science and Engineering North University of China Taiyuan China
| | - Yingchun Li
- School of Materials Science and Engineering North University of China Taiyuan China
| | - Maoyong He
- Department of Materials Engineering Taiyuan Institute of Technology Taiyuan China
| | - Wensheng Wang
- School of Materials Science and Engineering North University of China Taiyuan China
| | - Jie Li
- School of Materials Science and Engineering North University of China Taiyuan China
| |
Collapse
|
20
|
Holloway JO, Taplan C, Du Prez F. Combining vinylogous urethane and β-amino ester chemistry for dynamic material design. Polym Chem 2022. [DOI: 10.1039/d2py00026a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study combines vinylogous urethane (VU) and beta-amino ester chemistry for the synthesis of covalent adaptable networks (CANs). The resulting CANs are synthesised using a range of diacetoacetates and commercially...
Collapse
|
21
|
Kawarazaki I, Hayashi M, Shibata A, Kaai M. Extraction of intrinsic effects of glassy domain cross-linking on the tensile properties of ABA block copolymer elastomers via photo cross-linking approach. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
22
|
Nellepalli P, Patel T, Oh JK. Dynamic Covalent Polyurethane Network Materials: Synthesis and Self-Healability. Macromol Rapid Commun 2021; 42:e2100391. [PMID: 34418209 DOI: 10.1002/marc.202100391] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/12/2021] [Indexed: 02/06/2023]
Abstract
Polyurethane (PU) has not only been widely used in the daily lives, but also extensively explored as an important class of the essential polymers for various applications. In recent years, significant efforts have been made on the development of self-healable PU materials that possess high performance, extended lifetime, great reliability, and recyclability. A promising approach is the incorporation of covalent dynamic bonds into the design of PU covalently crosslinked polymers and thermoplastic elastomers that can dissociate and reform indefinitely in response to external stimuli or autonomously. This review summarizes various strategies to synthesize self-healable, reprocessable, and recyclable PU materials integrated with dynamic (reversible) Diels-Alder cycloadduct, disulfide, diselenide, imine, boronic ester, and hindered urea bond. Furthermore, various approaches utilizing the combination of dynamic covalent chemistries with nanofiller surface chemistries are described for the fabrication of dynamic heterogeneous PU composites.
Collapse
Affiliation(s)
- Pothanagandhi Nellepalli
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Twinkal Patel
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
23
|
Kawarazaki I, Hayashi M. Importance of interfacial mixed layer to determine the middle block Tg in lamellar structures of uncross-linked and cross-linked hard-b-soft-b-hard triblock copolymers. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Ishibashi JSA, Pierce IC, Chang AB, Zografos A, El-Zaatari BM, Fang Y, Weigand SJ, Bates FS, Kalow JA. Mechanical and Structural Consequences of Associative Dynamic Cross-Linking in Acrylic Diblock Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02744] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jacob S. A. Ishibashi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Ian C. Pierce
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Alice B. Chang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Aristotelis Zografos
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bassil M. El-Zaatari
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yan Fang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Steven J. Weigand
- Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Julia A. Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
25
|
Cuminet F, Caillol S, Dantras É, Leclerc É, Ladmiral V. Neighboring Group Participation and Internal Catalysis Effects on Exchangeable Covalent Bonds: Application to the Thriving Field of Vitrimer Chemistry. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02706] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | | | - Éric Dantras
- CIRIMAT Physique des Polymères, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Éric Leclerc
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | |
Collapse
|
26
|
Versatile functionalization of polymeric soft materials by implanting various types of dynamic cross-links. Polym J 2021. [DOI: 10.1038/s41428-021-00474-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
27
|
Simple preparation, properties, and functions of vitrimer-like polyacrylate elastomers using trans-N-alkylation bond exchange. Polym J 2021. [DOI: 10.1038/s41428-021-00472-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Hayashi M, Kimura T, Oba Y, Takasu A. One‐Pot Synthesis of Dual Supramolecular Associative PMMA‐Based Copolymers and the Precise Thermal Property Tuning. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mikihiro Hayashi
- Department of Life Science and Applied Chemistry Graduated School of Engineering Nagoya Institute of Technology Gokiso‐cho, Showa‐ku Nagoya Aichi 466‐8555 Japan
| | - Takahiro Kimura
- Department of Life Science and Applied Chemistry Graduated School of Engineering Nagoya Institute of Technology Gokiso‐cho, Showa‐ku Nagoya Aichi 466‐8555 Japan
| | - Yuta Oba
- Department of Life Science and Applied Chemistry Graduated School of Engineering Nagoya Institute of Technology Gokiso‐cho, Showa‐ku Nagoya Aichi 466‐8555 Japan
| | - Akinori Takasu
- Department of Life Science and Applied Chemistry Graduated School of Engineering Nagoya Institute of Technology Gokiso‐cho, Showa‐ku Nagoya Aichi 466‐8555 Japan
| |
Collapse
|
29
|
Dennis JM, Savage AM, Mrozek RA, Lenhart JL. Stimuli‐responsive mechanical properties in polymer glasses: challenges and opportunities for defense applications. POLYM INT 2020. [DOI: 10.1002/pi.6154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Joseph M Dennis
- United States Army Research Laboratory Aberdeen Proving Ground Adelphi MD USA
| | - Alice M Savage
- United States Army Research Laboratory Aberdeen Proving Ground Adelphi MD USA
| | - Randy A Mrozek
- United States Army Research Laboratory Aberdeen Proving Ground Adelphi MD USA
| | - Joseph L Lenhart
- United States Army Research Laboratory Aberdeen Proving Ground Adelphi MD USA
| |
Collapse
|
30
|
Elling B, Dichtel WR. Reprocessable Cross-Linked Polymer Networks: Are Associative Exchange Mechanisms Desirable? ACS CENTRAL SCIENCE 2020; 6:1488-1496. [PMID: 32999924 PMCID: PMC7517108 DOI: 10.1021/acscentsci.0c00567] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 05/03/2023]
Abstract
Covalent adaptable networks (CANs) are covalently cross-linked polymers that may be reshaped via cross-linking and/or strand exchange at elevated temperatures. They represent an exciting and rapidly developing frontier in polymer science for their potential as stimuli-responsive materials and to make traditionally nonrecyclable thermosets more sustainable. CANs whose cross-links undergo exchange via associative intermediates rather than dissociating to separate reactive groups are termed vitrimers. Vitrimers were postulated to be an attractive subset of CANs, because associative cross-link exchange mechanisms maintain the original cross-link density of the network throughout the exchange process. As a result, associative CANs demonstrate a gradual, Arrhenius-like reduction in viscosity at elevated temperatures while maintaining mechanical integrity. In contrast, CANs reprocessed by dissociation and reformation of cross-links have been postulated to exhibit a more rapid decrease in viscosity with increasing temperature. Here, we survey the stress relaxation behavior of all dissociative CANs for which variable temperature stress relaxation or viscosity data are reported to date. All exhibit an Arrhenius relationship between temperature and viscosity, as only a small percentage of the cross-links are broken instantaneously under typical reprocessing conditions. As such, dissociative and associative CANs show nearly identical reprocessing behavior over broad temperature ranges typically used for reprocessing. Given that the term vitrimer was coined to highlight an Arrhenius relationship between viscosity and temperature, in analogy to vitreous glasses, we discourage its continued use to describe associative CANs. The realization that the cross-link exchange mechanism does not greatly influence the practical reprocessing behavior of most CANs suggests that exchange chemistries can be considered with fewer constraints, focusing instead on their activation parameters, synthetic convenience, and application-specific considerations.
Collapse
Affiliation(s)
- Benjamin
R. Elling
- Department of Chemistry, Northwestern
University, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
| | - William R. Dichtel
- Department of Chemistry, Northwestern
University, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
| |
Collapse
|
31
|
Hayashi M. Implantation of Recyclability and Healability into Cross-Linked Commercial Polymers by Applying the Vitrimer Concept. Polymers (Basel) 2020; 12:E1322. [PMID: 32531918 PMCID: PMC7362076 DOI: 10.3390/polym12061322] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022] Open
Abstract
Vitrimers are a new class of cross-linked materials that are capable of network topology alternation through the associative dynamic bond-exchange mechanism, which has recently been invented to solve the problem of conventional cross-linked materials, such as poor recyclability and healability. Thus far, the concept of vitrimers has been applied to various commercial polymers, e.g., polyesters, polylactides, polycarbonates, polydimethylsiloxanes, polydienes, polyurethanes, polyolefins, poly(meth)acrylates, and polystyrenes, by utilizing different compatible bond-exchange reactions. In this review article, the concept of vitrimers is described by clarifying the difference from thermoplastics and supramolecular systems; in addition, the term "associative bond-exchange" in vitrimers is explained by comparison with the "dissociative" term. Several useful functions attained by the vitrimer concept (including recyclability and healability) are demonstrated, and recent molecular designs of vitrimers are classified into groups depending on the types of molecular frameworks. This review specifically focuses on the vitrimer molecular designs with commercial polymer-based frameworks, which provide useful hints for the practical application of the vitrimer concept.
Collapse
Affiliation(s)
- Mikihiro Hayashi
- Department of Life Science and Applied Chemistry, Graduated School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|