1
|
Jeong SH, Kang JJ, Kim KM, Lee MH, Cha M, Kim SH, Park JU. Supercritical Fluid-Processed Multifunctional Hybrid Decellularized Extracellular Matrix with Chitosan Hydrogel for Improving Photoaged Dermis Microenvironment. Adv Healthc Mater 2025:e2403213. [PMID: 40109208 DOI: 10.1002/adhm.202403213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/09/2025] [Indexed: 03/22/2025]
Abstract
To address the demand for reconstructive procedures in extensive subcutaneous tissue defects and significant dermis matrix loss, vascularized adipose tissue regeneration is essential for maintaining volume after material degradation. Accordingly, a double-crosslinked hydrogel that combines polyethylene glycol (PEG)-crosslinked carboxymethyl chitosan (CMC) with a hybrid decellularized extracellular matrix (dECM) is developed. The dECM, sourced from porcine adipose and cardiac tissues, processed using a supercritical fluid technique (scCO2-EtOH) retains 1.5-5-fold more angiogenic and adipogenic cytokines than that processed using traditional methods. This hybrid dECM-based filler demonstrates excellent physical properties and injectability, with injection forces being significantly less than that for crosslinked hyaluronic acid (HA) fillers. Upon incubation at 37 °C, the storage modulus of the fillers increases substantially, eventually enhancing their moldability from additional crosslinking and the thermosensitive nature of collagen. Assessments in a UVB-induced photoaging mouse model indicate that the material maintains superior shape stability, durability, and supports vascularized tissue regeneration, reduces inflammation, and enhances VEGF expression and ECM maturation more effectively compared with that using other fillers. These promising results suggest that the material can serve as a highly effective multifunctional solution for injectable regenerative medical applications and is well-suited for potential clinical trials.
Collapse
Affiliation(s)
- Seol-Ha Jeong
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, 07061, Republic of Korea
- Bio-max Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Jun Kang
- R&D Center, Medifab Co. Ltd, 5 Gasan digital 1-ro, Geumcheon-gu, Seoul, 08594, Republic of Korea
| | - Ki-Myo Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, 07061, Republic of Korea
| | - Mi Hyun Lee
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, 07061, Republic of Korea
| | - Misun Cha
- R&D Center, Medifab Co. Ltd, 5 Gasan digital 1-ro, Geumcheon-gu, Seoul, 08594, Republic of Korea
| | - Su Hee Kim
- R&D Center, Medifab Co. Ltd, 5 Gasan digital 1-ro, Geumcheon-gu, Seoul, 08594, Republic of Korea
| | - Ji-Ung Park
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, 07061, Republic of Korea
- Bio-max Institute, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Yu Q, Gao Y, Guo J, Wang X, Gao X, Zhao Y, Liu Y, Wen M, Zhang X, An M. Bioactivity and in vitro immunological studies of xenogeneic decellularized extracellular matrix scaffolds for implantable applications. J Mater Chem B 2024; 12:9390-9407. [PMID: 39189732 DOI: 10.1039/d4tb00450g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Decellularized scaffolds retain the main bioactive substances of the extracellular matrix, which can better promote cell proliferation and matrix reconstruction at the defect site, and have great potential for morphological and functional restoration in patients with tissue defects. Due to the safety of the material source of allogeneic decellularized scaffolds, there is a great limitation in their clinical application, so the preparation and evaluation of xenodermal acellular scaffolds have attracted much attention. In terms of skin tissue structure and function, porcine skin has a high degree of similarity to human skin and has the advantages of sufficient quantity and no ethical issues. However, there is a risk of immune rejection after xenodermal acellular scaffold transplantation. To address the above problems, this paper focuses on porcine dermal decellularized scaffolds prepared using two common decellularization preparation methods and compares the decellularization efficiency, retention of active components of the extracellular matrix, structural characterization of the decellularized scaffolds, and the effect of porcine dermal decellularized scaffolds on mouse Raw264.7 macrophages, so as to make a functional evaluation of the active components and immune effects of porcine dermal decellularized scaffolds, and to provide a reference for filling trauma-induced defects in humans.
Collapse
Affiliation(s)
- Qing Yu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| | - Yuantao Gao
- School of Medicine, Zhejiang University, Zhejiang 310058, China
| | - Jiqiang Guo
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Xinyue Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| | - Xiang Gao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| | - Yifan Zhao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| | - Meiling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| | - Xiangyu Zhang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| | - Meiwen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| |
Collapse
|
3
|
Park S, Huang L, Ao X, Elbendary A, Li G, Xian H, Du M, Xue R, Wang C. Micronized acellular dermal matrix combined with platelet rich plasma in the treatment of atrophic acne scars: A self-controlled split face study. J Cosmet Dermatol 2024; 23:2386-2391. [PMID: 38558364 DOI: 10.1111/jocd.16293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Micronized acellular dermal matrix (mADM) can induce tissue regeneration and repair, and filling. OBJECTIVES The efficacy and safety of (mADM) were evaluated in the treatment of atrophic acne scar. METHODS In this single-blinded, self-controlled, split-face study, 16 patients (48 scar sites) were divided into treatment group (24 scar sites) and control group (24 scar sites). One side of the affected area was treated with mADM combined with platelet rich plasma (PRP) injection as the treatment group; the other side of the affected area was treated with PRP injection as the control group. The efficacy was evaluated by the Acne scar assessment scale (ASAS) and Acne Scar Weight Rating Scale (ECCA) 3 months after treatment. RESULTS After 3-month treatment in 16 patients, the atrophic acne scars in both groups were all improved. The ASAS score and ECCA weight score in the treatment group was significantly lower than that in the control group (2.50 ± 0.51 vs. 3.62 ± 0.77 and 14.17 ± 10.18 vs. 31.88 ± 13.25; p < 0.001). LIMITATIONS Short-term 3-month treatment period. Small sample size limits generalizability of results. CONCLUSION The curative effect of mADM combined with PRP is significantly better than that of PRP alone.
Collapse
Affiliation(s)
- Sunwoo Park
- Aesthetic Plastic Surgery Department, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Lining Huang
- Aesthetic Department, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xian Ao
- Aesthetic Plastic Surgery Department, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Amira Elbendary
- Dermatology Department, Kasr Alainy Faculty of Medicine, Cairo University, Giza, Egypt
| | - Guomin Li
- Dermatology Department, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Hua Xian
- Aesthetic Plastic Surgery Department, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Meiyi Du
- Aesthetic Department, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Ruzeng Xue
- Dermatology Department, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Chunmei Wang
- Aesthetic Plastic Surgery Department, Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Da LC, Huang YZ, Xie HQ, Zheng BH, Huang YC, Du SR. Membranous Extracellular Matrix-Based Scaffolds for Skin Wound Healing. Pharmaceutics 2021; 13:1796. [PMID: 34834211 PMCID: PMC8620109 DOI: 10.3390/pharmaceutics13111796] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023] Open
Abstract
Membranous extracellular matrix (ECM)-based scaffolds are one of the most promising biomaterials for skin wound healing, some of which, such as acellular dermal matrix, small intestinal submucosa, and amniotic membrane, have been clinically applied to treat chronic wounds with acceptable outcomes. Nevertheless, the wide clinical applications are always hindered by the poor mechanical properties, the uncontrollable degradation, and other factors after implantation. To highlight the feasible strategies to overcome the limitations, in this review, we first outline the current clinical use of traditional membranous ECM scaffolds for skin wound healing and briefly introduce the possible repair mechanisms; then, we discuss their potential limitations and further summarize recent advances in the scaffold modification and fabrication technologies that have been applied to engineer new ECM-based membranes. With the development of scaffold modification approaches, nanotechnology and material manufacturing techniques, various types of advanced ECM-based membranes have been reported in the literature. Importantly, they possess much better properties for skin wound healing, and would become promising candidates for future clinical translation.
Collapse
Affiliation(s)
- Lin-Cui Da
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (L.-C.D.); (B.-H.Z.)
| | - Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China;
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China;
| | - Bei-Hong Zheng
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (L.-C.D.); (B.-H.Z.)
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Sheng-Rong Du
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (L.-C.D.); (B.-H.Z.)
| |
Collapse
|
5
|
Hosseinabadi M, Abdolmaleki Z, Beheshtiha SHS. Cardiac aorta-derived extracellular matrix scaffold enhances critical mediators of angiogenesis in isoproterenol-induced myocardial infarction mice. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:134. [PMID: 34704139 PMCID: PMC8550234 DOI: 10.1007/s10856-021-06611-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
An incapability to improve lost cardiac muscle caused by acute ischemic injury remains the most important deficiency of current treatments to prevent heart failure. We investigated whether cardiomyocytes culturing on cardiac aorta-derived extracellular matrix scaffold has advantageous effects on cardiomyocytes survival and angiogenesis biomarkers' expression. Ten male NMRI mice were randomly divided into two groups: (1) control (healthy mice) and (2) myocardial infarction (MI)-induced model group (Isoproterenol/subcutaneously injection/single dose of 85 mg/kg). Two days after isoproterenol injection, all animals were sacrificed to isolate cardiomyocytes from myocardium tissues. The fresh thoracic aorta was obtained from male NMRI mice and decellularized using 4% sodium deoxycholate and 2000 kU DNase-I treatments. Control and MI-derived cardiomyocytes were seeded on decellularized cardiac aorta (DCA) considered three-dimensional (3D) cultures. To compare, the isolated cardiomyocytes from control and MI groups were also cultured as a two-dimensional (2D) culture system for 14 days. The cell viability was examined by MTT assay. The expression levels of Hif-1α and VEGF genes and VEGFR1 protein were tested by real-time PCR and western blotting, respectively. Moreover, the amount of VEGF protein was evaluated in the conditional media of the 2D and 3D systems. The oxidative stress was assessed via MDA assay. Hif-1α and VEGF genes were downregulated in MI groups compared to controls. However, the resulting data showed that decellularized cardiac aorta matrices positively affect the expression of Hif-1α and VEGF genes. The expression level of VEGFR1 protein was significantly (p ≤ 0.01) upregulated in both MI and healthy cell groups cultured on decellularized cardiac aorta matrices as a 3D system compared to the MI cell group cultured in the 2D systems. Furthermore, MDA concentration significantly decreased in 3D-cultured cells (MI and healthy cell groups) rather than the 2D-cultured MI group (p ≤ 0.015). The findings suggest that cardiac aorta-derived extracellular scaffold by preserving VEGF, improving the cell viability, and stimulating angiogenesis via upregulating Hif-1α, VEGF, and VEGFR1 in cardiomyocytes could be considered as a potential approach along with another therapeutic method to reduce the complications of myocardial infarction and control the progressive pathological conditions related to MI.
Collapse
Affiliation(s)
- Mahara Hosseinabadi
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Zohreh Abdolmaleki
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran.
| | | |
Collapse
|
6
|
Chen H, Hossain MA, Kim JH, Cho JY. Kahweol Exerts Skin Moisturizing Activities by Upregulating STAT1 Activity. Int J Mol Sci 2021; 22:8864. [PMID: 34445570 PMCID: PMC8396203 DOI: 10.3390/ijms22168864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/08/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Kahweol is a diterpene present in coffee. Until now, several studies have shown that kahweol has anti-inflammatory and anti-angiogenic functions. Due to the limited research available about skin protection, this study aims to discern the potential abilities of kahweol and the possible regulation targets. First, the cytotoxicity of kahweol was checked by 3-4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assay, while 2,20-azino-bis (3ethylbenzothiazoline-6-sulphonic acid) diammonium salt and 1-diphenyl-2-picryl-hydrazyl were used to examine the radical scavenging ability. Polymerase chain reaction analysis was performed to explore the proper time points and doses affecting skin hydration and barrier-related genes. Luciferase assay and Western blotting were used to explore the possible transcription factors. Finally, fludarabine (a STAT1 inhibitor) was chosen to discern the relationship between skin-moisturizing factors and STAT1. We found that HaCaT cells experienced no toxicity from kahweol, and kahweol displayed moderate radical scavenging ability. Moreover, kahweol increased the outcome of HAS1, HAS2, occludin, and TGM-1 from six hours in a dose-dependent manner as well as the activation of STAT1 from six hours. Additionally, kahweol recovered the suppression of HAS2, STAT1-mediated luciferase activity, and HA secretion, which was all downregulated by fludarabine. In this study, we demonstrated that kahweol promotes skin-moisturizing activities by upregulating STAT1.
Collapse
Affiliation(s)
- Hongxi Chen
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
| | - Mohammad Amjad Hossain
- Department of Veterinary Physiology, College of Medicine, Chonbuk National University, Iksan 54596, Korea;
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Medicine, Chonbuk National University, Iksan 54596, Korea;
| | - Jae Youl Cho
- Department of Veterinary Physiology, College of Medicine, Chonbuk National University, Iksan 54596, Korea;
| |
Collapse
|
7
|
Lei X, Cheng L, Lin H, Pang M, Yao Z, Chen C, Forouzanfar T, Bikker FJ, Wu G, Cheng B. Human Salivary Histatin-1 Is More Efficacious in Promoting Acute Skin Wound Healing Than Acellular Dermal Matrix Paste. Front Bioeng Biotechnol 2020; 8:999. [PMID: 32974320 PMCID: PMC7466576 DOI: 10.3389/fbioe.2020.00999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/31/2020] [Indexed: 02/04/2023] Open
Abstract
A rapid wound healing is beneficial for not only recovering esthetics but also reducing pain, complications and healthcare burdens. For such a purpose, continuous efforts have been taken to develop viable dressing material. Acellular dermal matrix (ADM) paste has been used to repair burn wounds and is shown to promote angiogenesis as well as fibroblast attachment and migration. However, its efficacy still needs to be significantly improved to meet clinical demands for accelerating acute skin wound healing. To approach this problem, we studied the added value of a human salivary peptide - Histatin 1 (Hst1). Hst1 was chosen because of its potency to promote the adhesion, spreading, migration, metabolic activity and cell-cell junction of major skin cells and endothelial cells. In this study, we hypothesized that ADM paste and Hst1 showed a better effect on the healing of surgically created acute skin wounds in mice since ADM paste may act as a slow release system for Hst1. Our results showed that the healing efficacy of 10 μM topically administrated Hst1 was significantly higher compared to the control (no Hst1, no ADM) from day 3 to day 10 post-surgery. In contrast, ADM alone failed in our system at all time points. Also, the combination of ADM paste and Hst1 did not show a better effect on percentage of wound healing. Histological analysis showed that 10 μM Hst1 was associated with maximal thickness of newly formed epidermal layer on day 7 as well as the largest collagen area on day 14. In addition, immunohistochemical staining showed that the number of CD31-positive blood vessels in the group of 10 μM Hst1 was 2.3 times compared to the control. The vascular endothelial growth factor (VEGF) expression in the groups of 10 μM Hst1 group and ADM + 10 μM Hst1 group was significantly higher compared with the control group. Furthermore, 10 μM Hst1 group was associated with significantly lower levels of CD68-positive macrophage number, interleukin-1β (IL-1β) expression and C-reactive protein (CRP) expression than those of the other groups (control, ADM alone and ADM + 10 μM Hst1). In contrast, ADM was only associated with significantly lower CD68-positive macrophage number and IL-1β expression in comparison with the control. The co-administration of Hst1 and ADM paste did not yield more beneficial effects than Hst1 alone. In conclusion, the topically administrated of 10 μM Hst1 could be a promising alternative dressing in managing acute wound healing.
Collapse
Affiliation(s)
- Xiaoxuan Lei
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science, Amsterdam, Netherlands
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Liuhanghang Cheng
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science, Amsterdam, Netherlands
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Haiyan Lin
- Savaid Stomatology School, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Mengru Pang
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Zexin Yao
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Caihong Chen
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science, Amsterdam, Netherlands
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, Netherlands
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science, Amsterdam, Netherlands
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, Netherlands
| | - Biao Cheng
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| |
Collapse
|