1
|
Ahmad I, Athar MS, Muneer M, Altass HM, Felemban R, Ahmed SA. Synergistic design of a graphene oxide-mediated polyaniline/α-Fe 2O 3 ternary heterostructure: advancing photocatalytic degradation and adsorption efficiency. NANOSCALE 2025; 17:3822-3836. [PMID: 39775495 DOI: 10.1039/d4nr03681f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
With the growing threat of organic pollutants in water bodies, there is an urgent need for sustainable and efficient water decontamination methods. This research focused on synthesizing a novel Z-scheme ternary heterostructure composed of graphene oxide (GO)-mediated polyaniline (PANI) with α-Fe2O3 and investigated its potential in brilliant green (BrG) and ciprofloxacin (CIP) degradation tests under visible light. The ternary composite demonstrated exceptional photocatalytic activity, with the optimized 10%PANI/GO/α-Fe2O3 (10PGF) photocatalyst achieving 99.8% degradation of BrG in 25 min and 93% degradation of CIP in 90 min of irradiation. The 10PGF composite achieved rate constants of 0.222 min-1 for BrG and 0.0295 min-1 for CIP. The rate constant for BrG degradation was 15 and 10 times faster than that for PANI and α-Fe2O3, respectively, while CIP was degraded 8.9 and 6.1 times faster. The degradation of the pollutants was facilitated by both O2˙- and ˙OH, as confirmed by capturing active species, a nitroblue tetrazolium test and use of a PL terephthalic acid probe. The proposed Z-scheme mechanism elucidated charge carrier movements and active species involvement, revealing the enhanced photocatalytic performance of the ternary composite. The 10PGF ternary composite demonstrated exceptional recyclability over five repeated cycles, with XRD analysis confirming no structural changes in the material. Moreover, adsorption studies were also performed, which showed a strong correlation (R2 = 0.974) with Langmuir isotherms and that pseudo-second order kinetics was followed.
Collapse
Affiliation(s)
- Iftekhar Ahmad
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohammad Saud Athar
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohammad Muneer
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202002, India.
| | - Hatem M Altass
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, 21955 Makkah, Saudi Arabia.
| | - Raad Felemban
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, 21955 Makkah, Saudi Arabia.
| |
Collapse
|
2
|
Zhao Y, Kong H, Li Y, Zhao Y, Zhang Y, Zhao Y, Qu H. Inhibitory effects of Curcumae Radix carbonisata-based carbon dots against liver fibrosis induced by carbon tetrachloride in mice. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:23-34. [PMID: 38035609 DOI: 10.1080/21691401.2023.2239522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/18/2023] [Indexed: 12/02/2023]
Abstract
As a processed product of traditional Chinese medicine Curcumae Radix, Curcumae Radix Carbonisata (CRC) has been widely used in the treatment of liver diseases in ancient medical books. In this study, novel carbon dots (CDs) extending from 1.0 to 4.5 nm were separated from fluid extricates of CRC. Meanwhile, a liver fibrosis model induced by carbon tetrachloride (CCl4) was utilized to determine the inhibitory effects of CRC-CDs against liver fibrosis. The results exhibited the CRC-CDs with a quantum yield of 1.34% have a significant inhibitory effect on CCl4-induced liver fibrosis, as demonstrated by improving hepatocyte degeneration and necrosis, inflammatory cell infiltration and fibrotic tissue hyperplasia, downregulating the levels of alanine transaminase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), direct bilirubin (DBIL), total bile acid (TBA), triglyceride (TG), tumour necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β in the serum, upregulating the contents of superoxide dismutase (SOD), reduced glutathione (GSH), and downregulating the concentration of malondialdehyde (MDA), which lays an important foundation for the development of CRC-CDs as a novel drug for the treatment of liver fibrosis, and provide a certain experimental basis for the clinical application of CRC-CDs in the future.
Collapse
Affiliation(s)
- Yusheng Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuru Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yafang Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huihua Qu
- Centre of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Mandal TK. Nanomaterial-Enhanced Hybrid Disinfection: A Solution to Combat Multidrug-Resistant Bacteria and Antibiotic Resistance Genes in Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1847. [PMID: 39591087 PMCID: PMC11597552 DOI: 10.3390/nano14221847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
This review explores the potential of nanomaterial-enhanced hybrid disinfection methods as effective strategies for addressing the growing challenge of multidrug-resistant (MDR) bacteria and antibiotic resistance genes (ARGs) in wastewater treatment. By integrating hybrid nanocomposites and nanomaterials, natural biocides such as terpenes, and ultrasonication, this approach significantly enhances disinfection efficiency compared to conventional methods. The review highlights the mechanisms through which hybrid nanocomposites and nanomaterials generate reactive oxygen species (ROS) under blue LED irradiation, effectively disrupting MDR bacteria while improving the efficacy of natural biocides through synergistic interactions. Additionally, the review examines critical operational parameters-such as light intensity, catalyst dosage, and ultrasonication power-that optimize treatment outcomes and ensure the reusability of hybrid nanocomposites and other nanomaterials without significant loss of photocatalytic activity. Furthermore, this hybrid method shows promise in degrading ARGs, thereby addressing both microbial and genetic pollution. Overall, this review underscores the need for innovative wastewater treatment solutions that are efficient, sustainable, and scalable, contributing to the global fight against antimicrobial resistance.
Collapse
Affiliation(s)
- Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
4
|
Vijayan S, Umadevi G, Mariappan R, Kumar CS, Karthikeyan A. Effect of metal ion on optical, photoluminescence, morphological, and photocatalytic properties of ZnS nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27709-4. [PMID: 37269509 DOI: 10.1007/s11356-023-27709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/13/2023] [Indexed: 06/05/2023]
Abstract
The semiconducting materials of pure zinc sulfide (ZnS), 2.5 wt%, 5.0 wt%, 7.5 wt%, and 10 wt% of Ag-doped ZnS nanoparticles were prepared using the sol-gel technique. The prepared nanoparticles were analyzed by powder X-ray diffraction (PXRD), Fourier transformed infrared (FTIR), UV-visible absorption, diffuse reflectance photoluminescence (PL), high-resolution transmission electron microscope (HRTEM), and field emission scanning electron microscope (FESEM) to study the properties of pure ZnS and Ag-doped ZnS nanoparticles (NPs). The Ag-doped ZnS nanoparticles have a polycrystalline nature, which is confirmed by PXRD analysis. The functional groups were identified by the FTIR technique. The bandgap values decrease with increasing Ag concentration compared to pure ZnS NPs. The crystal size lies between 12 and 41 nm for pure ZnS and Ag-doped ZnS NPs. The presence of Zn, S, and Ag elements was confirmed by EDS analysis. Using methylene blue (MB), the photocatalytic activity of pure ZnS and Ag-doped ZnS NPs was performed. The highest degradation efficiency was observed for 7.5 wt% Ag-doped ZnS NPs.
Collapse
Affiliation(s)
- Selvaraj Vijayan
- Department of Physics, Govt. Arts College, Coimbatore, Tamilnadu, India
- Department of Physics, MGR College, Hosur, Tamilnadu, India
| | - Ganapathi Umadevi
- Department of Physics, Govt. Arts College, Coimbatore, Tamilnadu, India.
| | - Ramasamy Mariappan
- Department of Physics, Adhiyamaan College of Engineering, Hosur, Tamilnadu, India
| | | | - Anbalagan Karthikeyan
- Department of Physics, Government College of Engineering, Dharmapuri, Tamilnadu, India
| |
Collapse
|
5
|
Martins Bernardes Ramos R, Paludo LC, Monteiro PI, Maurat da Rocha LV, Veiga de Moraes C, Santos OO, Alves ER, Porto Dantas TL. Amoxicillin degradation by iron photonanocatalyst synthetized by green route using pumpkin (Tetsukabuto) peel extract. Talanta 2023; 260:124658. [PMID: 37187029 DOI: 10.1016/j.talanta.2023.124658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Amoxicillin is a pharmaceutical compound that is not degraded in wastewater treatment plants, causing harm to the environment. In this work, an iron nanoparticle (IPP) was synthesized using pumpkin (Tetsukabuto) peel extract for the degradation of amoxicillin under UV light. The IPP was characterized using scanning electron microscopy/energy dispersive x-ray spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis, and Raman spectroscopy techniques. The photocatalytic efficiency of IPP was analyzed by investigating the effect of IPP dosage (1-3 g L-1), initial amoxicillin concentration (10-40 mg L-1), pH (3-9), reaction time (10-60 min), and the effect of inorganic ions (1 g L-1). The optimum conditions for the maximum photodegradation removal (≈60%) were IPP = 2.5 g L-1, initial amoxicillin concentration = 10 mg L-1, pH = 5.6, and irradiation time = 60 min. The results of this study showed that inorganic ions (Mg2+, Zn2+, and Ca2+) negatively affect the photodegradation of amoxicillin by IPP; the quenching test showed that hydroxyl radical (OH•) is the primary reactive species of the reaction; NMR analysis revealed changes in amoxicillin molecules after photoreaction; the subproducts of photodegradation were identified by LC-MS; the proposed kinetic model demonstrated good applicability, predicting the behavior of OH• and determining the kinetic constant, and the cost analysis based on required energy (238.5 kWh m-3 order-1) indicated that the amoxicillin degradation method by IPP is economically viable. This study developed a new efficient iron nanocatalyst for the removal of antibiotics from aqueous environments and provided optimal conditions and relevant information in the area of advanced oxidative processes.
Collapse
Affiliation(s)
| | - Luana Cristina Paludo
- Chemical Engineering Department, Federal University of Parana, 81531-980, Curitiba, PR, Brazil
| | | | - Lizandra Viana Maurat da Rocha
- Instituto de Macromoléculas Professora Eloisa Mano - IMA, Federal University of Rio de Janeiro, 21941598, Rio de Janeiro, RJ, Brazil
| | | | - Oscar Oliveira Santos
- Department of Chemistry, State University of Maringá, 87020-900, Maringá, PR, Brazil
| | - Evandro Roberto Alves
- Food Engineering Department, Federal University of the Triangulo Mineiro, 38064-200, MG, Brazil
| | | |
Collapse
|
6
|
Qi H, Wu M, Wang J, Zhang B, Dai C, Teng F, Zhao M, He L. Visible‐Light‐Driven LaFeO
3
/CdS Heterojunction Photocatalysts for Photo‐Fenton Degradation of Levofloxacin. ChemistrySelect 2023. [DOI: 10.1002/slct.202204121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Huixiu Qi
- School of Chemistry and Chemical Engineering Southeast University 2 Southeast University Road, Jiangning District Nanjing City 211189 China
| | - Min Wu
- School of Chemistry and Chemical Engineering Southeast University 2 Southeast University Road, Jiangning District Nanjing City 211189 China
| | - Jun Wang
- School of Chemistry and Chemical Engineering Southeast University 2 Southeast University Road, Jiangning District Nanjing City 211189 China
| | - Bingjie Zhang
- School of Chemistry and Chemical Engineering Southeast University 2 Southeast University Road, Jiangning District Nanjing City 211189 China
| | - Chaohua Dai
- School of Chemistry and Chemical Engineering Southeast University 2 Southeast University Road, Jiangning District Nanjing City 211189 China
| | - Fukang Teng
- School of Chemistry and Chemical Engineering Southeast University 2 Southeast University Road, Jiangning District Nanjing City 211189 China
| | - Min Zhao
- School of Chemistry and Chemical Engineering Southeast University 2 Southeast University Road, Jiangning District Nanjing City 211189 China
| | - Lin He
- School of Chemistry and Chemical Engineering Southeast University 2 Southeast University Road, Jiangning District Nanjing City 211189 China
| |
Collapse
|
7
|
Eshete M, Li X, Yang L, Wang X, Zhang J, Xie L, Deng L, Zhang G, Jiang J. Charge Steering in Heterojunction Photocatalysis: General Principles, Design, Construction, and Challenges. SMALL SCIENCE 2023; 3:2200041. [PMID: 40212059 PMCID: PMC11935971 DOI: 10.1002/smsc.202200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
Steering charge kinetics is a key to optimizing quantum efficiency. Advancing the design of photocatalysts (ranging from single semiconductor to multicomponent semiconductor junctions) that promise improved photocatalytic performance for converting solar to chemical energy, entails mastery of increasingly more complicated processes. Indeed, charge kinetics become more complex as both charge generation and charge consumption may occur simultaneously on different components, generally with charges being transferred from one component to another. Capturing detailed charge dynamics information in each heterojunction would provide numerous significant benefits for applications and has been needed for a long time. Here, the steering of charge kinetics by modulating charge energy states in the design of semiconductor-metal-interface-based heterogeneous photocatalysts is focused. These phenomena can be delineated by separating heterojunctions into classes exhibiting either Schottky/ohmic or plasmonic effects. General principles for the design and construction of heterojunction photocatalysts, including recent advances in the interfacing of semiconductors with graphene, carbon quantum dots, and graphitic carbon nitride are presented. Their limitations and possible future outlook are brought forward to further instruct the field in designing highly efficient photocatalysts.
Collapse
Affiliation(s)
- Mesfin Eshete
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
- Department of Industrial ChemistryCollege of Applied SciencesNanotechnology Excellence CenterAddis Ababa Science and Technology UniversityP.O. Box 16417Addis AbabaEthiopia
| | - Xiyu Li
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Li Yang
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Xijun Wang
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Jinxiao Zhang
- College of Chemistry and BioengineeringGuilin University of Technology12 Jian'gan RoadGuilinGuangxi541004P. R. China
| | - Liyan Xie
- A Key Laboratory of the- Ministry of Education for Advanced- Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhuaZhejiang321004P. R. China
| | - Linjie Deng
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Guozhen Zhang
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Jun Jiang
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| |
Collapse
|
8
|
Wang J, Li X, Zhang B, Bai L. Hollow CdS-ZnS-ZIF-8 Polyhedron for Visible Light-Induced Cr(VI) Reduction. Inorg Chem 2023; 62:1047-1053. [PMID: 36580399 DOI: 10.1021/acs.inorgchem.2c04038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
By loading a small amount of cadmium acetate dihydrate on the zeolitic imidazolate framework-8 (ZIF-8), a hollow CdS-ZnS-ZIF-8 composite was facilely synthesized by rapid solid-phase grinding with thioacetamide. The evolution of the structure, composition, and photoelectrochemical properties was studied by a series of methods. When it was used as a photocatalyst, the hollow CdS-ZnS-ZIF-8 composite demonstrated a highly visible light response as well as a robust ability and reusability for Cr(VI) reduction, which could be ascribed to the hollow structure and ultrasmall CdS nanoparticles. Notably, the presence of ZIF-8-S (ZIF-8 ground with thioacetamide) could also obviously enhance the stability of CdS by promoting the separation of the photogenerated charge during light irradiation.
Collapse
Affiliation(s)
- Jiao Wang
- College of Food Engineering, Anhui Science and Technology University, Bengbu, Anhui 233030, China
| | - Xuejie Li
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233030, China
| | - Bentian Zhang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233030, China
| | - Lei Bai
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233030, China
| |
Collapse
|
9
|
Saleh R, Andiane Hidayat S, Yose Rizal M, Taufik A, Yin S. Synthesis and characterization of BiFeO3/LaFeO3/graphene composites as persulfate activator for removal of 4-nitrophenol. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
10
|
Selvaraj V, Mahboub HH, Ganapathi U, Chandran SK, Al-Onazi W, Al-Mohaimeed AM, Chen TW, Faggio C, Paulraj B. Enhanced photodegradation of methylene blue from aqueous solution using Al-doped ZnS nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73528-73541. [PMID: 35622286 DOI: 10.1007/s11356-022-20634-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
The post-transition semiconducting material of pure zinc sulfide (ZnS) and various concentrations of aluminum (Al) (2.5 wt%, 5.0% wt, 7.5 wt%, and 10% calcined at 200 °C) doped ZnS nanoparticles (NPs) were synthesized by sol-gel procedure. The crystal-like nature and phase structure of the product were examined by powder XRD analysis. This analysis shows that the pure ZnS nanoparticle does not form any secondary phase. The functional group of synthesized materials was analyzed by FTIR examination. The energy gap of the materials is calculated using electro-optic analysis and the Kubelka-Munk equation varies from 3.04 nm to 3.63 nm. The photoluminescence studies show the wide emissions (blue to green) for pure ZnS and Al-doped ZnS nanomaterials. The SEM images show the spherical structure and the agglomerated nanostructures. The presence of Zn, S, and Al are confirmed by EDAX spectra. From HR-TEM studies, pure ZnS and Al-doped ZnS nanoparticles exhibit uniform particle sizes. The rate of degradation was observed using MB dye. MB dye has maximum wavelength (λmax) of 664 nm. The dye degradation efficiency was improved as the dye ratio increased. Photocatalytic activities studies show the intensity of photocatalytic activities decreased for the maximum time interval. Doping of Al in ZnS boosts the photocatalytic activity. Hence, Al-doped ZnS appears to be better decomposing MB dye when exposed to visible light.
Collapse
Affiliation(s)
- Vijayan Selvaraj
- Department of Physics, Govt. Arts College, Coimbatore, Tamilnadu, India
- Department of Physics, MGR College, Hosur, Tamilnadu, India
| | - Heba H Mahboub
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt
| | - Umadevi Ganapathi
- Department of Physics, Govt. Arts College, Coimbatore, Tamilnadu, India.
| | | | - Wedad Al-Onazi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Amal Mohammed Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Balaji Paulraj
- PG and Research Centre in Biotechnology, MGR College, Hosur, Tamilnadu, India
| |
Collapse
|
11
|
Kulhary D, Singh S. Design of g‐C
3
N
4
/BaBiO
3
Heterojunction Nanocomposites for Photodegradation of an Organic Dye and Diclofenac Sodium under Visible Light via Interfacial Charge Transfer. ChemistrySelect 2022. [DOI: 10.1002/slct.202201964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dinesh Kulhary
- Special Center for Nanoscience Jawaharlal Nehru University New Delhi 110067 India
| | - Satyendra Singh
- Special Center for Nanoscience Jawaharlal Nehru University New Delhi 110067 India
| |
Collapse
|
12
|
Huang CW, Hsu SY, Lin JH, Jhou Y, Chen WY, Lin KYA, Lin YT, Nguyen VH. Solar-light-driven LaFe x Ni 1- x O 3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:882-895. [PMID: 36127897 PMCID: PMC9475182 DOI: 10.3762/bjnano.13.79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
LaFe x Ni1- x O3 perovskite oxides were prepared by the sol-gel method under various conditions, including different pH values (pH 0 and pH 7) and different calcination temperatures (500-800 °C) as well as different Fe/Ni ratios (1/9, 3/7, 5/5, 7/3, 9/1). The samples were examined by XRD, DRS, BET, and SEM to reveal their crystallinity, light-absorption ability, specific surface area, and surface features, respectively. The photocatalytic Fenton reaction was conducted using various LaFe x Ni1- x O3 perovskite oxides to decompose the methylene blue molecules. Accordingly, the synthesis condition of pH 0, calcination temperature at 700 °C, and Fe/Ni ratio = 7/3 could form LaFe0.7Ni0.3O3 perovskite oxides as highly efficient photocatalysts. Moreover, various conditions during the photocatalytic degradation were verified, such as pH value, catalyst dosage, and the additional amount of H2O2. LaFe0.7Ni0.3O3 perovskite oxides could operate efficiently under pH 3.5, catalyst dosage of 50 mg/150 mL, and H2O2 concentration of 133 ppm to decompose the MB dye in the 1st order kinetic rate constant of 0.0506 s-1.
Collapse
Affiliation(s)
- Chao-Wei Huang
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shu-Yu Hsu
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Jun-Han Lin
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Yun Jhou
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Wei-Yu Chen
- Department of Materials Engineering, National Pingtung University of Science and Technology, No.1, Xuefu Rd., Neipu Township, Pingtung County 912, Taiwan
| | - Kun-Yi Andrew Lin
- i-Center for Advanced Science and Technology (iCAST), Innovation and Development Center of Sustainable Agriculture, Department of Environmental Engineering, National Chung Hsing University, Taichung 402227, Taiwan
| | - Yu-Tang Lin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Chengalpattu district, Kelambakkam, Tamil Nadu, 603103, India
| |
Collapse
|
13
|
Kadi MW, El-Hout SI, Shawky A, Mohamed RM. Enhanced mercuric ions reduction over mesoporous S-scheme LaFeO3/ZnO p-n heterojunction photocatalysts. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Khavar AHC, Khedri N, Rizo R, Feliu Martínez JM, Mahjoub AR, Doolabi M, Aghayani E. A novel Ga(III) coordination complex as an efficient sensitizer for enhancing photocatalytic activity of TiO2/rGO nanocomposite. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Degradation of rhodamine B photocatalyzed by Eu-doped CdS nanowires illuminated by visible radiation. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
M. S. Khalil K, Mahmoud AH, Khairy M. Formation and textural characterization of size-controlled LaFeO3 perovskite nanoparticles for efficient photocatalytic degradation of organic pollutants. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Khan J, Ali G, Samreen A, Ahmad S, Ahmad S, Egilmez M, Amin S, Khan N. Quantum-dot sensitized hierarchical NiO p–n heterojunction for effective photocatalytic performance. RSC Adv 2022; 12:32459-32470. [DOI: 10.1039/d2ra05657g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
A facile and low-cost pseudo successive ionic layer adsorption and reaction technique was used to deposit cadmium sulfide quantum dots (CdS QDs) on hierarchical nanoflower NiO to form effective and intimate NiO/CdS, p–n heterojunctions.
Collapse
Affiliation(s)
- Junaid Khan
- Department of Physics, University of Peshawar, Peshawar, Pakistan
| | - Gohar Ali
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Ayesha Samreen
- Department of Physics, University of Peshawar, Peshawar, Pakistan
| | - Shahbaz Ahmad
- Department of Physics, American University of Sharjah, Sharjah, POBOX: 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah, POBOX: 26666, United Arab Emirates
| | - Sarfraz Ahmad
- Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad, 22500, Pakistan
| | - Mehmet Egilmez
- Department of Physics, American University of Sharjah, Sharjah, POBOX: 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah, POBOX: 26666, United Arab Emirates
| | - Sadiq Amin
- Material Research Laboratory, Department of Physics, University of Peshawar 25120, Pakistan
| | - Nadia Khan
- Department of Physics, Khushal Khan Khattak University, Karak 27200, Khyber-Pakhtunkhwa, Pakistan
| |
Collapse
|
18
|
Maridevaru MC, Anandan S, Aljafari B, Wu JJ. LaCo xFe 1-XO 3 (0≤x≤1) spherical nanostructures prepared via ultrasonic approach as photocatalysts. ULTRASONICS SONOCHEMISTRY 2021; 80:105824. [PMID: 34763211 PMCID: PMC8591478 DOI: 10.1016/j.ultsonch.2021.105824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 05/02/2023]
Abstract
To harvest the photon energy, a sequenceof perovskite-type oxides of LaCoxFe1-xO3 (0 ≤x≤1) nanostructures with distinct 'Cobalt' doping at the position of B-site are successfully prepared via a simple ultrasonic approach as photocatalyst. The crystallinity, phase identification, microstructure, and morphology of perovskite nanocomposites were analyzed to better understand their physicochemical properties. The catalytic efficiency was assessedusing Congo Red (CR) dye by visible light irradiation for 30 min. Applying terephthalic acid as a probe molecule, the formation of hydroxyl radicals during the processes was investigated. The photocatalytic efficacy was measured by varying different Co/Fe stoichiometric molar ratios and noticed the order of sequence is 0.2 > 0.6 > 0.4 > 0.8 > 0.5 > 0 > 1 after 30 min of reaction time. Finally using LaCo0.2Fe0.8O3 nanostructures, cycling studies (n = 3) were performed to determine its photostability and reusability. The photocatalytic methodology proposed in this study was discussed extensively.
Collapse
Affiliation(s)
- Madappa C Maridevaru
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Trichy 620015, India
| | - Sambandam Anandan
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Trichy 620015, India.
| | - Belqasem Aljafari
- Department of Electrical Engineering, College of Engineering, Najran University, Najran 11001, Saudi Arabia
| | - Jerry J Wu
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan
| |
Collapse
|
19
|
Ullah H, Barzgar Vishlaghi M, Balkan T, ur Rehman Z, Kaya S. Scaling-up photocatalytic activity of CdS from nanorods to nanowires for the MB degradation. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Wang X, Li X, Low J. Au decorated BiVO 4 inverse opal for efficient visible light driven water oxidation. RSC Adv 2021; 11:8751-8758. [PMID: 35423374 PMCID: PMC8695221 DOI: 10.1039/d1ra00461a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/19/2021] [Indexed: 11/21/2022] Open
Abstract
Photocatalytic water splitting provides an effective way to prepare hydrogen and oxygen. However, the weak light utilization and sluggish kinetics in the oxygen evolution reaction (OER) process substantially retard the photocatalytic efficiency. In this context, modification of the semiconductors to overcome these limits has been the effective strategy for obtaining highly-efficient photocatalytic water oxidation. Here, plasmonic Au has been loaded onto BiVO4 inverse opal (IO) for photocatalytic water oxidation. It is discovered that the IO structure provides higher specific surface area and favors light absorption on BiVO4. In the meantime, the plasmonic Au can simultaneously enhance the light-utilization capability and photogenerated charge carrier utilization ability of the BiVO4 IO. As a result, a high photocurrent density and long photogenerated charge carrier lifetime can be achieved on the optimized Au-BiVO4 IO, thereby obtaining a superior photocatalytic activity with an oxygen production rate of 9.56 μmol g-1 h-1.
Collapse
Affiliation(s)
- Xiaonong Wang
- State Key Laboratory of Pulsed Power Laser Technology, College of Electronic Engineering, National University of Defense Technology Hefei 230037 China
- Key Laboratory of Infrared and Low Temperature Plasma of Anhui Province Hefei 230037 China
| | - Xiaoxia Li
- State Key Laboratory of Pulsed Power Laser Technology, College of Electronic Engineering, National University of Defense Technology Hefei 230037 China
- Key Laboratory of Infrared and Low Temperature Plasma of Anhui Province Hefei 230037 China
| | - Jingxiang Low
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
21
|
Yin Q, Cao Z, Wang Z, Zhai J, Li M, Guan L, Fan B, Liu W, Shao G, Xu H, Wang H, Zhang R, Lu H. Z-scheme TiO 2@Ti 3C 2/Cd 0.5Zn 0.5S nanocomposites with efficient photocatalytic performance via one-step hydrothermal route. NANOTECHNOLOGY 2021; 32:015706. [PMID: 33043907 DOI: 10.1088/1361-6528/abb72f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photocatalytic degradation of pollutants has been proved to be an effective strategy for wastewater treatment. Herein, TiO2 nanoparticles were synthesized on a Ti3C2 matrix by in situ growth, forming Z-scheme TiO2@Ti3C2/Cd0.5Zn0.5S (TO/CZS) multilevel structured nanocomposites via one-step hydrothermal route. The effects of hydrothermal temperature and Cd0.5Zn0.5S content on microstructure and properties of composites were assessed. TO/CZS nanocomposites were probed into phase composition, morphological and optical properties with x-ray diffractometer, infrared radiation, scanning electron microscope and UV-vis reflective spectra. Following the hydrothermal reaction at 160 °C for 12 h, TiO2 nanoparticles of 30 nm in diameter were generated in situ on Ti3C2 lamina and Cd0.5Zn0.5S particles were evenly distributed on the Ti3C2 matrix. The photocatalytic activity of TO/CZS composites were evaluated, which found that degradation rate constant (k = 0.028 min-1) of TO/CZS-40 on Rhodamine B was 5.19 times that of pure TiO2 and 4.48 times that of Cd0.5Zn0.5S. Through anchoring Ti3C2 as an electron transition mediator and combination with TiO2 and Cd0.5Zn0.5S, the new Z-scheme between TiO2 oxidized by Ti3C2 and Cd0.5Zn0.5S establishes a multilevel structure of separating electron-hole pairs. This work demonstrates a valid way to control electrons and hole transfer directions efficiently through designing multilevel semiconductor structural designs.
Collapse
Affiliation(s)
- Qiao Yin
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 People's Republic of China
| | - Zhenzhen Cao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 People's Republic of China
| | - Zhiyuan Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 People's Republic of China
| | - Jiaming Zhai
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 People's Republic of China
| | - Mingliang Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 People's Republic of China
| | - Li Guan
- Zhengzhou University of Aeronautics, Zhengzhou 450015 People's Republic of China
| | - Bingbing Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 People's Republic of China
| | - Wen Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 People's Republic of China
| | - Gang Shao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 People's Republic of China
| | - Hongliang Xu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 People's Republic of China
| | - Hailong Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 People's Republic of China
| | - Rui Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 People's Republic of China
- Zhengzhou University of Aeronautics, Zhengzhou 450015 People's Republic of China
| | - Hongxia Lu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 People's Republic of China
| |
Collapse
|
22
|
Guo Y, Chen C, Ling L, Wang J, Qi H, Zhang B, Wu M. Visible-light-driven photo-Fenton degradation of ceftriaxone sodium using SnS 2/LaFeO 3 composite photocatalysts. NEW J CHEM 2021. [DOI: 10.1039/d1nj03639d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The LaFeO3-based heterostructure photocatalyst and photo-Fenton process are combined to effectively treat ceftriaxone sodium (CRS) contaminant under visible light.
Collapse
Affiliation(s)
- Yuting Guo
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Cong Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Liwei Ling
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jun Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Huixiu Qi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Bingjie Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Min Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
23
|
Sadeghi M, Farhadi S, Zabardasti A. Construction of magnetic MgFe 2O 4/CdS/MoS 2 ternary nanocomposite supported on NaY zeolite and highly efficient sonocatalytic degradation of organic pollutants. RSC Adv 2020; 10:44034-44049. [PMID: 35517154 PMCID: PMC9058412 DOI: 10.1039/d0ra08831e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/01/2020] [Indexed: 11/21/2022] Open
Abstract
In this work, the novel magnetically separable NaY zeolite/MgFe2O4/CdS nanorods/MoS2 nanoflowers nanocomposite was successfully synthesized through the ultrasonic-assisted solvothermal approach. FESEM, EDAX, XRD, FTIR, TEM, AFM, VSM, N2-BET, UV-vis DRS and PL were utilized to identify the as-synthesized nanocomposite. Subsequently, the sonocatalytic activity of this nanocomposite was assessed in the degradation of organic dyes, including methylene blue (MB), rhodamine B (RhB) and methyl orange (MO) from water solutions for the first time. Several analytical parameters like irradiation time, process type, initial MB concentration, H2O2 concentration, catalyst dosage, organic dye type, and US power have been systematically investigated to attain the maximum sonocatalytic yield. Regarding the acquired data, the NaY/MgFe2O4/CdS NRs/MoS2 NFs sonocatalyst was incredibly able to completely eliminate the MB via engaging the US/H2O2 system. The kinetic evaluates demonstrated the sonodegradation reactions of the MB followed a first-order model. The apparent rate constant (k app) and half-life time (t 1/2) acquired for the sonodegradation process of MB utilizing the US/H2O2/NaY/MgFe2O4/CdS NRs/MoS2 NFs system were measured to be 1.162 min and 0.596 min-1, respectively. The free ˙OH radicals were also recognized as the main reactive oxygen species in the MB sonodegradation process under US irradiation. In addition, the outcomes of the recyclability study of the NaY/MgFe2O4/CdS NRs/MoS2 NFs sonocatalytic clearly displayed a less than 6% drop of the catalytic activity in up to four sequential runs. Lastly, a plausible mechanism for the sonodegradation reaction of organic dyes was suggested and discussed.
Collapse
Affiliation(s)
- Meysam Sadeghi
- Department of Chemistry, Lorestan University Khorramabad 68151-433 Iran +98 66 33120618 +98 66 33120611
| | - Saeed Farhadi
- Department of Chemistry, Lorestan University Khorramabad 68151-433 Iran +98 66 33120618 +98 66 33120611
| | - Abedin Zabardasti
- Department of Chemistry, Lorestan University Khorramabad 68151-433 Iran +98 66 33120618 +98 66 33120611
| |
Collapse
|
24
|
Garcia-Muñoz P, Fresno F, Ivanez J, Robert D, Keller N. Activity enhancement pathways in LaFeO 3@TiO 2 heterojunction photocatalysts for visible and solar light driven degradation of myclobutanil pesticide in water. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123099. [PMID: 32569979 DOI: 10.1016/j.jhazmat.2020.123099] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 05/20/2023]
Abstract
LaFeO3@TiO2 heterojunction composites with a core-shell porous structure and LaFeO3 contents in the 2.5-25 wt.% range have been synthesized via consecutive sol-gel syntheses and tested for the photocatalytic oxidation of the myclobutanil pesticide in water under solar light and pure visible light. Whatever the light spectrum, the kinetic rate constants for both myclobutanil degradation and TOC conversion exhibited a volcano-like profile with increasing the narrow band-gap (2.1 eV) LaFeO3 content, the optimum composite strongly overperforming both single phases, with full myclobutanil mineralization achieved in 240 min in the best case. The light spectrum influenced the optimum LaFeO3 content in the composite, being observed at 5 wt.% and 12.5 wt.% under solar and visible light, respectively. This has been attributed to the existence of different light-mediated reaction mechanisms. The optimum LaFeO3/TiO2 composite photocatalyst was active and stable after several runs under solar light with leached iron concentration below 0.1 mg/L in solution.
Collapse
Affiliation(s)
- Patricia Garcia-Muñoz
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS/University of Strasbourg, 25 rue Becquerel, Strasbourg, France.
| | - Fernando Fresno
- Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| | - Javier Ivanez
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS/University of Strasbourg, 25 rue Becquerel, Strasbourg, France
| | - Didier Robert
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS/University of Strasbourg, 25 rue Becquerel, Strasbourg, France
| | - Nicolas Keller
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS/University of Strasbourg, 25 rue Becquerel, Strasbourg, France.
| |
Collapse
|
25
|
Hoseini AA, Farhadi S, Zabardasti A, Siadatnasab F. An organic-inorganic hybrid nanomaterial composed of a Dowson-type (NH 4) 6P 2Mo 18O 62 heteropolyanion and a metal-organic framework: synthesis, characterization, and application as an effective adsorbent for the removal of organic dyes. RSC Adv 2020; 10:40005-40018. [PMID: 35520823 PMCID: PMC9057490 DOI: 10.1039/d0ra07042d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/18/2020] [Indexed: 11/21/2022] Open
Abstract
In this work, an inorganic-organic hybrid nanomaterial, P2Mo18/MIL-101(Cr), based on Wells-Dawson-type (NH4)6P2Mo18O62 polyoxometalate (abbreviated as P2Mo18) and the MIL-101(Cr) metal-organic framework was fabricated by the reaction of (NH4)6P2Mo18O62, Cr(NO3)3·9H2O and terephthalic acid under hydrothermal conditions. The as-prepared recyclable nanohybrid was fully characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) equipped with energy dispersive X-ray microanalysis (EDX), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy and Brunauer-Emmett-Teller (BET) specific surface area studies. All the analyses confirmed the successful insertion of P2Mo18O62 6- heteropolyanion within the cavities of MIL-101(Cr). The encapsulated MIL-101(Cr) showed a considerable decrease in both pore volume and surface area compared with MIL-101(Cr) due to incorporation of the very large Dowson-type polyoxometalate into the three-dimensional porous MIL-101(Cr). The nanohybrid had a specific surface area of 800.42 m2 g-1. The adsorption efficiency of this nanohybrid for removal of methylene blue (MB), rhodamine B (RhB), and methyl orange (MO) from aqueous solutions was evaluated. Surprisingly, the composite not only presented a high adsorption capacity of 312.5 mg g-1 for MB, but also has the ability to rapidly remove 100% MB from a dye solution of 50 mg L-1 within 3 min. These results confirmed that this adsorbent is applicable in a wide pH range of 2-10. The nanohybrid showed rapid and selective adsorption for cationic MB and RhB dyes from MB/MO, MB/RhB, MO/RhB and MB/MO/RhB mixed dye solutions. The equilibrium adsorption data were better fitted by the Langmuir isotherm. Kinetics data indicate that the adsorption of the dye follows a pseudo-second order kinetics model. Also, this material could be effortlessly separated and recycled without any structural modification. Accordingly, it is an efficient adsorbent for removing cationic dyes.
Collapse
Affiliation(s)
- Akram-Alsadat Hoseini
- Department of Chemistry, Lorestan University Khorramabad 68151-433 Iran +98 66 33120618 +98 66 33120611
| | - Saeed Farhadi
- Department of Chemistry, Lorestan University Khorramabad 68151-433 Iran +98 66 33120618 +98 66 33120611
| | - Abedin Zabardasti
- Department of Chemistry, Lorestan University Khorramabad 68151-433 Iran +98 66 33120618 +98 66 33120611
| | - Firouzeh Siadatnasab
- Department of Chemistry, Lorestan University Khorramabad 68151-433 Iran +98 66 33120618 +98 66 33120611
| |
Collapse
|
26
|
Kebede WL, Kuo DH, Bekena FT, Duresa LW. Highly efficient In-Mo(O,S) 2 oxy-sulfide for degradation of organic pollutants under visible light irradiation: An example of photocatalyst on its dye selectivity. CHEMOSPHERE 2020; 254:126823. [PMID: 32334264 DOI: 10.1016/j.chemosphere.2020.126823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Environmentally toxic organic pollutants, namely methylene blue (MB), neutral red (NR), Rhodamine B (RhB), and methyl orange (MO) dyes contain highly toxic, carcinogenic, non-biodegradable, and colored pigments which cause harm for humans and aquatic organisms even at low concentrations. To detoxify these toxic organic pollutants from the wastewater, the bimetallic solid solution-typed In-Mo(O,S)2 catalyst with various indium (In) contents were synthesized at low temperature through a simple precipitation method. The morphological, structural, chemical compositions, electrochemical and optical properties of the catalysts were thoroughly characterized. The photodegradation performance of the In-Mo(O,S)2 catalysts over the cationic, anionic and neutral dyes were studied under visible light irradiation. It has been observed that the photocatalytic activity was enhanced as In was added to the Mo(O,S)2 catalyst, and In-Mo(O,S)2-20 was found to be the best composition to completely degrade four organic dyes. The dye degradation had rate constant values of 9.5 × 10-2 min-1, 6.3 × 10-2 min-1, 4.4 × 10-2 min-1, and 15.7 × 10-1 min-1 for MB (20 ppm), NR (20 ppm), RhB (10 ppm), and MO (10 ppm) dyes, respectively. The active species for degradation of MB is different from those for RhB and MO. Single phase In-Mo(O,S)2-20 capable to degrade four kinds of dyes at a fast rate is a good photocatalyst.
Collapse
Affiliation(s)
- Worku Lakew Kebede
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 10607, Taiwan
| | - Dong-Hau Kuo
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 10607, Taiwan.
| | - Fekadu Tadesse Bekena
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 10607, Taiwan
| | - Lalisa Wakjira Duresa
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 10607, Taiwan
| |
Collapse
|
27
|
Facile synthesis of superhydrophobic ZIF-8/bismuth oxybromide photocatalyst aerogel for oil/water separation and hazardous pollutant degradation. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01296-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Sadeghi M, Farhadi S, Zabardasti A. Fabrication of a novel magnetic CdS nanorod/NiFe 2O 4/NaX zeolite nanocomposite with enhanced sonocatalytic performance in the degradation of organic dyes. NEW J CHEM 2020. [DOI: 10.1039/d0nj01393e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, magnetically separable CdS nanorods (NRs)/NiFe2O4/NaX zeolite ternary nanocomposite was fabricated and applied for the enhanced sonocatalytic degradation of organic dyes.
Collapse
Affiliation(s)
- Meysam Sadeghi
- Department of Chemistry
- Lorestan University
- Khorramabad
- Iran
| | - Saeed Farhadi
- Department of Chemistry
- Lorestan University
- Khorramabad
- Iran
| | | |
Collapse
|
29
|
Siadatnasab F, Farhadi S, Hoseini AA, Sillanpää M. Synthesis and characterization of a novel manganese ferrite–metal organic framework MIL-101(Cr) nanocomposite as an efficient and magnetically recyclable sonocatalyst. NEW J CHEM 2020. [DOI: 10.1039/d0nj03441j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A magnetic MnFe2O4/MIL-101(Cr) nanocomposite was synthesized and applied as a novel sonocatalyst for enhanced degradation of organic dye pollutants.
Collapse
Affiliation(s)
| | - Saeed Farhadi
- Department of Chemistry
- Lorestan University
- Khorramabad 68151-44316
- Iran
| | | | - Mika Sillanpää
- Institute of Research and Development and Faculty of Environment and Chemical Engineering
- Duy Tan University
- Da Nang 550000
- Vietnam
| |
Collapse
|
30
|
Sadeghi M, Farhadi S, Zabardasti A. A novel CoFe2O4@Cr-MIL-101/Y zeolite ternary nanocomposite as a magnetically separable sonocatalyst for efficient sonodegradation of organic dye contaminants from water. RSC Adv 2020; 10:10082-10096. [PMID: 35498565 PMCID: PMC9050219 DOI: 10.1039/d0ra00877j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/04/2020] [Indexed: 11/21/2022] Open
Abstract
In this research, a novel magnetic sonocatalyst nanocomposite, CoFe2O4@Cr-MIL-101/Y zeolite, has been successfully fabricated employing a simple hydrothermal method. The as-prepared catalyst was thoroughly identified using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), EDS elemental dot-mapping, transmission electron microscopy (TEM), atomic force microscopy (AFM), vibrating sample magnetometer (VSM), and nitrogen Brunauer–Emmett–Teller (N2-BET) analyses. The procured CoFe2O4@Cr-MIL-101/Y nanocomposite was then assessed for the decomposition of three types of organic dyes namely methylene blue (MB), rhodamine B (RhB) and methyl orange (MO) from water solution using ultrasound irradiation and subsequently monitored via UV-Vis absorption technique. The sonodecomposition reactions of organic dyes were accomplished in the presence of the H2O2 solution as a green oxidizing agent. Furthermore, the influence of various experimental independent factors such as irradiation time, process type, initial dye concentration, catalyst dosage, H2O2 concentration, scavenger type, and catalyst regeneration on the decomposition of MB, RhB and MO were surveyed. Additionally, a first order kinetic model was applied to investigate the sonodecomposition reactions of dye contaminants. The rate constant (k) and half-life (t1/2) data were gained as 0.0675 min−1 and 10.2666 min, respectively, for the decomposition of MB in the US/H2O2/CoFe2O4@Cr-MIL-101/Y system. Besides, evaluating the attained results, the distinctive performance of ˙OH as the radical scavenger originating from H2O2 throughout the sonodecomposition process is vividly approved. A novel magnetically separable CoFe2O4@Cr-MIL-101/Y zeolite ternary nanocomposite was prepared and applied as a sonocatalyst for efficient degradation of organic contaminants.![]()
Collapse
Affiliation(s)
- Meysam Sadeghi
- Department of Chemistry
- Lorestan University
- Khorramabad
- Iran
| | - Saeed Farhadi
- Department of Chemistry
- Lorestan University
- Khorramabad
- Iran
| | | |
Collapse
|