1
|
Chaparro D, Goudeli E. Design of engineered nanoparticles for biomedical applications by computational modeling. NANOSCALE 2025; 17:9705-9737. [PMID: 40190149 DOI: 10.1039/d4nr05199h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Engineered nanoparticles exhibit superior physicochemical, antibacterial, optical, and sensing properties compared to their bulk counterparts, rendering them attractive for biomedical applications. However, given that nanoparticle properties are sensitive to their nanostructural characteristics and their chemical stability is largely affected by physiological conditions, nanoparticle behavior can be unpredictable in vivo, requiring careful surface modification to ensure biocompatibility, prevent rapid aggregation, and maintain functionality under biological environments. Therefore, understanding the mechanisms of nanoparticle formation and macroscopic behavior in physiological media is essential for the development of structure-property relationships and, their rational design for biomedical applications. Computational simulations provide insight into nanoscale phenomena and nanoparticle dynamics, expediting material discovery and innovation. This review provides an overview of the process design and characterization of metallic and metal oxide nanoparticles with an emphasis on atomistic and mesoscale simulations for their application in bionanomedicine.
Collapse
Affiliation(s)
- Diego Chaparro
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Australia.
| | - Eirini Goudeli
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
2
|
Saminathan S, Sundaram G, Jayapal A, Shakeel F, Rajalingam S, Murugan S, Kalaichelvan K, Faiyazuddin M. Green engineering of NiO nanoparticles decorated with Arachis hypogaea shell extract for biomedical applications. Z PHYS CHEM 2025; 239:149-176. [DOI: 10.1515/zpch-2024-0856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Abstract
We attempted to synthesize nickel oxide nanoparticles (NiO-NPs) utilizing waste Arachis hypogaea (peanut) shell extract and studied their structural, morphological, and biological performance for biomedical applications. The green engineered NiO-NPs possessed a face-centered cubic structure with an average particle size of 20 nm in highly crystalline form. NiO-NPs were shown to have an optical resonance peak at 327 nm with 3 eV as the optical band gap according to the UV–visible spectra, and the stretching band between Ni–O were evidenced from the FTIR and Raman spectrum. Utilizing green approach the stable nanoparticles were obtained with average particle size of 31 nm from SEM analysis; zeta potential value of −17.6 mV, and PDI as 0.68, revealed the formation of spherical nanoparticles with distinct morphologies without aggregation. XPS analysis confirmed the oxidation states of the elements Ni (2p) and O (1s). This approach may help to increase the surface area, increasing the possibility of nanoparticles interacting with bacterial cells. Furthermore, the presence of nickel and the oxygen oxidation state were confirmed by XPS. Proteus vulgaris, Streptococcus oralis, Bacillus subtilis, and Escherichia coli were found to be susceptible to the antibacterial action of the produced NiO-NPs, with a maximal zone of inhibition of 10.25 mm at 500 μg/ml for P. vulgaris. For P. vulgaris and E. coli, the minimum inhibitory concentrations of NiO were 5.36 and 12.55 %, respectively, at 31.25 μg mL−1. We hereby claim that green engineered NiO NPs decorated with A. hypogaea shell extract have great potential for pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Sharmila Saminathan
- Department of Physics , Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology , Chennai , India
| | - Gowri Sundaram
- PG & Research Department of Physics , Cauvery College for Women , Tiruchirappalli , Tamil Nadu , India
| | - Aarthi Jayapal
- PG & Research Department of Physics , Cauvery College for Women , Tiruchirappalli , Tamil Nadu , India
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy , King Saud University , P.O. Box 2457 , Riyadh 11451 , Saudi Arabia
| | - Sivaranjani Rajalingam
- PG & Research Department of Physics , Cauvery College for Women , Tiruchirappalli , Tamil Nadu , India
| | - Shandhiya Murugan
- Department of Physics , Karpagam Academy of Higher Education , Coimbatore , Tamil Nadu , India
| | - Kalaiarasi Kalaichelvan
- PG & Research Department of Mathematics , Cauvery College for Women , Tiruchirappalli , Tamil Nadu , India
| | - Md. Faiyazuddin
- School of Pharmacy , Al-Karim University , Katihar , Bihar , India
- Centre for Global Health Research , Saveetha Institute of Medical and Technical Sciences , Chennai , Tamil Nadu , India
| |
Collapse
|
3
|
Nayak M, Sonowal L, Pradhan L, Upadhyay A, Kamath P, Mukherjee S. Multifunctional (4-in-1) Therapeutic Applications of Nickel Thiocyanate Nanoparticles Impregnated Cotton Gauze as Antibacterial, Antibiofilm, Antioxidant and Wound Healing Agent. Chem Asian J 2024; 19:e202400187. [PMID: 38665128 DOI: 10.1002/asia.202400187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/16/2024] [Indexed: 08/27/2024]
Abstract
The wounds, arises from accidents, burns, surgeries, diabetes, and trauma, can significantly impact well-being and present persistent clinical challenges. Ideal wound dressings should be flexible, stable, antibacterial, antioxidant and anti-inflammatory in nature, facilitating a scarless rapid wound healing. Initiatives were taken to create antibacterial cotton fabrics by incorporating agents like antibiotics and metallic nanoparticles. However, due to a lack of multifunctionality, these materials were not highly effective in causing scarless and rapid wound healing. In this article, nickel thiocyanate nanoparticle (NiSCN-NPs) impregnated cotton gauze wound dressing (NiSCN-CG) was developed. These nanoparticles were non-toxic to normal human cell lines till 1 mg/mL dose and did not cause skin irritation in the rat model. Further, NiSCN-NPs exhibited antimicrobial, antibiofilm and antioxidant activities confirmed using different in vitro experiments. In vivo wound healing studies in rat models using NiSCN-CG demonstrated rapid scarless wound healing. The nickel thiocyanate impregnated cotton gauze presents a novel approach in scarless wound healing, and as an antimicrobial agent, offering a promising solution for diverse wounds and infections in the future.
Collapse
Affiliation(s)
- Malay Nayak
- School of Biomedical Engineering, IIT (BHU), Varanasi, Varanasi, 221005, Uttar Pradesh, India
| | - Lidiya Sonowal
- School of Biomedical Engineering, IIT (BHU), Varanasi, Varanasi, 221005, Uttar Pradesh, India
| | - Lipi Pradhan
- School of Biomedical Engineering, IIT (BHU), Varanasi, Varanasi, 221005, Uttar Pradesh, India
| | - Anjali Upadhyay
- School of Biomedical Engineering, IIT (BHU), Varanasi, Varanasi, 221005, Uttar Pradesh, India
| | - Prajwal Kamath
- School of Biomedical Engineering, IIT (BHU), Varanasi, Varanasi, 221005, Uttar Pradesh, India
| | - Sudip Mukherjee
- School of Biomedical Engineering, IIT (BHU), Varanasi, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
4
|
Rizwan M, Usman K, Alsafran M. Ecological impacts and potential hazards of nickel on soil microbes, plants, and human health. CHEMOSPHERE 2024; 357:142028. [PMID: 38621494 DOI: 10.1016/j.chemosphere.2024.142028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/25/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Nickel (Ni) contamination poses a serious environmental concern, particularly in developing countries: where, anthropogenic activities significantly contributes to Ni accumulations in soils and waters. The contamination of agricultural soils with Ni, increases risks of its entry to terrestrial ecosystems and food production systems posing a threat to both food security and safety. We examined the existing published articles regarding the origin, source, accumulation, and transport of Ni in soil environments. Particularly, we reviewed the bioavailability and toxic effects of Ni to soil invertebrates and microbes, as well as its impact on soil-plant interactions including seed germination, nutrient uptake, photosynthesis, oxidative stress, antioxidant enzyme activity, and biomass production. Moreover, it underscores the potential health hazards associated with consuming crops cultivated in Ni-contaminated soils and elucidates the pathways through which Ni enters the food chain. The published literature suggests that chronic Ni exposure may have long-term implications for the food supply chain and the health of the public. Therefore, an aggressive effort is required for interdisciplinary collaboration for assessing and mitigating the ecological and health risks associated with Ni contamination. It also argues that these measures are necessary in light of the increasing level of Ni pollution in soil ecosystems and the potential impacts on public health and the environment.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha, 2713, Qatar
| | - Kamal Usman
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha, 2713, Qatar
| | - Mohammed Alsafran
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
5
|
Carvalho R, Tapia JH, Minsavage GV, Jones JB, Paret ML. Elucidating the Mode of Action of Hybrid Nanoparticles of Cu/Zn Against Copper-Tolerant Xanthomonas euvesicatoria. PHYTOPATHOLOGY 2024; 114:1206-1214. [PMID: 38302452 DOI: 10.1094/phyto-09-23-0339-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The widespread presence of tolerance to copper in Xanthomonas species has resulted in the need to develop alternative approaches to control plant diseases caused by xanthomonads. In recent years, nanotechnological approaches have resulted in the identification of novel materials to control plant pathogens. With many metal-based nanomaterials having shown promise for disease control, an important question relates to the mode of action of these new materials. In this study, we used several approaches, such as scanning electron microscopy, propidium monoazide quantitative polymerase chain reaction, epifluorescence microscopy, and RNA sequencing to elucidate the mode of action of a Cu/Zn hybrid nanoparticle against copper-tolerant strains of Xanthomonas euvesicatoria. We demonstrate that Cu/Zn did not activate copper resistance genes (i.e., copA and copB) in the copper-tolerant bacterium but functioned by disrupting the bacterial cell structure and perturbing important biological processes such as cell respiration and chemical homeostasis.
Collapse
Affiliation(s)
- Renato Carvalho
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Jose H Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Gerald V Minsavage
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Mathews L Paret
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
- North Florida Research and Education Center, University of Florida, Quincy, FL 32251
| |
Collapse
|
6
|
Omran BA, Tseng BS, Baek KH. Nanocomposites against Pseudomonas aeruginosa biofilms: Recent advances, challenges, and future prospects. Microbiol Res 2024; 282:127656. [PMID: 38432017 DOI: 10.1016/j.micres.2024.127656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes life-threatening and persistent infections in immunocompromised patients. It is the culprit behind a variety of hospital-acquired infections owing to its multiple tolerance mechanisms against antibiotics and disinfectants. Biofilms are sessile microbial aggregates that are formed as a result of the cooperation and competition between microbial cells encased in a self-produced matrix comprised of extracellular polymeric constituents that trigger surface adhesion and microbial aggregation. Bacteria in biofilms exhibit unique features that are quite different from planktonic bacteria, such as high resistance to antibacterial agents and host immunity. Biofilms of P. aeruginosa are difficult to eradicate due to intrinsic, acquired, and adaptive resistance mechanisms. Consequently, innovative approaches to combat biofilms are the focus of the current research. Nanocomposites, composed of two or more different types of nanoparticles, have diverse therapeutic applications owing to their unique physicochemical properties. They are emerging multifunctional nanoformulations that combine the desired features of the different elements to obtain the highest functionality. This review assesses the recent advances of nanocomposites, including metal-, metal oxide-, polymer-, carbon-, hydrogel/cryogel-, and metal organic framework-based nanocomposites for the eradication of P. aeruginosa biofilms. The characteristics and virulence mechanisms of P. aeruginosa biofilms, as well as their devastating impact and economic burden are discussed. Future research addressing the potential use of nanocomposites as innovative anti-biofilm agents is emphasized. Utilization of nanocomposites safely and effectively should be further strengthened to confirm the safety aspects of their application.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), PO 11727, Nasr City, Cairo, Egypt
| | - Boo Shan Tseng
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
7
|
Abdallah Y, Ogunyemi SO, Bi J, Wang F, Huang X, Shi X, Jiang J, Ibrahim E, Mohany M, Al-Rejaie SS, Yan C, Li B. Nickel oxide nanoparticles: A new generation nanoparticles to combat bacteria Xanthomonas oryzae pv. oryzae and enhance rice plant growth. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105807. [PMID: 38582579 DOI: 10.1016/j.pestbp.2024.105807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 04/08/2024]
Abstract
Recently, nanotechnology is among the most promising technologies used in all areas of research. The production of metal nanoparticles using plant parts has received significant attention for its environmental friendliness and effectiveness. Therefore, we investigated the possible applications of biological synthesized nickel oxide nanoparticles (NiONPs). In this study, NiONPs were synthesized through biological method using an aqueous extract of saffron stigmas (Crocus sativus L). The structure, morphology, purity, and physicochemical properties of the obtained NPs were confirmed through Scanning/Transmission Electron Microscopy attached with Energy Dispersive Spectrum, X-ray Diffraction, and Fourier transform infrared. The spherically shaped NiONPs were found by Debye Scherer's formula to have a mean dimension of 41.19 nm. The application of NiONPs in vitro at 50, 100, and 200 μg/mL, respectively, produced a clear region of 2.0, 2.2, and 2.5 cm. Treatment of Xoo cell with NiONPs reduced the growth and biofilm formation, respectively, by 88.68% and 83.69% at 200 μg/mL. Adding 200 μg/mL NiONPs into Xoo cells produced a significant amount of ROS in comparison with the control. Bacterial apoptosis increased dramatically from 1.05% (control) to 99.80% (200 μg/mL NiONPs). When compared to the control, rice plants treated with 200 μg/mL NiONPs significantly improved growth characteristics and biomass. Interestingly, the proportion of diseased leaf area in infected plants with Xoo treated with NiONPs reduced to 22% from 74% in diseased plants. Taken together, NiONPs demonstrates its effectiveness as a promising tool as a nano-bactericide in managing bacterial infection caused by Xoo.
Collapse
Affiliation(s)
- Yasmine Abdallah
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Department of Plant Pathology, Minia University, El-Minia 11432, Egypt.
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| | - Ji''an Bi
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Fang Wang
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Xuan Huang
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Xianbo Shi
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Jiefeng Jiang
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Ezzeldin Ibrahim
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Department of Vegetable Diseases Research, Plant Pathology Research Institute, Agriculture Research Centre, Giza 12916, Egypt
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia.
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia.
| | - Chengqi Yan
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China.
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Paul D, Pandey A, Neogi S. Bacterial cell permeability study by metal oxide and mixed metal oxide nanoparticles: analysis of the factors contributing to the antibacterial activity of nanoparticles. World J Microbiol Biotechnol 2023; 39:281. [PMID: 37589765 DOI: 10.1007/s11274-023-03712-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023]
Abstract
In this work, we investigate the nanoparticle-cell wall interaction by NiO and mixed metal oxide CuO-NiO nanoparticles. We have synthesized and characterized the nanoparticles using XRD, FESEM, EDS, UV vis. spectroscopy, FTIR, Zeta, and TEM analysis in our previous work. Furthermore, a preliminary antibacterial study showed that both the nanoparticles performed very well as antibacterial agents. In this extended work, we investigate the mechanism of interaction of NiO and CuO-NiO nanoparticles with S. aureus and E. coli cells as there are number of studies for antibacterial mechanism of CuO nanoparticles. The uptake of crystal violet dye in the outer bacterial membrane, the release of ß-galactosidase enzyme, and relative electric conductivity assay were used to investigate changes in the permeability and integrity of the cell membrane. Superoxide ions, which are produced intracellularly as ROS by nanoparticles, severely damage bacterial membranes. Zeta potential measurement, which resulted in surface charge neutralization, proved membrane instability. FTIR analysis was used to identify changes in the proteins, carbohydrates, and fatty acids that make up the chemical composition of cell surfaces. AFM imaging demonstrated extensive alteration of the nanomechanical and surface characteristics. Confocal microscopy examination supported the DNA fragmentation and nanoparticle-cell adhesion. Due to their enhanced antibacterial activity when compared to monometallic oxide nanoparticles, this study demonstrated that mixed metal oxides can be employed in the health and biomedical sectors.
Collapse
Affiliation(s)
- Debashri Paul
- Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Ankur Pandey
- Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sudarsan Neogi
- Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
9
|
Junejo B, Eryilmaz M, Rizvanoglu SS, Palabiyik IM, Ghumro T, Mallah A, Solangi AR, Hyder SI, Maleh HK, Dragoi EN. Pharmacological assessment of Co 3O 4, CuO, NiO and ZnO nanoparticles via antibacterial, anti-biofilm and anti-quorum sensing activities. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2840-2851. [PMID: 37318927 PMCID: wst_2023_150 DOI: 10.2166/wst.2023.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Infectious diseases have risen dramatically as a result of the resistance of many common antibiotics. Nanotechnology provides a new avenue of investigation for the development of antimicrobial agents that effectively combat infection. The combined effects of metal-based nanoparticles (NPs) are known to have intense antibacterial activities. However, a comprehensive analysis of some NPs regarding these activities is still unavailable. This study uses the aqueous chemical growth method to synthesize Co3O4, CuO, NiO and ZnO NPs. The prepared materials were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction techniques. The antibacterial activities of NPs were tested against Gram-positive and Gram-negative bacteria using the microdilution method, such as the minimum inhibitory concentration (MIC) method. The best MIC value among all the metal oxide NPs was 0.63 against Staphylococcus epidermidis ATCC12228 through ZnO NPs. The other metal oxide NPs also showed satisfactory MIC values against different test bacteria. In addition, the biofilm inhibition and antiquorum sensing activities of NPs were also examined. The present study presents a novel approach for the relative analysis of metal-based NPs in antimicrobial studies, demonstrating their potential for bacteria removal from water and wastewater.
Collapse
Affiliation(s)
- Bindia Junejo
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Sindh 76080, Pakistan
| | - Mujde Eryilmaz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Suna Sibel Rizvanoglu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Ismail Murat Palabiyik
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Tania Ghumro
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Sindh 76080, Pakistan
| | - Arfana Mallah
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway; M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Sindh 76080, Pakistan
| | - Syed Iqleem Hyder
- Department of Chemistry, Government College University, Hyderabad, Sindh, Pakistan
| | - Hassan Karimi Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave., Chengdu, China
| | - Elena Niculina Dragoi
- Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, 'Gheorghe Asachi' Technical University, Bld D. Mangeron no. 73, Iasi 700050, Romania E-mail:
| |
Collapse
|
10
|
Jia M, Yi B, Chen X, Xu Y, Xu X, Wu Z, Ji J, Tang J, Yu D, Zheng Y, Zhou Q, Zhao Y. Carbon dots induce pathological damage to the intestine via causing intestinal flora dysbiosis and intestinal inflammation. J Nanobiotechnology 2023; 21:167. [PMID: 37231475 PMCID: PMC10210306 DOI: 10.1186/s12951-023-01931-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Carbon dots (CDs), as excellent antibacterial nanomaterials, have gained great attention in treating infection-induced diseases such as periodontitis and stomatitis. Given the eventual exposure of CDs to the intestine, elucidating the effect of CDs on intestinal health is required for the safety evaluation of CDs. RESULTS Herein, CDs extracted from ε-poly-L-lysine (PL) were chosen to explore the modulation effect of CDs on probiotic behavior in vitro and intestinal remodeling in vivo. Results verify that PL-CDs negatively regulate Lactobacillus rhamnosus (L. rhamnosus) growth via increasing reactive oxygen species (ROS) production and reducing the antioxidant activity, which subsequently destroys membrane permeability and integrity. PL-CDs are also inclined to inhibit cell viability and accelerate cell apoptosis. In vivo, the gavage of PL-CDs is verified to induce inflammatory infiltration and barrier damage in mice. Moreover, PL-CDs are found to increase the Firmicutes to Bacteroidota (F/B) ratio and the relative abundance of Lachnospiraceae while decreasing that of Muribaculaceae. CONCLUSION Overall, these evidences indicate that PL-CDs may inevitably result in intestinal flora dysbiosis via inhibiting probiotic growth and simultaneously activating intestinal inflammation, thus causing pathological damage to the intestine, which provides an effective and insightful reference for the potential risk of CDs from the perspective of intestinal remodeling.
Collapse
Affiliation(s)
- Mengmeng Jia
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Bingcheng Yi
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071 China
| | - Xian Chen
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Yongzhi Xu
- School of Stomatology, Qingdao University, Qingdao, 266003 China
| | - Xinkai Xu
- School of Stomatology, Qingdao University, Qingdao, 266003 China
| | - Zhaoxu Wu
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Jing Ji
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Jinglong Tang
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071 China
- School of Stomatology, Qingdao University, Qingdao, 266003 China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000 Zhejiang China
| | - Yanjie Zhao
- School of Public Health, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
11
|
Sahoo B, Rath SK, Champati BB, Panigrahi LL, Pradhan AK, Nayak S, Kar BR, Jha S, Arakha M. Photocatalytic activity of biosynthesized silver nanoparticle fosters oxidative stress at nanoparticle interface resulting in antimicrobial and cytotoxic activities. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36988223 DOI: 10.1002/tox.23787] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/25/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Inside the biological milieu, nanoparticles with photocatalytic activity have potential to trigger cell death non-specifically due to production of reactive oxygen species (ROS) upon reacting with biological entities. Silver nanoparticle (AgNP) possessing narrow band gap energy can exhibit high light absorption property and significant photocatalytic activity. This study intends to explore the effects of ROS generated due to photocatalytic activity of AgNP on antimicrobial and cytotoxic propensities. To this end, AgNP was synthesized using the principle of green chemistry from the peel extract of Punica granatum L., and was characterized using UV-Vis spectroscope, transmission electron microscope and x-ray diffraction, and so forth. The antimicrobial activity of AgNP against studied bacteria indicated that, ROS generated at AgNP interface develop stress on bacterial membrane leading to bacterial cell death, whereas Alamar Blue dye reduction assay indicated that increased cytotoxic activity with increasing concentrations of AgNP. The γH2AX activity assay revealed that increasing the concentrations of AgNP increased DNA damaging activity. The results altogether demonstrated that both antimicrobial and cytotoxic propensities are triggered primarily due interfacial ROS generation by photocatalytic AgNP, which caused membrane deformation in bacteria and DNA damage in HT1080 cells resulting in cell death.
Collapse
Affiliation(s)
- Banishree Sahoo
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sandip Kumar Rath
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bibhuti Bhusan Champati
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Lipsa Leena Panigrahi
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Arun Kumar Pradhan
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sanghamitra Nayak
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Bikash Ranjan Kar
- IMS & SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Suman Jha
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Manoranjan Arakha
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
12
|
Candreva A, De Rose R, Perrotta ID, Guglielmelli A, La Deda M. Light-Induced Clusterization of Gold Nanoparticles: A New Photo-Triggered Antibacterial against E. coli Proliferation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040746. [PMID: 36839113 PMCID: PMC9967119 DOI: 10.3390/nano13040746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 05/14/2023]
Abstract
Metallic nanoparticles show plasmon resonance phenomena when irradiated with electromagnetic radiation of a suitable wavelength, whose value depends on their composition, size, and shape. The damping of the surface electron oscillation causes a release of heat, which causes a large increase in local temperature. Furthermore, this increase is enhanced when nanoparticle aggregation phenomena occur. Local temperature increase is extensively exploited in photothermal therapy, where light is used to induce cellular damage. To activate the plasmon in the visible range, we synthesized 50 nm diameter spherical gold nanoparticles (AuNP) coated with polyethylene glycol and administered them to an E. coli culture. The experiments were carried out, at different gold nanoparticle concentrations, in the dark and under irradiation. In both cases, the nanoparticles penetrated the bacterial wall, but a different toxic effect was observed; while in the dark we observed an inhibition of bacterial growth of 46%, at the same concentration, under irradiation, we observed a bactericidal effect (99% growth inhibition). Photothermal measurements and SEM observations allowed us to conclude that the extraordinary effect is due to the formation, at low concentrations, of a light-induced cluster of gold nanoparticles, which does not form in the absence of bacteria, leading us to the conclusion that the bacterium wall catalyzes the formation of these clusters which are ultimately responsible for the significant increase in the measured temperature and cause of the bactericidal effect. This photothermal effect is achieved by low-power irradiation and only in the presence of the pathogen: in its absence, the lack of gold nanoparticles clustering does not lead to any phototoxic effect. Therefore, it may represent a proof of concept of an innovative nanoscale pathogen responsive system against bacterial infections.
Collapse
Affiliation(s)
- Angela Candreva
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
- CNR-NANOTEC, Institute of Nanotechnology U.O.S, Cosenza, 87036 Rende, Italy
| | - Renata De Rose
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | - Ida Daniela Perrotta
- Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis (CM2), University of Calabria, 87036 Rende, Italy
| | - Alexa Guglielmelli
- CNR-NANOTEC, Institute of Nanotechnology U.O.S, Cosenza, 87036 Rende, Italy
- Department of Physics, NLHT-Lab, University of Calabria, 87036 Rende, Italy
| | - Massimo La Deda
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
- CNR-NANOTEC, Institute of Nanotechnology U.O.S, Cosenza, 87036 Rende, Italy
- Correspondence:
| |
Collapse
|
13
|
Green-synthesized Nickel oxide nanoparticles: Magnetic and Biomedical applications. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
14
|
Liu HH, Yang L, Guo LK, Tu LX, Li XT, Wang J, Ren YX. The nutrient removal and tolerance mechanism of a heterotrophic nitrifying bacterium Pseudomonas putida strain NP5 under metal oxide nanoparticles stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28227-28237. [PMID: 36399297 DOI: 10.1007/s11356-022-24055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of metal oxide nanoparticles (NPs) in wastewater treatment plants (WWTPs) has raised great concerns about their adverse impacts on nitrification performance. In this study, a heterotrophic nitrifying bacterium Pseudomonas putida strain NP5 showed strong resistance against TiO2 and NiO NPs. Under 5-50 mg/L NP stress, cell viability was still normal, and the final nutrient removal rates, always higher than 80%, were slightly inhibited. Correspondingly, the PO43--P removal rates were almost the same as those observed in the control test. Although the enzyme assay demonstrated ammonia monooxygenase and hydroxylamine oxidoreductase activities markedly decreased caused by increased reactive oxygen species (ROS) level under 50 mg/L NPs stress. The total antioxidant capability of NP5 could eliminate excess ROS to maintain a balance between oxidants and antioxidants. Besides, in response to the escalating burden of NPs, strain NP5 tended to secrete more extracellular polymeric substances (EPS), which could protect cell from being damaged by binding to ions and coating. Thus, the strong NP resistance of NP5 would help to overcome the vulnerability of the nitrification process in WWTPs.
Collapse
Affiliation(s)
- Huan-Huan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lei Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Lin-Kai Guo
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Li-Xin Tu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiao-Tong Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jia Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
15
|
Pérez-Aranda M, Pajuelo E, Navarro-Torre S, Pérez-Palacios P, Begines B, Rodríguez-Llorente ID, Torres Y, Alcudia A. Antimicrobial and Antibiofilm Effect of 4,4'-Dihydroxy-azobenzene against Clinically Resistant Staphylococci. Antibiotics (Basel) 2022; 11:antibiotics11121800. [PMID: 36551456 PMCID: PMC9774766 DOI: 10.3390/antibiotics11121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The spread of antibiotic resistance among human and animal pathogens is one of the more significant public health concerns. Moreover, the restrictions on the use of particular antibiotics can limit the options for the treatment of infections in veterinary clinical practice. In this context, searching for alternative antimicrobial substances is crucial nowadays. In this study, 4,4'-dihydroxy-azobenzene (DHAB) was tested for its potential in vitro as an antimicrobial agent against two relevant human and animal pathogens, namely Staphylococcus aureus and Staphylococcus pseudintermedius. The values of minimal inhibitory concentration (MIC) were 64 and 32 mg/L respectively, and they comparable to other azo compounds of probed antimicrobial activity. In addition, the minimal bactericidal concentrations (MCB) were 256 and 64 mg/L. The mechanism by which DHAB produces toxicity in staphylococci has been investigated. DHAB caused membrane damage as revealed by the increase in thiobarbituric acid reactive substances (TBARS) such as malondialdehyde. Furthermore, differential induction of the enzymes peroxidases and superoxide dismutase in S. aureus and S. pseudintermedius suggested their prevalent role in ROS-scavenging due to the oxidative burst induced by this compound in either species. In addition, this substance was able to inhibit the formation of biofilms by both bacteria as observed by colorimetric tests and scanning electron microscopy. In order to assess the relevance of DHAB against clinical strains of MRSA, 10 clinical isolates resistant to either methicillin or daptomycin were assayed; 80% of them gave values of CMI and CMB similar to those of the control S. aureus strain. Finally, cutaneous plasters containing a composite formed by an agar base supplemented with DHAB were designed. These plasters were able to inhibit in vitro the growth of S. aureus and S. pseudintermedius, particularly the later, and this suggests that this substance could be a promising candidate as an alternative to antibiotics in the treatment of animal skin infections, as it has been proven that the toxicity of this substance is very low particularly at a dermal level.
Collapse
Affiliation(s)
- María Pérez-Aranda
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
- Correspondence: (E.P.); (A.A.); Tel.: +34-954556924 (E.P.); +34-954556740 (A.A.)
| | - Salvadora Navarro-Torre
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Patricia Pérez-Palacios
- UGC Enfermedades Infecciosas, Microbiología Clínica y Medicina Preventiva, Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena, CSIC, Universidad de Sevilla, 41009 Seville, Spain
| | - Belén Begines
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Ignacio D. Rodríguez-Llorente
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Yadir Torres
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, 41011 Sevilla, Spain
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
- Correspondence: (E.P.); (A.A.); Tel.: +34-954556924 (E.P.); +34-954556740 (A.A.)
| |
Collapse
|
16
|
Fatimah I, Widya Citradewi P, Purwiandono G, Hidayat H, Sagadevan S. Nickel oxide decorated reduced graphene oxide synthesized using Single Bioreductor of Pometia pinnata leaves extract as photocatalyst in tetracycline photooxidation and antibacterial agent. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Pseudomonas aeruginosa Clusters Toxic Nickel Nanoparticles to Enhance Survival. Microorganisms 2022; 10:microorganisms10112220. [PMID: 36363812 PMCID: PMC9694399 DOI: 10.3390/microorganisms10112220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Microorganisms forming a biofilm might become multidrug-resistant by information exchange. Multi-resistant, biofilm-producing microorganisms are responsible for a major portion of hospital-acquired infections. Additionally, these microorganisms cause considerable damage in the industrial sector. Here, we screened several nanoparticles of transition metals for their antibacterial properties. The nanoparticles sizes of nickel (<300 nm) and nickel oxide (<50 nm) were analyzed with transmission electron microscopy. We could show that the antibacterial efficacy of nickel and nickel oxide nanoparticles on Pseudomonas aeruginosa isolated from household appliances and Staphylococcus aureus was the highest. Interestingly, only P. aeruginosa was able to survive at high concentrations (up to 50 mM) due to clustering toxic nanoparticles out of the medium by biofilm formation. This clustering served to make the medium nearly free of nanoparticles, allowing the bacteria to continue living without contact to the stressor. We observed these clusters by CLSM, SEM, and light microscopy. Moreover, we calculated the volume of NiO particles in the bacterial biofilms based on an estimated thickness of 5 nm from the TEM images as an average volume of 3.5 × 10−6 µm3. These results give us a new perspective on bacterial defense mechanisms and might be useful in industries such as water purification.
Collapse
|
18
|
Basavegowda N, Baek KH. Combination Strategies of Different Antimicrobials: An Efficient and Alternative Tool for Pathogen Inactivation. Biomedicines 2022; 10:2219. [PMID: 36140320 PMCID: PMC9496525 DOI: 10.3390/biomedicines10092219] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the discovery and development of an array of antimicrobial agents, multidrug resistance poses a major threat to public health and progressively increases mortality. Recently, several studies have focused on developing promising solutions to overcome these problems. This has led to the development of effective alternative methods of controlling antibiotic-resistant pathogens. The use of antimicrobial agents in combination can produce synergistic effects if each drug invades a different target or signaling pathway with a different mechanism of action. Therefore, drug combinations can achieve a higher probability and selectivity of therapeutic responses than single drugs. In this systematic review, we discuss the combined effects of different antimicrobial agents, such as plant extracts, essential oils, and nanomaterials. Furthermore, we review their synergistic interactions and antimicrobial activities with the mechanism of action, toxicity, and future directions of different antimicrobial agents in combination. Upon combination at an optimum synergistic ratio, two or more drugs can have a significantly enhanced therapeutic effect at lower concentrations. Hence, using drug combinations could be a new, simple, and effective alternative to solve the problem of antibiotic resistance and reduce susceptibility.
Collapse
Affiliation(s)
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38451, Korea
| |
Collapse
|
19
|
Antioxidant, Protoscolicidal, Hemocompatibility, and Antibacterial Activity of Nickel Oxide Nanoparticles Synthesized by Ziziphus spina-christi. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abstract
Over the past several years, the greener fabrication of metal oxide nanoparticles has attracted significant attention due to their simplicity, eco-friendliness, availability, and nontoxicity. This paper focused on the fabrication of nickel oxide nanoparticles (NiO-NPs) using the leaf extract of Ziziphus spina-christi L. and evaluating its potential biological activities. The characterization of synthesized NiO-NPs was confirmed using ultraviolet–visible spectroscopy, field emission-scanning electron microscope, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Furthermore, protoscolicidal, antibacterial, and antioxidant activities and hemocompatibility of NiO-NPs were investigated. The findings revealed that the NiO-NPs were crystalline on nanoscale between 50- and 90-nm particle sizes. The NiO-NPs showed high scolicidal activity against Echinococcus granulosus. The viability of the treated protoscoleces exponentially decreased with an increase in the concentration of NiO-NPs. The NiO-NPs exhibited effective antibacterial activity against Escherichia coli and Staphylococcus aureus. NiO-NPs also possess a H2O2 scavenging activity in a dose-dependent manner. This study revealed that the Z. spina-christi L. leaf extract is an effective reducing and capping agent for the production of NiO-NPs; it showed critical biological properties. Moreover, NiO-NPs have a potent antioxidant activity and low toxicity on the erythrocytes and appear hemocompatible.
Collapse
|
20
|
Ouafek N, Keghouche N, Beaunier P, Belloni J, Mostafavi M. Antibacterial activity of intermetallic NixMgy and NiO–MgO phases in nickel-magnesium oxide nanocomposites. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Qian C, Jin L, Zhu L, Zhou Y, Chen J, Yang D, Xu X, Ding P, Li R, Zhao Z. Metabolomics-Driven Exploration of the Antibacterial Activity and Mechanism of 2-Methoxycinnamaldehyde. Front Microbiol 2022; 13:864246. [PMID: 35875567 PMCID: PMC9301309 DOI: 10.3389/fmicb.2022.864246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022] Open
Abstract
Methicillin-resistant Staphylococcus epidermidis (MRSE) is one of the most commonly found pathogens that may cause uncontrollable infections in immunocompromised and hospitalized patients. Compounds isolated from cinnamon such as cinnamaldehyde and cinnamic acid showed promising anti-oxidant, anti-tumor, and immunoregulatory effects; more importantly, these compounds also possess promising broad-spectrum antibacterial activity. In this study, the potential antibacterial activity of 2-methoxycinnamaldehyde (MCA), another compound in cinnamon, against MRSE was investigated. Combining the broth microdilution test, live/dead assay, and biofilm formation assay, we found MCA was able to inhibit the proliferation, as well as the biofilm formation of MRSE, indicating MCA could not only affect the growth of MRSE but also inhibit the pathogenic potential of this bacterium. Additionally, the results of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that MCA caused morphological changes and the leakage of DNA, RNA, and cellular contents of MRSE. Due to the close relationship between cell wall synthesis, ROS formation, and cell metabolism, the ROS level and metabolic profile of MRSE were explored. Our study showed MCA significantly increased the ROS production in MRSE, and the following metabolomics analysis showed that the increased ROS production may partially be due to the increased metabolic flux through the TCA cycle. In addition, we noticed the metabolic flux through the pentose phosphate pathway (PPP) was upregulated accompanied by elevated ROS production. Therefore, the alterations in cell metabolism and increased ROS production could lead to the damage of the cell wall, which in turn decreased the proliferation of MRSE. In conclusion, MCA seemed to be a promising alternative antimicrobial agent to control MRSE infections.
Collapse
Affiliation(s)
- Chunguo Qian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
| | - Lu Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
| | - Longping Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
| | - Yang Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
| | - Jing Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
| | - Xinjun Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
| | - Ping Ding
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Runnan Li
- Deqing County Dexin Agricultural Development Co., Ltd., Zhaoqing, China
| | - Zhimin Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
- *Correspondence: Zhimin Zhao,
| |
Collapse
|
22
|
Hassanpour-Khaneghah M, Iranifam M, Naseri A, Al Lawati HAJ. Nickel oxide hollow microsphere for the chemiluminescence determination of tuberculostatic drug isoniazid. LUMINESCENCE 2022; 37:1184-1191. [PMID: 35567303 DOI: 10.1002/bio.4273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/09/2022]
Abstract
In this paper, NiO hollow microspheres (HMSs) were fabricated and used to catalyze chemiluminescence (CL) reaction. The studied CL reaction is the luminol-O2 reaction that was used as a sensitive analytical tool for measuring tuberculostatic drug isoniazid (IND) in pharmaceutical formulations and water samples. The CL method was established based on the suppression impact of IND on the CL reaction. The NiO HMSs were produced by a simple hydrothermal method and characterized by several spectroscopic techniques. The result of essential parameters on the analytical performance of the CL method, including concentrations of NaOH, luminol, and NiO HMSs were investigated. At the optimum conditions, the calibration curve for isoniazid was linear in the range of 8.00 × 10-7 - 1.00 × 10-4 mol L-1 (R2 =0.99). A detection limit (3S) of 2.00 × 10-7 mol L-1 was obtained for this method. The acceptable relative standard deviation (RSD) was obtained for the proposed CL method (2.63%, n=10) for a 5.00 ×10-6 mol L-1 IND solution. The mechanism of the CL reaction was also discussed.
Collapse
Affiliation(s)
| | - Mortaza Iranifam
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Haider A J Al Lawati
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod, Oman
| |
Collapse
|
23
|
Cheng G, Ding H, Chen G, Shi H, Zhang X, Zhu M, Tan W. Effects of cadmium sulfide nanoparticles on sulfate bioreduction and oxidative stress in Desulfovibrio desulfuricans. BIORESOUR BIOPROCESS 2022; 9:35. [PMID: 38647594 PMCID: PMC10991916 DOI: 10.1186/s40643-022-00523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/10/2022] [Indexed: 11/10/2022] Open
Abstract
Sulfate-containing wastewater has a serious threat to the environment and human health. Microbial technology has great potential for the treatment of sulfate-containing wastewater. It was found that nano-photocatalysts could be used as extracellular electron donors to promote the growth and metabolic activity of non-photosynthetic microorganisms. However, nano-photocatalysts could also induce oxidative stress and damage cells. Therefore, the interaction mechanism between photosynthetic nanocatalysts and non-photosynthetic microorganisms is crucial to determine the regulatory strategies for microbial wastewater treatment technologies. In this paper, the mechanism and regulation strategy of cadmium sulfide nanoparticles (CdS NPs) on the growth of sulfate-reducing bacteria and the sulfate reduction process were investigated. The results showed that the sulfate reduction efficiency could be increased by 6.4% through CdS NPs under light conditions. However, the growth of Desulfovibrio desulfuricans C09 was seriously inhibited by 55% due to the oxidative stress induced by CdS NPs on cells. The biomass and sulfate reduction efficiency could be enhanced by 6.8% and 5.9%, respectively, through external addition of humic acid (HA). At the same time, the mechanism of the CdS NPs strengthening the sulfate reduction process by sulfate bacteria was also studied which can provide important theoretical guidance and technical support for the development of microbial technology combined with extracellular electron transfer (EET) for the treatment of sulfate-containing wastewater.
Collapse
Affiliation(s)
- Guoqing Cheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Huili Ding
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guanglin Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongjie Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Minglong Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
24
|
Laourari I, Lakhdari N, Belgherbi O, Medjili C, Berkani M, Vasseghian Y, Golzadeh N, Lakhdari D. Antimicrobial and antifungal properties of NiCu-PANI/PVA quaternary nanocomposite synthesized by chemical oxidative polymerization of polyaniline. CHEMOSPHERE 2022; 291:132696. [PMID: 34718011 DOI: 10.1016/j.chemosphere.2021.132696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/09/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Increasing antimicrobial resistance has led to use of novel technologies such as nanomaterials and nanocomposites that have shown effective antimicrobial and/or antifungal activities against several gram-positive and gram-negative bacteria. There have been limited studies on antimicrobial properties of the combined polymer nanocomposites with transitional bimetallic nanoparticles such as nickel (Ni) and copper (Cu). Thus, the main objective of this study was to synthesis, characterize and investigate the antibacterial and antifungal properties of NiCu-PANI/PVA nanocomposite. The nanocomposite films with different amount of Ni and Cu salts were synthesized by chemical oxidative polymerization of polyaniline using HCl as oxidant and PVA as a stabilizer. Optical, chemical composition, and morphological characteristics as well as thermal stability were evaluated using UV-Visible, FTIR, SEM-EDX, and TGA analyses. Antimicrobial properties were then determined using the disc diffusion assay against gram-negative bacteria (i.e., Escherichia coli ATCC 25922, Klebsiella pneumonia ATCC 700603, Proteus sp.,) and gram-positive bacteria (i.e., Staphylococcus aureus ATCC 2593). Fungal plant pathogens including Aspergillus niger and Fusarium oxysporum f. sp. pisi were also evaluated for determination of antifungal activity of NiCu-PANI/PVA films. Among the synthesized films, Ni65Cu35-PANI/PVA showed excellent antibacterial activity against all the bacteria strains examined in this study. The diameters of inhibition zones for Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 700603, Proteus sp., and Staphylococcus aureus ATCC 2593 were 23, 23, 17, and 18 mm, respectively indicating good antibacterial activities. Additionally, NiCu-PANI/PVA, particularly the films with higher Cu intake, showed better antifungal activity against Fusarium oxysporum f. sp. pisi. However, NiCu-PANI/PVA was ineffective against Aspergillus niger.
Collapse
Affiliation(s)
- Ines Laourari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66, 25100, Constantine, Algeria
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66, 25100, Constantine, Algeria.
| | - Ouafia Belgherbi
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014, Algiers, Algeria
| | - Chahinaz Medjili
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66, 25100, Constantine, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66, 25100, Constantine, Algeria.
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Nasrin Golzadeh
- Science, Technology, Engineering, and Mathematics (STEM) Knowledge Translations Institute, Montreal, Quebec, Canada
| | - Delloula Lakhdari
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014, Algiers, Algeria.
| |
Collapse
|
25
|
Soren S, Chakroborty S, Mahalik RR, Parhi P, Pal K, Behera D, Sahoo CR, Padhy RN, Aulakh MK, Sareen S, Krishna SBN. Evaluation of the antimicrobial potential of cerium-based perovskite (CeCuO 3) synthesized by a hydrothermal method. NEW J CHEM 2022; 46:19147-19152. [DOI: 10.1039/d2nj03646k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
A hydrothermally synthesized CeCuO3 perovskite nanomaterial has been used as a disinfectant against microorganisms causing urinary tract infections (UTIs).
Collapse
Affiliation(s)
- Siba Soren
- Department of Chemistry, Ravenshaw University, Cuttack-753003, Odisha, India
| | | | | | - Purnendu Parhi
- Department of Chemistry, Ravenshaw University, Cuttack-753003, Odisha, India
| | - Kaushik Pal
- Department of Physics, University Centre for Research and Development (UCRD), Chandigarh University, Mohali, Gharuan, Punjab 140413, India
| | - Debendra Behera
- Department of Chemistry, Ravenshaw University, Cuttack-753003, Odisha, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, IMS & Sum Hospital, Siksha ‘O’ Anusandhan University, K-8 Kalinga Nagar, Bhubaneswar 751003, Odisha, India
| | - Rabindra N. Padhy
- Central Research Laboratory, IMS & Sum Hospital, Siksha ‘O’ Anusandhan University, K-8 Kalinga Nagar, Bhubaneswar 751003, Odisha, India
| | | | - Shweta Sareen
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh-160 014, India
| | - Suresh Babu Naidu Krishna
- Department of Biomedical and Clinical Technology, Durban University of Technology, PO Box 1334, Durban-4000, South Africa
| |
Collapse
|
26
|
Karthikeyan C, Sisubalan N, Varaprasad K, Aepuru R, Yallapu MM, Viswanathan MR, Umaralikhan, Sadiku R. Hybrid nanoparticles from chitosan and nickel for enhanced biocidal activities. NEW J CHEM 2022. [DOI: 10.1039/d2nj02009b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cs/Ni/NiO hybrid nanomaterials were prepared by using the precipitation method, The HNPs displayed a nanoflake-like structure and showed high biocidal activity against S. aureus and E. coli strains and breast cancer cell lines.
Collapse
Affiliation(s)
| | - Natarajan Sisubalan
- Department of Botany, Bishop Heber College (Autonomous), Affi. To Bharathidasan University, Trichy 620017, Tamil Nadu, India
| | - Kokkarachedu Varaprasad
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | - Radhamanohar Aepuru
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | | | - Umaralikhan
- PG and Research Department of Physics, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli 620020, Tamil Nadu, India
| | - Rotimi Sadiku
- Institute of Nano Engineering Research (INER), Department of Chemical, Metallurgical & Materials Engineering (Polymer Divison), Tshwane University of Technology, Pretoria West Campus, Staatsarillerie Rd, Pretoria 1083, South Africa
| |
Collapse
|
27
|
Metryka O, Wasilkowski D, Mrozik A. Insight into the Antibacterial Activity of Selected Metal Nanoparticles and Alterations within the Antioxidant Defence System in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. Int J Mol Sci 2021; 22:11811. [PMID: 34769242 PMCID: PMC8583997 DOI: 10.3390/ijms222111811] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022] Open
Abstract
The antimicrobial activity of nanoparticles (NPs) is a desirable feature of various products but can become problematic when NPs are released into different ecosystems, potentially endangering living microorganisms. Although there is an abundance of advanced studies on the toxicity and biological activity of NPs on microorganisms, the information regarding their detailed interactions with microbial cells and the induction of oxidative stress remains incomplete. Therefore, this work aimed to develop accurate oxidation stress profiles of Escherichia coli, Bacillus cereus and Staphylococcus epidermidis strains treated with commercial Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs. The methodology used included the following determinations: toxicological parameters, reactive oxygen species (ROS), antioxidant enzymes and dehydrogenases, reduced glutathione, oxidatively modified proteins and lipid peroxidation. The toxicological studies revealed that E. coli was most sensitive to NPs than B. cereus and S. epidermidis. Moreover, NPs induced the generation of specific ROS in bacterial cells, causing an increase in their concentration, which further resulted in alterations in the activity of the antioxidant defence system and protein oxidation. Significant changes in dehydrogenases activity and elevated lipid peroxidation indicated a negative effect of NPs on bacterial outer layers and respiratory activity. In general, NPs were characterised by very specific nano-bio effects, depending on their physicochemical properties and the species of microorganism.
Collapse
Affiliation(s)
- Oliwia Metryka
- Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland;
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland;
| |
Collapse
|
28
|
Hamidian K, Rigi AH, Najafidoust A, Sarani M, Miri A. Study of photocatalytic activity of green synthesized nickel oxide nanoparticles in the degradation of acid orange 7 dye under visible light. Bioprocess Biosyst Eng 2021; 44:2667-2678. [PMID: 34499235 DOI: 10.1007/s00449-021-02636-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022]
Abstract
Environmental pollution is one of the most important problems that human beings face. Today, nanotechnology has played an important role in green chemistry and the use of nanoparticles in the removal of environmental pollutants is one of the newest methods of removing pollutants in the world. So, in this study, Nickel oxide nanoparticles (NiO NPs) of this work were successfully synthesized via a green method by the usage of nickel nitrate hexahydrate as the source of metal and Biebersteinia multifida extract as the stabilizing agent throughout different annealing temperatures. The physicochemical properties of the obtained NiO NPs were characterized through the application of scanning electron microscopy (SEM), energy dispersive X-ray (EDX), powder X-ray diffraction (PXRD), ultraviolet visible (UV-vis), and Raman analysis. According to the results of SEM and PXRD, the prepared product contained a satisfying distribution and very fine cubic structure with minimal accumulation. The average crystal size of prepared nanoparticles was obtained 54-58 nm. The energy band gap of synthesized NiO NPs was calculated 3-3.7 using Tauc equation. The photocatalytic performance of NiO NPs was investigated under visible light through the decolourization reaction of acid orange 7 (AO7) dye in aqueous solution. Being composed at 300 °C of annealing temperature, these nanoparticles exhibited excellent adsorption and photocatalytic activity (90.2%) toward AO7 dye. Therefore, it can be indicated that the synthesized NiO NPs demonstrated an excellent dispersion in dye solution, as well as considerable photocatalytic activity.
Collapse
Affiliation(s)
- Khadijeh Hamidian
- Department of Pharmaceutics, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Amir Hossein Rigi
- Department of Pharmaceutics, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Ahmad Najafidoust
- Department of Chemical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Mina Sarani
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran.
| | - Abdolhossein Miri
- Department of Pharmacognosy, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
29
|
Kumar A, Jigyasu DK, Kumar A, Subrahmanyam G, Mondal R, Shabnam AA, Cabral-Pinto MMS, Malyan SK, Chaturvedi AK, Gupta DK, Fagodiya RK, Khan SA, Bhatia A. Nickel in terrestrial biota: Comprehensive review on contamination, toxicity, tolerance and its remediation approaches. CHEMOSPHERE 2021; 275:129996. [PMID: 33647680 DOI: 10.1016/j.chemosphere.2021.129996] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Nickel (Ni) has been a subject of interest for environmental, physiological, biological scientists due to its dual effect (toxicity and essentiality) in terrestrial biota. In general, the safer limit of Ni is 1.5 μg g-1 in plants and 75-150 μg g-1 in soil. Litreature review indicates that Ni concentrations have been estimated up to 26 g kg-1 in terrestrial, and 0.2 mg L-1 in aquatic resources. In case of vegetables and fruits, mean Ni content has been reported in the range of 0.08-0.26 and 0.03-0.16 mg kg-1. Considering, Ni toxicity and its potential health hazards, there is an urgent need to find out the suitable remedial approaches. Plant vascular (>80%) and cortical (<20%) tissues are the major sequestration site (cation exchange) of absorbed Ni. Deciphering molecular mechanisms in transgenic plants have immense potential for enhancing Ni phytoremediation and microbial remediation efficiency. Further, it has been suggested that integrated bioremediation approaches have a potential futuristic path for Ni decontamination in natural resources. This systematic review provides insight on Ni effects on terrestrial biota including human and further explores its transportation, bioaccumulation through food chain contamination, human health hazards, and possible Ni remediation approaches.
Collapse
Affiliation(s)
- Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, 210044, China
| | - Dharmendra K Jigyasu
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, Assam, 785700, India.
| | - Amit Kumar
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, Assam, 785700, India.
| | - Gangavarapu Subrahmanyam
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, Assam, 785700, India.
| | - Raju Mondal
- Central Sericultural Germplasm Resources Centre (CSGRC), Central Silk Board, Ministry of Textiles, Thally Road, Hosur, Tamil Nadu, 635109, India.
| | - Aftab A Shabnam
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, Assam, 785700, India.
| | - M M S Cabral-Pinto
- Department of Geosciences, Geobiotec Research Centre, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sandeep K Malyan
- Research Management and Outreach Division, National Institute of Hydrology, Jalvigyan Bhawan, Roorkee, Uttarakhand, 247667, India.
| | - Ashish K Chaturvedi
- Land and Water Management Research Group, Centre for Water Resources Development and Management, Kozhikode, Kerala, 673571, India.
| | - Dipak Kumar Gupta
- ICAR-Central Arid Zone Research Institute Regional Research Station Pali Marwar, Rajasthan, 342003, India.
| | - Ram Kishor Fagodiya
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India.
| | - Shakeel A Khan
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Arti Bhatia
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
30
|
Khorsandi K, Keyvani-Ghamsari S, Khatibi Shahidi F, Hosseinzadeh R, Kanwal S. A mechanistic perspective on targeting bacterial drug resistance with nanoparticles. J Drug Target 2021; 29:941-959. [PMID: 33703979 DOI: 10.1080/1061186x.2021.1895818] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bacterial infections are an important cause of mortality worldwide owing to the prevalence of drug resistant bacteria. Bacteria develop resistance against antimicrobial drugs by several mechanisms such as enzyme inactivation, reduced cell permeability, modifying target site or enzyme, enhanced efflux because of high expression of efflux pumps, biofilm formation or drug-resistance gene expression. New and alternative ways such as nanoparticle (NP) applications are being established to overcome the growing multidrug-resistance in bacteria. NPs have unique antimicrobial characteristics that make them appropriate for medical application to overcome antibiotic resistance. The proposed antibacterial mechanisms of NPs are cell membrane damage, changing cell wall penetration, reactive oxygen species (ROS) production, effect on DNA and proteins, and impact on biofilm formation. The present review mainly focuses on discussing various mechanisms of bacterial drug resistance and the applications of NPs as alternative antibacterial systems. Combination therapy of NPs and antibiotics as a novel approach in medicine towards antimicrobial resistance is also discussed.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | | | - Fedora Khatibi Shahidi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Simab Kanwal
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, Thailand
| |
Collapse
|
31
|
Basavegowda N, Baek KH. Multimetallic Nanoparticles as Alternative Antimicrobial Agents: Challenges and Perspectives. Molecules 2021; 26:912. [PMID: 33572219 PMCID: PMC7915418 DOI: 10.3390/molecules26040912] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, infectious diseases caused by bacterial pathogens have become a major cause of morbidity and mortality globally due to their resistance to multiple antibiotics. This has triggered initiatives to develop novel, alternative antimicrobial materials, which solve the issue of infection with multidrug-resistant bacteria. Nanotechnology using nanoscale materials, especially multimetallic nanoparticles (NPs), has attracted interest because of the favorable physicochemical properties of these materials, including antibacterial properties and excellent biocompatibility. Multimetallic NPs, particularly those formed by more than two metals, exhibit rich electronic, optical, and magnetic properties. Multimetallic NP properties, including size and shape, zeta potential, and large surface area, facilitate their efficient interaction with bacterial cell membranes, thereby inducing disruption, reactive oxygen species production, protein dysfunction, DNA damage, and killing potentiated by the host's immune system. In this review, we summarize research progress on the synergistic effect of multimetallic NPs as alternative antimicrobial agents for treating severe bacterial infections. We highlight recent promising innovations of multimetallic NPs that help overcome antimicrobial resistance. These include insights into their properties, mode of action, the development of synthetic methods, and combinatorial therapies using bi- and trimetallic NPs with other existing antimicrobial agents.
Collapse
Affiliation(s)
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451, Korea;
| |
Collapse
|
32
|
Tsopoe SP, Borgohain C, Fopase R, Pandey LM, Borah JP. A comparative investigation of normal and inverted exchange bias effect for magnetic fluid hyperthermia applications. Sci Rep 2020; 10:18666. [PMID: 33122680 PMCID: PMC7596513 DOI: 10.1038/s41598-020-75669-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Exchange bias (EB) of magnetic nanoparticles (MNPs) in the nanoscale regime has been extensively studied by researchers, which have opened up a novel approach in tuning the magnetic anisotropy properties of magnetic nanoparticles (MNPs) in prospective application of biomedical research such as magnetic hyperthermia. In this work, we report a comparative study on the effect of magnetic EB of normal and inverted core@shell (CS) nanostructures and its influence on the heating efficiency by synthesizing Antiferromagnetic (AFM) NiO (N) and Ferrimagnetic (FiM) Fe3O4 (F). The formation of CS structures for both systems is clearly authenticated by XRD and HRTEM analyses. The magnetic properties were extensively studied by Vibrating Sample Magnetometer (VSM). We reported that the inverted CS NiO@Fe3O4 (NF) MNPs have shown a greater EB owing to higher uncompensated spins at the interface of the AFM, in comparison to the normal CS Fe3O4@NiO (FN) MNPs. Both the CS systems have shown higher SAR values in comparison to the single-phased F owing to the EB coupling at the interface. However, the higher surface anisotropy of F shell with more EB field for NF enhanced the SAR value as compared to FN system. The EB coupling is hindered at higher concentrations of NF MNPs because of the enhanced dipolar interactions (agglomeration of nanoparticles). Both the CS systems reach to the hyperthermia temperature within 10 min. The cyto-compatibility analysis resulted in the excellent cell viability (> 75%) for 3 days in the presence of the synthesized NPs upto 1 mg/ml. These observations endorsed the suitability of CS nanoassemblies for magnetic fluid hyperthermia applications.
Collapse
Affiliation(s)
- S P Tsopoe
- Department of Physics, National Institute of Technology Nagaland, Dimapur, Nagaland, 797103, India
| | - C Borgohain
- Central Instrumentation Facility (CIF), Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Rushikesh Fopase
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Lalit M Pandey
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - J P Borah
- Department of Physics, National Institute of Technology Nagaland, Dimapur, Nagaland, 797103, India.
| |
Collapse
|
33
|
In vitro assessment of antimicrobial, antibiofilm and larvicidal activities of bioactive nickel metal organic framework. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101560] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|