1
|
Azizi S, Rozati SM, Askari MB, Salarizadeh P. Electrochemical oxidation of ethanol on NiO/MoO 2hybridized wheat husk derived activated carbon. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:495703. [PMID: 39191277 DOI: 10.1088/1361-648x/ad7436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
The ethanol oxidation process in fuel cells is most efficient when conducted by platinum based catalysts. Our research team endeavored to find affordable and efficient catalysts, synthesizing catalysts based on metal oxides of nickel and molybdenum in the form of NiO/MoO2and NiO/MoO2hybridized with activated carbon obtained from the wheat husk (ACWH) through a hydrothermal method. After precise physical characterization, the capability of these catalysts in the ethanol oxidation process was measured through electrochemical analyses in an alkaline environment. The presence of ACWH in the catalyst structure significantly improves the active surface and electrocatalytic activity. NiO/MoO2/ACWH with a current density of 16 mA cm-2at a peak potential of 0.55 V and 93% cyclic stability after 5000 alternate CV cycles, can be an appealing, relatively efficient, and stable option in ethanol oxidation.
Collapse
Affiliation(s)
- Sadegh Azizi
- Department of Physics, Faculty of Science, University of Guilan, PO Box 41335-1914, Rasht, Iran
| | - Seyed Mohammad Rozati
- Department of Physics, Faculty of Science, University of Guilan, PO Box 41335-1914, Rasht, Iran
| | - Mohammad Bagher Askari
- Department of Semiconductor, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Parisa Salarizadeh
- High-Temperature Fuel Cell Research Department, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
| |
Collapse
|
2
|
Mohamed A, Shaban M, Kordy MGM, Al-Senani GM, Eissa MF, Hamdy H. Fabrication and characterization of NiCu/GO and NiCu/rGO nanocomposites for fuel cell application. RSC Adv 2024; 14:6776-6792. [PMID: 38405070 PMCID: PMC10884890 DOI: 10.1039/d3ra07822a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
This study investigated the electrochemical behavior of NiCu, NiCu/GO, and NiCu/rGO nanocomposites designed by combining a modified Hummers' method and hydrothermal technique. The prepared nanocomposites are tested as electrocatalysts in direct alcohol oxidation fuel cells (DAFCs) to identify the role of GO and rGO as catalyst supports for the enhancement of the NiCu composite performance. The production of the NiCu/GO and NiCu/rGO composites was demonstrated by FTIR spectroscopy, EDX, and SEM analyses. In DAFCs experiments, NiCu/rGO has better catalytic activity than pure NiCu and NiCu/GO composites, whereas the use of rGO and GO as supports enhances the performance of NiCu by 468.2% and 377.7% in methanol and 255.6% and 105.9% in ethanol, respectively. The higher performance was caused by the increased density of active dots and the combined electronic effects in the designed catalysts. The stabilities of the catalysts and charge carriers' dynamics are studied using chronoamperometry and electrochemical impedance spectroscopy.
Collapse
Affiliation(s)
- Aya Mohamed
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University 62514 Beni-Suef Egypt
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah 42351 Madinah Saudi Arabia
| | - Mohamed G M Kordy
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University 62514 Beni-Suef Egypt
- Biochemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62521 Egypt
| | - Ghadah M Al-Senani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - M F Eissa
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University 62514 Beni-Suef Egypt
| | - Hany Hamdy
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University 62514 Beni-Suef Egypt
| |
Collapse
|
3
|
Gamal S, Kospa DA, Ibrahim AA, Ahmed AI, Ouf AMA. A comparative study of α-Ni(OH) 2 and Ni nanoparticle supported ZIF-8@reduced graphene oxide-derived nitrogen doped carbon for electrocatalytic ethanol oxidation. RSC Adv 2024; 14:5524-5541. [PMID: 38352684 PMCID: PMC10863423 DOI: 10.1039/d3ra08208c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
Ethanol electrooxidation is an important reaction for fuel cells, however, the major obstacle to ethanol electrocatalysis is the splitting of the carbon-carbon bond to CO2 at lower overpotentials. Herein, a ZIF-8@graphene oxide-derived highly porous nitrogen-doped carbonaceous platform containing zinc oxide was attained for supporting a non-precious Ni-based catalyst. The support was doped with the disordered α-phase Ni(OH)2 NPs and Ni NPs that are converted to Ni(OH)2 through potential cycling in alkaline media. The Ni-based catalysts exhibit high electroactivity owing to the formation of the NiOOH species which has more unpaired d electrons that can bond with the adsorbed species. From CV curves, the EOR onset potential of the α-Ni(OH)2/ZNC@rGO electrode is strongly shifted to negative potential (Eonset = 0.34 V) with a high current density of 8.3 mA cm-2 relative to Ni/ZNC@rGO. The high catalytic activity is related to the large interlayer spacing of α-Ni(OH)2 which facilitates the ion-solvent intercalation. Besides, the porous structure of the NC and the high conductivity of rGO facilitate the kinetic transport of the reactants and electrons. Finally, the catalyst displays a high stability of 92% after 900 cycles relative to the Ni/ZNC@rGO and commercial Pt/C catalysts. Hence, the fabricated α-Ni(OH)2/ZNC@rGO catalyst could be regarded as a potential catalyst for direct EOR in fuel cells.
Collapse
Affiliation(s)
- Soliman Gamal
- Chemistry Department, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Doaa A Kospa
- Chemistry Department, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Amr Awad Ibrahim
- Chemistry Department, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Awad I Ahmed
- Chemistry Department, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - A M A Ouf
- Chemistry Department, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| |
Collapse
|
4
|
Aarimuthu G, Sathiasivan K, Varadharajan S, Balakrishnan M, Albeshr MF, Alrefaei AF, Kim W. Enhanced membraneless fuel cells by electrooxidation of ethylene glycol with a nanostructured cobalt metal catalyst. ENVIRONMENTAL RESEARCH 2023; 233:115601. [PMID: 36863657 DOI: 10.1016/j.envres.2023.115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 07/03/2023]
Abstract
The advancement of effective and long-lasting electrocatalysts for energy storage devices is crucial to reduce the impact of the energy crisis. In this study, a two-stage reduction process was used to synthesize carbon-supported cobalt alloy nanocatalysts with varying atomic ratios of cobalt, nickel and iron. The formed alloy nanocatalysts were investigated using energy-dispersive X-ray spectroscopy, X-ray diffraction, and transmission electron microscopy to determine their physicochemical characterization. According to XRD results, Cobalt-based alloy nanocatalysts form a face-centered cubic solid solution pattern, illustrating thoroughly mixed ternary metal solid solutions. Transmission electron micrographs also demonstrated that samples of carbon-based cobalt alloys displayed homogeneous dispersion at particle sizes ranging from 18 to 37 nm. Measurements of cyclic voltammetry, linear sweep voltammetry, and chronoamperometry revealed that iron alloy samples exhibited much greater electrochemical activity than non-iron alloy samples. The alloy nanocatalysts were evaluated as anodes for the electrooxidation of ethylene glycol in a single membraneless fuel cell to assess their robustness and efficiency at ambient temperature. Remarkably, in line with the results of cyclic voltammetry and chronoamperometry, the single-cell test showed that the ternary anode works better than its counterparts. The significantly higher electrochemical activity was observed for alloy nanocatalysts containing iron than for non-iron alloy catalysts. Iron stimulates nickel sites to oxidize cobalt to cobalt oxyhydroxides at lower over-potentials, which contributes to the improved performance of ternary alloy catalysts containing iron.
Collapse
Affiliation(s)
- Gayathri Aarimuthu
- Department of Chemistry, Presidency College (Autonomous), University of Madras, Chennai, 600 005, India
| | - Kiruthika Sathiasivan
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Selvarani Varadharajan
- Department of Chemistry, St. Joseph's Institute of Technology, Old Mamallapuram Road, Chennai, 600 119, India
| | - Muthukumaran Balakrishnan
- Department of Chemistry, Presidency College (Autonomous), University of Madras, Chennai, 600 005, India.
| | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, P.O.Box.2455, Riyadh, 11451, Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Sciences, King Saud University, P.O.Box.2455, Riyadh, 11451, Saudi Arabia
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, South Korea
| |
Collapse
|
5
|
Chen F, Guo S, Yu S, Zhang C, Guo M, Li C. Hierarchical N-doped carbon nanofiber-loaded NiCo alloy nanocrystals with enhanced methanol electrooxidation for alkaline direct methanol fuel cells. J Colloid Interface Sci 2023; 646:43-53. [PMID: 37182258 DOI: 10.1016/j.jcis.2023.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
The high catalytic activity of non-precious metals in alkaline media opens a new direction for the development of alkaline direct methanol fuel cell (ADMFC) electrocatalysts. Herein, a highly dispersed N-doped carbon nanofibers (CNFs) -loaded NiCo non-precious metal alloy electrocatalyst based on metal-organic frameworks (MOFs) was prepared, which conferred excellent methanol oxidation activity and resistance to carbon monoxide (CO) poisoning through a surface electronic structure modulation strategy. The porous electrospun polyacrylonitrile (PAN) nanofibers and the P-electron conjugated structure of polyaniline chains provide fast charge transfer channels, enabling electrocatalysts with abundant active sites and efficient electron transfer. The optimized NiCo/N-CNFs@800 was tested as an anode catalyst for ADMFC single cell and exhibited a power density of 29.15 mW cm-2. Due to the fast charge transfer and mass transfer brought by its one-dimensional porous structure and the synergistic effect between NiCo alloy, NiCo/N-CNFs@800 is expected to be an economical, efficient and CO-resistant methanol oxidation reaction (MOR) electrocatalyst.
Collapse
Affiliation(s)
- Fei Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Shiquan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Shuyan Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China.
| | - Chong Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Man Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China.
| |
Collapse
|
6
|
Thamer BM, Abdul Hameed MM, El-Newehy MH. Molten Salts Approach of Poly(vinyl alcohol)-Derived Bimetallic Nickel-Iron Sheets Supported on Porous Carbon Nanosheet as an Effective and Durable Electrocatalyst for Methanol Oxidation. Gels 2023; 9:gels9030238. [PMID: 36975687 PMCID: PMC10048021 DOI: 10.3390/gels9030238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
The preparation of metallic nanostructures supported on porous carbon materials that are facile, green, efficient, and low-cost is desirable to reduce the cost of electrocatalysts, as well as reduce environmental pollutants. In this study, a series of bimetallic nickel-iron sheets supported on porous carbon nanosheet (NiFe@PCNs) electrocatalysts were synthesized by molten salt synthesis without using any organic solvent or surfactant through controlled metal precursors. The as-prepared NiFe@PCNs were characterized by scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction, and photoelectron spectroscopy (XRD and XPS). The TEM results indicated the growth of NiFe sheets on porous carbon nanosheets. The XRD analysis confirmed that the Ni1-xFex alloy had a face-centered polycrystalline (fcc) structure with particle sizes ranging from 15.5 to 30.6 nm. The electrochemical tests showed that the catalytic activity and stability were highly dependent on the iron content. The electrocatalytic activity of catalysts for methanol oxidation demonstrated a nonlinear relationship with the iron ratio. The catalyst doped with 10% iron showed a higher activity compared to the pure nickel catalyst. The maximum current density of Ni0.9Fe0.1@PCNs (Ni/Fe ratio 9:1) was 190 mA/cm2 at 1.0 M of methanol. In addition to the high electroactivity, the Ni0.9Fe0.1@PCNs showed great improvement in stability over 1000 s at 0.5 V with a retained activity of 97%. This method can be used to prepare various bimetallic sheets supported on porous carbon nanosheet electrocatalysts.
Collapse
Affiliation(s)
- Badr M Thamer
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Mohamed H El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
7
|
Enhanced electrocatalytic performance of 2D Ni-MOF for ethanol oxidation reaction by loading carbon dots. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Ramírez C, Belmonte M, Miranzo P, Osendi MI. Applications of Ceramic/Graphene Composites and Hybrids. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2071. [PMID: 33924114 PMCID: PMC8074343 DOI: 10.3390/ma14082071] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/10/2023]
Abstract
Research activity on ceramic/graphene composites and hybrids has increased dramatically in the last decade. In this review, we provide an overview of recent contributions involving ceramics, graphene, and graphene-related materials (GRM, i.e., graphene oxide, reduced graphene oxide, and graphene nanoplatelets) with a primary focus on applications. We have adopted a broad scope of the term ceramics, therefore including some applications of GRM with certain metal oxides and cement-based matrices in the review. Applications of ceramic/graphene hybrids and composites cover many different areas, in particular, energy production and storage (batteries, supercapacitors, solar and fuel cells), energy harvesting, sensors and biosensors, electromagnetic interference shielding, biomaterials, thermal management (heat dissipation and heat conduction functions), engineering components, catalysts, etc. A section on ceramic/GRM composites processed by additive manufacturing methods is included due to their industrial potential and waste reduction capability. All these applications of ceramic/graphene composites and hybrids are listed and mentioned in the present review, ending with the authors' outlook of those that seem most promising, based on the research efforts carried out in this field.
Collapse
Affiliation(s)
- Cristina Ramírez
- Instituto de Cerámica y Vidrio (ICV), Consejo Superior de Investigaciones Científicas, CSIC. Kelsen 5, 28049 Madrid, Spain; (M.B.); (P.M.)
| | | | | | - Maria Isabel Osendi
- Instituto de Cerámica y Vidrio (ICV), Consejo Superior de Investigaciones Científicas, CSIC. Kelsen 5, 28049 Madrid, Spain; (M.B.); (P.M.)
| |
Collapse
|
9
|
Wala M, Simka W. Effect of Anode Material on Electrochemical Oxidation of Low Molecular Weight Alcohols-A Review. Molecules 2021; 26:2144. [PMID: 33918545 PMCID: PMC8070219 DOI: 10.3390/molecules26082144] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
The growing climate crisis inspires one of the greatest challenges of the 21st century-developing novel power sources. One of the concepts that offer clean, non-fossil electricity production is fuel cells, especially when the role of fuel is played by simple organic molecules, such as low molecular weight alcohols. The greatest drawback of this technology is the lack of electrocatalytic materials that would enhance reaction kinetics and good stability under process conditions. Currently, electrodes for direct alcohol fuel cells (DAFCs) are mainly based on platinum, which not only provides a poor reaction rate but also readily deactivates because of poisoning by reaction products. Because of these disadvantages, many researchers have focused on developing novel electrode materials with electrocatalytic properties towards the oxidation of simple alcohols, such as methanol, ethanol, ethylene glycol or propanol. This paper presents the development of electrode materials and addresses future challenges that still need to be overcome before direct alcohol fuel cells can be commercialized.
Collapse
Affiliation(s)
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Str. 6, 44-100 Gliwice, Poland;
| |
Collapse
|
10
|
Khuntia H, Bhavani KS, Anusha T, Trinadh T, Stuparu MC, Brahman PK. Synthesis and characterization of corannulene-metal-organic framework support material for palladium catalyst: An excellent anode material for accelerated methanol oxidation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Rahmani K, Habibi B. Electrofabrication of the Ternary NiCuFe Alloy Nanoparticles/ERGO Nanocomposite: Effective Electrooxidation of the Glucose and Glycerol in Alkaline Media. ChemistrySelect 2020. [DOI: 10.1002/slct.202001561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kaveh Rahmani
- Electroanalytical Chemistry LaboratoryDepartment of Chemistry, Faculty of SciencesAzarbaijan Shahid Madani University Tabriz 53714-161 Iran
| | - Biuck Habibi
- Electroanalytical Chemistry LaboratoryDepartment of Chemistry, Faculty of SciencesAzarbaijan Shahid Madani University Tabriz 53714-161 Iran
| |
Collapse
|