1
|
Alabi-Babalola O, Aransiola E, Asuquo E, Garforth A, D'Agostino C. Production of Highly Efficient Activated Carbons for Wastewater Treatment from Post-Consumer PET Plastic Bottle Waste. Chempluschem 2024; 89:e202300484. [PMID: 38189572 DOI: 10.1002/cplu.202300484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/30/2023] [Indexed: 01/09/2024]
Abstract
Chemical activated carbons (PET-H2SO4 and PET-KOH) were prepared from post-consumer polyethylene terephthalate (PET) wastes using pyrolysis under moderate reaction temperatures by changing pyrolysis time and chemical activating agents. The produced carbons were characterized and tested in adsorption reactions of manganese, chromium, and cobalt ions in aqueous solutions. Results showed a high percentage removal of these inorganic ions from water: 98 % for Mn2+, 87 % for Cr3+, and 88 % for Co2+. Freundlich isotherms gave a better fit to the experimental data obtained with good correlation coefficient values in the range of 0.99-1 compared to other isotherms. The pseudo-second order kinetic model best described the chemical adsorption process as an exchange of electrons between the carbon and inorganic ions in solutions. The diffusion models showed that the process is controlled by a multi-kinetic stage adsorption process. In summary, this work demonstrates that the production of activated carbon from PET waste bottles is a potential alternative to commercial activated carbon and can be considered a sustainable waste management technology for removing these non-biodegradable plastic wastes from the environment.
Collapse
Affiliation(s)
- Olajumoke Alabi-Babalola
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Department of Chemical Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Elizabeth Aransiola
- Department of Chemical Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Edidiong Asuquo
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Arthur Garforth
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Carmine D'Agostino
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Alma Mater Studiorum - Università di, Bologna, Via Terracini, 28, 40131, Bologna, Italy
| |
Collapse
|
2
|
Rafa N, Ahmed B, Zohora F, Bakya J, Ahmed S, Ahmed SF, Mofijur M, Chowdhury AA, Almomani F. Microplastics as carriers of toxic pollutants: Source, transport, and toxicological effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123190. [PMID: 38142809 DOI: 10.1016/j.envpol.2023.123190] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/25/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Microplastic pollution has emerged as a new environmental concern due to our reliance on plastic. Recent years have seen an upward trend in scholarly interest in the topic of microplastics carrying contaminants; however, the available review studies have largely focused on specific aspects of this issue, such as sorption, transport, and toxicological effects. Consequently, this review synthesizes the state-of-the-art knowledge on these topics by presenting key findings to guide better policy action toward microplastic management. Microplastics have been reported to absorb pollutants such as persistent organic pollutants, heavy metals, and antibiotics, leading to their bioaccumulation in marine and terrestrial ecosystems. Hydrophobic interactions are found to be the predominant sorption mechanism, especially for organic pollutants, although electrostatic forces, van der Waals forces, hydrogen bonding, and pi-pi interactions are also noteworthy. This review reveals that physicochemical properties of microplastics, such as size, structure, and functional groups, and environmental compartment properties, such as pH, temperature, and salinity, influence the sorption of pollutants by microplastic. It has been found that microplastics influence the growth and metabolism of organisms. Inadequate methods for collection and analysis of environmental samples, lack of replication of real-world settings in laboratories, and a lack of understanding of the sorption mechanism and toxicity of microplastics impede current microplastic research. Therefore, future research should focus on filling in these knowledge gaps.
Collapse
Affiliation(s)
- Nazifa Rafa
- Department of Geography, University of Cambridge, Downing Place, Cambridge, CB2 3EN, United Kingdom
| | - Bushra Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Fatema Zohora
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Jannatul Bakya
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Samiya Ahmed
- Biological and Biomedical Sciences Department, College of Health and Life sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ashfaque Ahmed Chowdhury
- School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4702, Australia; Centre for Intelligent Systems, Clean Energy Academy, Central Queensland University, Rockhampton, QLD 4702, Australia
| | - Fares Almomani
- Department of Chemical Engineering, Qatar University, Doha, Qatar.
| |
Collapse
|
3
|
Ajnsztajn A, Harikrishnan VVJ, Alahakoon SB, Zhu D, Barnes M, Daum J, Gayle J, Tomur G, Lowenstein J, Roy S, Ajayan PM, Verduzco R. Synthesis and Additive Manufacturing of Hydrazone-Linked Covalent Organic Framework Aerogels. Chemistry 2023; 29:e202302304. [PMID: 37665636 DOI: 10.1002/chem.202302304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Covalent Organic Frameworks (COFs) are crystalline, porous organic materials. Recent studies have demonstrated novel processing strategies for COFs to form adaptable architectures, but these have focused primarily on imine-linked COFs. This work presents a new synthesis and processing route to produce crystalline hydrazone-linked COF gels and aerogels with hierarchical porosity. The method was implemented to produce a series of hydrazone-linked COFs with different alkyl side-chain substituents, achieving control of the hydrophilicity of the final aerogel. Variation in the length of the alkyl substituents yielded materials with controllable form factors that can preferentially adsorb water or nonpolar organic solvents. Additionally, a method for additive manufacturing of hydrazone-linked COFs using hydroxymethylcellulose as a sacrificial additive is presented. This work demonstrates an effective and simple approach to the fabrication of hydrazone COF aerogels and additive manufacturing to produce hydrazone COFs of desired shape.
Collapse
Affiliation(s)
- Alec Ajnsztajn
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | | | - Sampath B Alahakoon
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
- Institute for Combinatorial Advanced Research and Education, General Sir John Kotelawala Defence University, Kandawala Rd, Ratmalana, 10390, Sri Lanka
| | - Dongyang Zhu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX-77005, USA
| | - Morgan Barnes
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Jeremy Daum
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Jessica Gayle
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Gulnihal Tomur
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Jacob Lowenstein
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Soumyabrata Roy
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Pulickel M Ajayan
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Rafael Verduzco
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX-77005, USA
| |
Collapse
|
4
|
Wen Z, Yang H, Lv M, Yu C, Li Y. A compressible porous superhydrophobic material constructed by a multi-template high internal phase emulsion method for oil-water separation. RSC Adv 2023; 13:25920-25929. [PMID: 37655360 PMCID: PMC10466179 DOI: 10.1039/d3ra03997h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
Superhydrophobic porous materials exhibit remarkable stability and exceptional efficacy in combating marine oil spills and containing oily water discharges. This work employed the multi-template high internal phase emulsion method to fabricate a multi-template porous superhydrophobic foam (MTPSF). The materials were characterized through SEM, IR spectroscopy, contact angle measurement, and an electronic universal testing machine. Moreover, the materials' oil-water separation capability, reusability, and compressibility were thoroughly evaluated. The obtained results demonstrate that the material displays a water contact angle of 143° and an oil contact angle of approximately 0°, thus exhibiting superhydrophobic and superoleophilic properties. Consequently, it effectively facilitates the separation of oil slicks and heavy oil underwater. Furthermore, the MTPSF conforms to the second kinetic and Webber-Morris models concerning the oil absorption process. MTPSF exhibits an outstanding oil absorption capacity, ranging from 39.40 to 102.32 g g-1, while showcasing reliable reusability, high recovery efficiency, and excellent compressibility of up to 55%. The above exceptional attributes render the MTPSF highly suitable for oil-water separation applications.
Collapse
Affiliation(s)
- Zhipeng Wen
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University Zhanjiang 524088 P. R. China
| | - Huilin Yang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University Zhanjiang 524088 P. R. China
| | - Mingzhe Lv
- Institute of Agricultural Product Processing Research, Chinese Academy of Tropical Agricultural Sciences Zhanjiang 524001 China
| | - Chuanming Yu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University Zhanjiang 524088 P. R. China
| | - Yong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University Zhanjiang 524088 P. R. China
| |
Collapse
|
5
|
Sahu PS, Verma RP, Tewari C, Sahoo NG, Saha B. Facile fabrication and application of highly efficient reduced graphene oxide (rGO)-wrapped 3D foam for the removal of organic and inorganic water pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93054-93069. [PMID: 37498430 DOI: 10.1007/s11356-023-28976-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
The pace of water contamination is increasing daily due to expanding industrialisation. Finding a feasible solution for effectively remediating various organic and inorganic pollutants from large water bodies remains challenging. However, a nano-engineered advanced hybrid material could provide a practical solution for the efficient removal of such pollutants. This work has reported the development of a highly efficient and reusable absorbent comprising a porous polyurethane (PU) and reduced graphene oxide (rGO) nanosheets (rGOPU) for the removal of different organic oils (industrial oil, engine oil and mustard oil), dyes (MB, MO, RB, EY and MV) and heavy metals (Pb(II), Cr(VI), Cd(II), Co(II) and As(V)). The structure, morphology and properties of the rGOPU hybrid absorbents were analysed by using Raman spectroscopy, field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Brunner-Emitte-Teller (BET) analysis. The rGOPU possessed both superhydrophobicity and superoleophilicity with water and oil contact angles of about 164° and 0°, respectively. The prepared rGOPU has demonstrated an excellent oil-water separation ability (up to 99%), heavy metals removal efficiency (more than 75%), toxic dye adsorption (more than 55%), excellent recyclability (> 500 times for oils), extraordinary mechanical stability (90% compressible for > 1000 cycles) and high recoverability. This work presents the first demonstration of rGOPU's multifunctional absorbent capacity in large-scale wastewater treatment for effectively removing a wide variety of organic and inorganic contaminants.
Collapse
Affiliation(s)
- Prateekshya Suman Sahu
- Department of Chemical Engineering, National Institute of Technology Rourkela, (NIT Rourkela) Sector 1, Rourkela, Odisha, 768009, India
| | - Ravi Prakash Verma
- Department of Chemical Engineering, National Institute of Technology Rourkela, (NIT Rourkela) Sector 1, Rourkela, Odisha, 768009, India
| | - Chetna Tewari
- PRS-Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus, Kumaun University, -263001, Nainital, Uttarakhand, India
| | - Nanda Gopal Sahoo
- PRS-Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus, Kumaun University, -263001, Nainital, Uttarakhand, India
| | - Biswajit Saha
- Department of Chemical Engineering, National Institute of Technology Rourkela, (NIT Rourkela) Sector 1, Rourkela, Odisha, 768009, India.
- Indian Institute of Technology Gandhinagar (IIT Gandhinagar), Palaj, Gujrat, 382355, India.
| |
Collapse
|
6
|
Zhao Y, Shen L, Yuan Y, Xiao L, Cai J, Lu Z, Hou L. Preparation of porous poly(4‐tert‐butylstyrene) based monoliths with high efficiency for oil‐water separation via high internal phase emulsion template. J Appl Polym Sci 2023. [DOI: 10.1002/app.53801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Yulai Zhao
- Department of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Fuzhou University Fuzhou China
- Fuzhou University Qingyuan Innovation Laboratory Quanzhou China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals Fuzhou China
| | - Lianzhi Shen
- Department of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Fuzhou University Fuzhou China
| | - Yu Yuan
- Department of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Fuzhou University Fuzhou China
| | - Longqiang Xiao
- Department of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Fuzhou University Fuzhou China
- Fuzhou University Qingyuan Innovation Laboratory Quanzhou China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals Fuzhou China
| | - Jingyu Cai
- Department of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Fuzhou University Fuzhou China
- Fuzhou University Qingyuan Innovation Laboratory Quanzhou China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals Fuzhou China
| | - Zhen Lu
- Fuzhou University Qingyuan Innovation Laboratory Quanzhou China
| | - Linxi Hou
- Department of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Fuzhou University Fuzhou China
- Fuzhou University Qingyuan Innovation Laboratory Quanzhou China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals Fuzhou China
| |
Collapse
|
7
|
Chemical modification of polystyrene foam using functionalized chitosan with dithiocarbamate as an adsorbent for mercury removal from aqueous solutions. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-023-1387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
8
|
Guggenbiller G, Al Balushi A, Weems AC. Poly(β‐hydroxythioether)s as shape memory polymer foams for oil sorption in aquatic environments. J Appl Polym Sci 2022. [DOI: 10.1002/app.53569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Grant Guggenbiller
- Biomedical Engineering Program, Biomolecular and Chemical Engineering Department, Russ College of Engineering Ohio University Athens Ohio USA
| | - Ali Al Balushi
- Department of Mechanical Engineering, Russ College of Engineering Ohio University Athens Ohio USA
| | - Andrew C Weems
- Biomedical Engineering Program, Biomolecular and Chemical Engineering Department, Russ College of Engineering Ohio University Athens Ohio USA
- Department of Mechanical Engineering, Russ College of Engineering Ohio University Athens Ohio USA
- Ohio Musculoskeletal and Neurological Institute, and Center for Advanced Materials Processing, Russ College of Engineering Ohio University Athens Ohio USA
| |
Collapse
|
9
|
Zhao M, Huang L, Arulmani SRB, Yan J, Wu L, Wu T, Zhang H, Xiao T. Adsorption of Different Pollutants by Using Microplastic with Different Influencing Factors and Mechanisms in Wastewater: A Review. NANOMATERIALS 2022; 12:nano12132256. [PMID: 35808092 PMCID: PMC9268391 DOI: 10.3390/nano12132256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023]
Abstract
The studies on microplastics are significant in the world. According to the literature, microplastics have greatly specific surface areas, indicating high adsorption capacities for highly toxic pollutants in aquatic and soil environments, and these could be used as adsorbents. The influencing factors of microplastic adsorption, classification of microplastics, and adsorption mechanisms using microplastics for adsorbing organic, inorganic, and mixed pollutants are summarized in the paper. Furthermore, the influence of pH, temperature, functional groups, aging, and other factors related to the adsorption performances of plastics are discussed in detail. We found that microplastics have greater advantages in efficient adsorption performance and cost-effectiveness. In this paper, the adsorptions of pollutants by microplastics and their performance is proposed, which provides significant guidance for future research in this field.
Collapse
Affiliation(s)
- Meng Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (M.Z.); (L.H.); (S.R.B.A.); (J.Y.); (L.W.); (T.W.); (T.X.)
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (M.Z.); (L.H.); (S.R.B.A.); (J.Y.); (L.W.); (T.W.); (T.X.)
| | - Samuel Raj Babu Arulmani
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (M.Z.); (L.H.); (S.R.B.A.); (J.Y.); (L.W.); (T.W.); (T.X.)
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (M.Z.); (L.H.); (S.R.B.A.); (J.Y.); (L.W.); (T.W.); (T.X.)
| | - Lirong Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (M.Z.); (L.H.); (S.R.B.A.); (J.Y.); (L.W.); (T.W.); (T.X.)
| | - Tao Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (M.Z.); (L.H.); (S.R.B.A.); (J.Y.); (L.W.); (T.W.); (T.X.)
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (M.Z.); (L.H.); (S.R.B.A.); (J.Y.); (L.W.); (T.W.); (T.X.)
- Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China
- Correspondence:
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (M.Z.); (L.H.); (S.R.B.A.); (J.Y.); (L.W.); (T.W.); (T.X.)
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
10
|
Abu-Thabit NY, Uwaezuoke OJ, Abu Elella MH. Superhydrophobic nanohybrid sponges for separation of oil/ water mixtures. CHEMOSPHERE 2022; 294:133644. [PMID: 35065181 DOI: 10.1016/j.chemosphere.2022.133644] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The industrial revolution has led to different types of environmental pollution, including frequent leakage of crude oil to marine waters and the contamination of wastewater with immiscible or emulsified oils and organic liquids from various industrial residues. Hence, developing multifunctional materials for oil/water separation is a field of high significance for the remediation of oil-polluted water. Recently, advanced superwetting materials have been employed for oily wastewater treatment. This review summarizes the recent development in fabricating superhydrophobic/superoleophilic nanohybrid polyurethane, melamine, and cellulose sponges for oil/water separation. The use of organic and/or inorganic nanohybrid materials opens the horizon for designing a diverse and wide range of superhydrophobic sponges due to the synergistic effect between the surface roughness and chemical composition. The discussion is organized based on different classes of low surface energy materials including thermoplastics, thermosets, elastomers, fluorinated polymers, conductive polymers, organosilanes, long alkyl chain compounds, and hydrophobic carbon-based materials. Recent examples for the separation of both immiscible and emulsified oil/water mixtures are presented, with a focus on fabrication strategies, separation efficiency, recyclability, mechanical performance, and durability. Currently, most studies did not focus on the mechanical/chemical stability of the fabricated sponges, and hence, future research directions shall address the fabrication of robust and long-term durable superhydrophobic sponges with proper guidelines. Similarly, more research focus is required to design superhydrophobic sponges for the separation of emulsified oil/water mixtures and heavy crude oil samples. Superhydrophobic sponges can be employed for treatment of oily wastewater, emulsion separation, and cleanup of crude oil spills.
Collapse
Affiliation(s)
- Nedal Y Abu-Thabit
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City, 31961, Saudi Arabia.
| | - Onyinye J Uwaezuoke
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria; Wits Advanced Drug Delivery Platform, Department of Pharmacy and Pharmacology, University of Witwatersrand. 7 York Road, Johannesburg, South Africa
| | | |
Collapse
|
11
|
Sarkar B, Dissanayake PD, Bolan NS, Dar JY, Kumar M, Haque MN, Mukhopadhyay R, Ramanayaka S, Biswas JK, Tsang DCW, Rinklebe J, Ok YS. Challenges and opportunities in sustainable management of microplastics and nanoplastics in the environment. ENVIRONMENTAL RESEARCH 2022; 207:112179. [PMID: 34624271 DOI: 10.1016/j.envres.2021.112179] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 05/06/2023]
Abstract
The accumulation of microplastics (MPs) and nanoplastics (NPs) in terrestrial and aquatic ecosystems has raised concerns because of their adverse effects on ecosystem functions and human health. Plastic waste management has become a universal problem in recent years. Hence, sustainable plastic waste management techniques are vital for achieving the United Nations Sustainable Development Goals. Although many reviews have focused on the occurrence and impact of micro- and nanoplastics (MNPs), there has been limited focus on the management of MNPs. This review first summarizes the ecotoxicological impacts of plastic waste sources and issues related to the sustainable management of MNPs in the environment. This paper then critically evaluates possible approaches for incorporating plastics into the circular economy in order to cope with the problem of plastics. Pollution associated with MNPs can be tackled through source reduction, incorporation of plastics into the circular economy, and suitable waste management. Appropriate infrastructure development, waste valorization, and economically sound plastic waste management techniques and viable alternatives are essential for reducing MNPs in the environment. Policymakers must pay more attention to this critical issue and implement appropriate environmental regulations to achieve environmental sustainability.
Collapse
Affiliation(s)
- Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Pavani Dulanja Dissanayake
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea; Soils and Plant Nutrition Division, Coconut Research Institute, Lunuwila 61150, Sri Lanka
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, 6001, Australia; College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Jaffer Yousuf Dar
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal, 132001, India
| | - Manish Kumar
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Md Niamul Haque
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea; Department of Marine Science, College of Natural Sciences & Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, Republic of Korea
| | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal, 132001, India
| | - Sammani Ramanayaka
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Jayanta Kumar Biswas
- Department of Ecological Studies & International Centre for Ecological Engineering, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
12
|
Wang C, Qiu C, Zhan C, McClements DJ, Qin Y, Jiao A, Jin Z, Wang J. Green Preparation of Robust Hydrophobic β-Cyclodextrin/Chitosan Sponges for Efficient Removal of Oil from Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14380-14389. [PMID: 34866397 DOI: 10.1021/acs.langmuir.1c02299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A relatively straightforward green method to fabricate robust hydrophobic sponges for effective removal of oil pollutants and other organic contaminants was developed. These sponges were constructed from bio-sources: citronellal and palmitic acid-modified aminoethyl cyclodextrin-sodium phytate-chitosan (ACCTCS). The modified sponge exhibited desirable mechanical properties and strong hydrophobicity with a water contact angle (WCA) of 147.8°. Scanning electron microscopy showed that the ACCTCS sponge had a highly porous structure that was particularly suitable for organic component absorption. The sponge exhibited excellent absorption capacities for n-hexane, trichloromethane, vacuum pump oil, and peanut oil (47.9, 32.3, 32.6, and 32.2 g/g, respectively). The removal rate of oil was more than 80% (>26.2 g/g) after 10 absorption-desorption cycles. The ACCTCS sponge also showed good oil/water and organic components/water separation performance. The bio-source materials, green preparation method, and new absorbed-oil recovery strategy provided a novel pathway to construct multifunctional absorbents for oil/water separation in industrial wastewater.
Collapse
Affiliation(s)
- Chenxi Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chen Zhan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01060, United States
| | - Yang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinpeng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| |
Collapse
|
13
|
Martins LS, Zanini NC, Botelho ALS, Mulinari DR. Envelopes with microplastics generated from recycled plastic bags for crude oil sorption. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Noelle C. Zanini
- Center for Engineering, Modeling, and Applied Social Sciences (CECS) Federal University of ABC (UFABC) Santo André São Paulo Brazil
| | | | | |
Collapse
|
14
|
King O, Constant E, Weems AC. Shape Memory Poly(β-hydroxythioether) Foams for Oil Remediation in Aquatic Environments. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20641-20652. [PMID: 33872493 DOI: 10.1021/acsami.1c02630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Shape memory poly(β-hydroxythioether) foams were produced using organobase catalyzed reactions between epoxide and thiol monomers, allowing for the rapid formation of porous media within approximately 5 min, confirmed using both rheology and physical foam blowing. The porous materials possess ultralow densities (0.022 g × cm-3) and gel fractions of approximately 93%. Thermomechanical characterizations of the materials revealed glass transition temperatures tunable from approximately 50 to 100 °C, elastic moduli of approximately 2 kPa, and complete strain recovery upon heating of the sample above its glass transition temperature. The foams were characterized for their ability to take up oil from an aqueous multilayered ideal environment, revealing more than 2000% mass of oil (relative to the foam mass) could be collected. Importantly, while post-fabrication functionalization was possible with isocyanate chemistry followed by addition of hexadecanethiol or 3,3-bis(hexadecylthio)propan-1-ol, the oil collection efficiency of the system was not significantly enhanced, indicating that these materials, as porous media, possess unique attributes that make them appealing for environmental remediation without the need for costly modifications or manipulations.
Collapse
Affiliation(s)
- Olivia King
- Biomedical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Eric Constant
- Biomedical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Andrew C Weems
- Biomedical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
- Department of Mechanical Engineering; Translational Biosciences; Molecular and Chemical Biology; Orthopedic and Musculoskeletal Neurological Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
15
|
Niu H, Qiang Z, Ren J. Durable, magnetic-responsive melamine sponge composite for high efficiency, in situoil-water separation. NANOTECHNOLOGY 2021; 32:275705. [PMID: 33725679 DOI: 10.1088/1361-6528/abef2e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/16/2021] [Indexed: 05/25/2023]
Abstract
The development of durable and high-performance absorbents forin situoil-water separation is of critical importance for addressing severe water pollution in daily life as well as for solving accidental large-scale oil spillages. Herein, we demonstrate a simple and scalable approach to fabricate magnetic-responsive superhydrophobic melamine sponges byin situdeposition of PDA coatings and Fe3O4nanoparticles, followed by surface silanization with low surface energy 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PTOS) layer. The prepared melamine sponge composite (PTOS-Fe3O4@PDA/MF) not only exhibits a very high water contact angle of 165 ± 1.5° and an excellent ability to uptake a variety of oils and organic solvents (e.g. up to 141.1 g/g for chloroform), but also shows robust durability and superior recyclability. The PTOS-Fe3O4@PDA/MF sponge can also efficiently separate oils (or organic solvents) and water, as demonstrated by different model systems including immiscible oil-water solution mixture and miscible water-oil (W/O) emulsion (stabilized by surfactants). Furthermore, the PTOS-Fe3O4@PDA/MF sponge is able toin siturecover organics from water using a peristaltic pump, which gives it significant advantages over other traditional batch processes for oil-water separation. We believe that the PTOS-Fe3O4@PDA/MF sponge provides a very promising material solution to address oil-water separation, especially for the large-scale problems that have been long-time challenges with conventional sorption methods.
Collapse
Affiliation(s)
- Haifeng Niu
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, United States of America
| | - Jie Ren
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| |
Collapse
|
16
|
Zhao C, Chen L, Yu C, Hu B, Huang H, Chen Y, Wang X, Ye Y, Zhuang X, Li Y. Fabrication of hydrophobic NiFe 2O 4@poly(DVB-LMA) sponge via a Pickering emulsion template method for oil/water separation. SOFT MATTER 2021; 17:2327-2339. [PMID: 33480913 DOI: 10.1039/d0sm01902j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Super-hydrophobic porous absorbents are convenient, low-cost, efficient and environment-friendly materials in the treatment of oil spills. In this work, a simple Pickering emulsion template method was employed to fabricate an interconnected porous poly(DVB-LMA) sponge. A new co-Pickering stabilization system of Span 80 and NiFe2O4 nanoparticles was used to prepare ultra-concentrated internal phase water-in-oil (W/O) emulsions. After further polymerization, the resulting sponges were generated, which exhibited excellent adsorption selectivity due to the super-hydrophobicity and super-lipophilicity. Furthermore, the characterization results indicated that the composites had superior thermal stability, low density, high porosity and a flexible three-dimensional porous structure. Besides, the addition of nickel ferrite nanoparticles provided the materials with extra magnetic operability. High oil adsorption capacity (up to 36.9-84.2 g g-1), high oil retention, fast adsorption rate and superior reusability allowed the materials to be applied in the treatment of oily water.
Collapse
Affiliation(s)
- Caimei Zhao
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, P. R. China.
| | - Lei Chen
- School of Civil Engineering, Guangdong Ocean University Cunjin College, Zhanjiang, 524094, P. R. China
| | - Chuanming Yu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, P. R. China.
| | - Binghua Hu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, P. R. China.
| | - Haoxuan Huang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, P. R. China.
| | - Yongjie Chen
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, P. R. China.
| | - Xin Wang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, P. R. China.
| | - Yongshi Ye
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, P. R. China.
| | - Xiaohui Zhuang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, P. R. China.
| | - Yong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, P. R. China.
| |
Collapse
|
17
|
Ansari-Asl Z, Darvish Pour-Mogahi S, Darabpour E. Zeolitic imidazolate frameworks/polyacrylonitile composites for oil sorption and antibacterial applications. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01745-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Udayakumar KV, Gore PM, Kandasubramanian B. Foamed materials for oil-water separation. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2020.100076] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
19
|
Luo J, Huang Z, Liu L, Wang H, Ruan G, Zhao C, Du F. Recent advances in separation applications of polymerized high internal phase emulsions. J Sep Sci 2020; 44:169-187. [PMID: 32845083 DOI: 10.1002/jssc.202000612] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 01/11/2023]
Abstract
Polymerized high internal phase emulsions as highly porous adsorption materials have received increasing attention and wide applications in separation science in recent years due to their remarkable merits such as highly interconnected porosity, high permeability, good thermal and chemical stability, and tailorable chemistry. In this review, we attempt to introduce some strategies to utilize polymerized high internal phase emulsions for separation science, and highlight the recent advances made in the applications of polymerized high internal phase emulsions for diverse separation of small organic molecules, carbon dioxide, metal ions, proteins, and other interesting targets. Potential challenges and future perspectives for polymerized high internal phase emulsion research in the field of separation science are also speculated at the end of this review.
Collapse
Affiliation(s)
- Jinhua Luo
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Zhujun Huang
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China.,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Linqi Liu
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Haiyan Wang
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Guihua Ruan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Chenxi Zhao
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Fuyou Du
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China.,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| |
Collapse
|