1
|
Phul R, Jia G, Utku Sekercileroglu E, Carstensen Y, De R, Dellith A, Dellith J, Plentz J, Karadaş F, Dietzek‐Ivanšić B. Photocatalytic Oxygen Evolution with Prussian Blue Coated ZnO Origami Core-Shell Nanostructures. Chemphyschem 2025; 26:e202400817. [PMID: 39776137 PMCID: PMC11913467 DOI: 10.1002/cphc.202400817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
The design and development of particulate photocatalysts have been an attractive strategy to incorporate earth-abundant metal ions to water splitting devices. Herein, we synthesized CoFe-Prussian blue (PB) coated ZnO origami core-shell nanostructures (PB@ZnO) with different massratios of PB components and investigated their photocatalytic water oxidation activities in the presence of an electron scavenger. Photocatalytic experiments reveal that the integration of PB on ZnO boosts the oxygen evolution rate by a factor of ~2.4 compared to bare ZnO origami. We ascribe this increased photocatalytic rate to an improved charge carrier separation and transfer due to the formation of heterojunction at the interface between PB and ZnO. Long-term photocatalytic experiments indicate that the activity and stability of the catalyst was preserved up to 9 h. Our results indicate that the core-shell PB@ZnO particles possess a proper band energy alignment for the photocatalytic water oxidation process.
Collapse
Affiliation(s)
- Ruby Phul
- Department of ChemistryScience FacultyBilkent UniversityMain Campus, BilkentÇankaya, Ankara06800Türkiye
| | - Guobin Jia
- Leibniz Institute of Photonic Technology (Leibniz-IPHT)Albert-Einstein-Str. 907745JenaGermany
| | - Emir Utku Sekercileroglu
- Department of ChemistryScience FacultyBilkent UniversityMain Campus, BilkentÇankaya, Ankara06800Türkiye
| | - Yves Carstensen
- Institute for Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Ratnadip De
- Leibniz Institute of Photonic Technology (Leibniz-IPHT)Albert-Einstein-Str. 907745JenaGermany
- Institute for Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Andrea Dellith
- Leibniz Institute of Photonic Technology (Leibniz-IPHT)Albert-Einstein-Str. 907745JenaGermany
| | - Jan Dellith
- Leibniz Institute of Photonic Technology (Leibniz-IPHT)Albert-Einstein-Str. 907745JenaGermany
| | - Jonathan Plentz
- Leibniz Institute of Photonic Technology (Leibniz-IPHT)Albert-Einstein-Str. 907745JenaGermany
| | - Ferdi Karadaş
- Department of ChemistryScience FacultyBilkent UniversityMain Campus, BilkentÇankaya, Ankara06800Türkiye
- Leibniz Institute of Photonic Technology (Leibniz-IPHT)Albert-Einstein-Str. 907745JenaGermany
- Institute for Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- UNAM – National Nanotechnology Research CenterInstitute of Materials Scienceand Nanotechnology Bilkent University06800AnkaraTürkiye
| | - Benjamin Dietzek‐Ivanšić
- Department of ChemistryScience FacultyBilkent UniversityMain Campus, BilkentÇankaya, Ankara06800Türkiye
- Leibniz Institute of Photonic Technology (Leibniz-IPHT)Albert-Einstein-Str. 907745JenaGermany
- Institute for Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| |
Collapse
|
2
|
Chiang MR, Hsu CW, Pan WC, Tran NT, Lee YS, Chiang WH, Liu YC, Chen YW, Chiou SH, Hu SH. Reprogramming Dysfunctional Dendritic Cells by a Versatile Catalytic Dual Oxide Antigen-Captured Nanosponge for Remotely Enhancing Lung Metastasis Immunotherapy. ACS NANO 2025; 19:2117-2135. [PMID: 39739571 PMCID: PMC11760334 DOI: 10.1021/acsnano.4c09525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
Dendritic cells (DCs) play a crucial role in initiating antitumor immune responses. However, in the tumor environment, dendritic cells often exhibit impaired antigen presentation and adopt an immunosuppressive phenotype, which hinders their function and reduces their ability to efficiently present antigens. Here, a dual catalytic oxide nanosponge (DON) doubling as a remotely boosted catalyst and an inducer of programming DCs to program immune therapy is reported. Intravenous delivery of DON enhances tumor accumulation via the marginated target. At the tumor site, DON incorporates cerium oxide nanozyme (CeO2)-coated iron oxide nanocubes as a peroxide mimicry in cancer cells, promoting sustained ROS generation and depleting intracellular glutathione, i.e., chemodynamic therapy (CDT). Upon high-frequency magnetic field (HFMF) irradiation, CDT accelerates the decomposition of H2O2 and the subsequent production of more reactive oxygen species, known as Kelvin's force laws, which promote the cycle between Fe3+/Fe2+ and Ce3+/Ce4+ in a sustainable active surface. HFMF-boosted catalytic DON promotes tumors to release tumor-associated antigens, including neoantigens and damage-associated molecular patterns. Then, the porous DON acts as an antigen transporter to deliver autologous tumor-associated antigens to program DCs, resulting in sustained immune stimulation. Catalytic DON combined with the immune checkpoint inhibitor (anti-PD1) in lung metastases suppresses tumors and improves survival over 40 days.
Collapse
Affiliation(s)
- Min-Ren Chiang
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chin-Wei Hsu
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Wan-Chi Pan
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Ngoc-Tri Tran
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yu-Sheng Lee
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Wen-Hsuan Chiang
- Department
of Chemical Engineering, National Chung
Hsing University, Taichung 402, Taiwan
| | - Yu-Chen Liu
- Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology
Frontier Research Center, Center for Infectious Disease Education and Research
(CiDER)Osaka University, Osaka 565-0871, Japan
| | - Ya-Wen Chen
- National
Institute of Cancer Research, National Health
Research Institutes, Miaoli County 35053, Taiwan
| | - Shih-Hwa Chiou
- Institute
of Pharmacology, College of Medicine, National
Yang Ming Chiao Tung University, Hsinchu, Taipei 112304, Taiwan
- Department
of Medical Research, Veterans General Hospital, Taipei, Taipei 112304, Taiwan
| | - Shang-Hsiu Hu
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
3
|
Kioumourtzoglou S, Hof S, Kalk C, Toth V, Görlin M, Nováková J, Sá J. Nanomaterials as a Service (NaaS) concept: on-demand protocols for volume synthesis of nanomaterials. NANOSCALE HORIZONS 2024; 9:1364-1371. [PMID: 38887909 DOI: 10.1039/d4nh00174e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Establishing scalable nanomaterials synthesis protocols remains a bottleneck towards their commercialisation and, thus, a topic of intense research and development. Herein, we present an automated machine-learning microfluidic platform capable of synthesising optically active nanomaterials from target spectra originating from prior experience, theorised or published. Implementing unsupervised Bayesian optimisation with Gaussian processes reduces the optimisation time and the need for prior knowledge to initiate the process. Using PTFE tubing and connectors enables facile change in reactor design. Ultimately, the platform substitutes the labour-intensive trial-and-error synthesis and provides a pathway to standardisation and volume synthesis, slowing down the translation and commercialisation of high-quality nanomaterials. As a proof-of-concept, Ag nanoplates and Prussian-blue nanoparticle protocols were optimised and validated for volume production.
Collapse
Affiliation(s)
- Stylianos Kioumourtzoglou
- Department of Chemistry-Ånsgtröm, Physical-Chemistry Division, Uppsala University, Lägerhyddsvägen 1, Uppsala 751 20, Sweden.
| | - Sebastian Hof
- Department of Chemistry-Ånsgtröm, Physical-Chemistry Division, Uppsala University, Lägerhyddsvägen 1, Uppsala 751 20, Sweden.
| | - Cécile Kalk
- Department of Chemistry-Ånsgtröm, Physical-Chemistry Division, Uppsala University, Lägerhyddsvägen 1, Uppsala 751 20, Sweden.
| | - Viktor Toth
- Toptal, LLC, 2810 N. Church St #36879, Wilmington, DE 19802-4447, USA
| | - Mikaela Görlin
- Department of Chemistry-Ånsgtröm, Structural Chemistry Division, Uppsala University, Lägerhyddsvägen 1, Uppsala 751 20, Sweden
| | - Jaroslava Nováková
- Department of Surface and Plasma Science, Charles University, V holesovickach 2, Prague 8, 18000, Czech Republic
| | - Jacinto Sá
- Department of Chemistry-Ånsgtröm, Physical-Chemistry Division, Uppsala University, Lägerhyddsvägen 1, Uppsala 751 20, Sweden.
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, Warsaw 01-224, Poland
| |
Collapse
|
4
|
Liu Y, Li R, Du J, Xie J, Guo R. Defective copper-cobalt binuclear Prussian blue analogue nanozymes with high specificity as lytic polysaccharide monooxygenase-mimic via axial ligation of histidine. J Colloid Interface Sci 2024; 657:15-24. [PMID: 38029525 DOI: 10.1016/j.jcis.2023.11.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Degradation of polysaccharides based on lytic polysaccharide monooxygenases (LPMOs) has received considerably interest in the environment and energy fields since 2010. With the rapid development of nanozymes in various fields, it is highly desirable but challenging to develop LPMO-like nanozymes with high specificity and satisfied activity. Here, a defective copper-cobalt binuclear Prussian blue analogue (CuCoPBA) nanozyme was developed via a facile and ingenious methodology based on single histidine (His). For the first time, His-CuCoPBA nanozyme was found to exhibit LPMO-like activity with H2O2 as a cosubstrate at room temperature and neutral pH, which can efficiently catalyze the degradation of galactomannans selectively. Significantly, the high degradation activity at pH 10 expands the application of Fenton-like nanozymes in alkaline condition. Singlet oxygen (1O2), as a main reactive intermediate, plays a crucial role in the galactomannan degradation catalyzed by His-CuCoPBA nanozyme. Both control experimental and density functional theory (DFT) results indicate Cu-NxHis contributes to the efficiently and selectively catalytic activity of His-CuCoPBA nanozymes by emulating the binding and catalytic sites of LPMOs. The present work not only represents a fundamental breakthrough toward degradation of polysaccharide based on nanozyme, but also contributes to understanding the catalytic mechanism of natural Cu-dependent LPMOs.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Renjie Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Jiamei Du
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| |
Collapse
|
5
|
Wang J, Yang J, Liu K, Yuan J, Shi Y, Li H, Zhao L. Tumor targeted cancer membrane-camouflaged ultra-small Fe nanoparticles for enhanced collaborative apoptosis and ferroptosis in glioma. Mater Today Bio 2023; 22:100780. [PMID: 37680585 PMCID: PMC10480784 DOI: 10.1016/j.mtbio.2023.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/28/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023] Open
Abstract
Glioma is recognized as the most common and aggressive primary brain tumor in adults. Owing to the occurrence of drug resistance and the failure of drug to penetrate the blood-brain barrier (BBB), there is no effective strategy for the treatment of glioma. The main objective of this study was to develop a biomimetic glioma C6 cell membrane (C6M) derived nanovesicles (DOX-FN/C6M-NVs) loaded with doxorubicin (DOX) and ultra-small Fe nanoparticles (FN) for accomplishing the effective brain tumor-targeted delivery of DOX and improving anti-cancer efficacy via inducing collaborative apoptosis and ferroptosis. The findings revealed that employing C6M-NVs as a carrier significantly improved the therapeutic efficacy by enabling evasion of immune surveillance, facilitating targeted drug delivery to tumor sites, and minimizing cardiotoxicity and adverse effects associated with DOX. DOX-FN/C6M-NVs exhibited more potent anti-tumor effects as compared with free DOX by promoting DOX-mediated apoptosis and accelerating ferroptosis via the mediation of FN. This study suggested that DOX-FN/C6M-NVs as the potential inducer of ferroptosis and apoptosis conferred effective tumor suppression in the treatment of glioma.
Collapse
Affiliation(s)
- Jingchen Wang
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, PR China
| | - Jian Yang
- Life Science Institution, Jinzhou Medical University, Jinzhou, 121000, PR China
| | - Kang Liu
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, PR China
| | - Jiayu Yuan
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, PR China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, PR China
| | - Hongdan Li
- Life Science Institution, Jinzhou Medical University, Jinzhou, 121000, PR China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, PR China
| |
Collapse
|
6
|
Mohan Arjun A, Shabana N, Ankitha M, Abdul Rasheed P. Electrochemical deposition of Prussian blue on Nb2CT MXene modified carbon cloth for the non-enzymatic electrochemical detection of hydrogen peroxide. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Oh H, Lee JS, Sung D, Yang S, Choi WI. Size-Controllable Prussian Blue Nanoparticles Using Pluronic Series for Improved Antioxidant Activity and Anti-Inflammatory Efficacy. Antioxidants (Basel) 2022; 11:antiox11122392. [PMID: 36552600 PMCID: PMC9774457 DOI: 10.3390/antiox11122392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Prussian blue (PB) is a metal cluster nanoparticle (NP) of cyanide-bridged iron(II)-iron(III) and exhibits a characteristic blue color. Its peroxidase-, catalase-, and superoxide-dismutase-like activities effectively remove excess reactive oxygen species that induce inflammation and tumorigenesis. However, the dispersion of PB NPs is not sufficiently stable for their application in the biomedical field. In this study, we developed Pluronic-stabilized Prussian blue nanoparticles (PB/Plu NPs) using a series of Pluronic triblock copolymers as a template material for PB NPs. Considering the hydrophilic-lipophilic balance (HLB) values of the Pluronic series, including F68, F127, L35, P123, and L81, the diameters of the PB/Plu NPs decreased from 294 to 112 nm with decreasing HLB values. The smallest PB NP stabilized with Pluronic P123 (PB/PP123 NP) showed the strongest antioxidant and anti-inflammatory activities and wound-healing efficacy because of its large surface area. These results indicated that the spatial distribution of PB NPs in the micelles of Pluronic greatly improved the stability and reactive oxygen species scavenging activity of these NPs. Therefore, PB/Plu NPs using U.S.-FDA-approved Pluronic polymers show potential as biocompatible materials for various biomedical applications, including the treatment of inflammatory diseases in the clinic.
Collapse
Affiliation(s)
- Hyeryeon Oh
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Republic of Korea
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jin Sil Lee
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Republic of Korea
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Daekyung Sung
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Republic of Korea
| | - Siyoung Yang
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Republic of Korea
- Correspondence: ; Tel.: +82-43-913-1513
| |
Collapse
|
8
|
Sahoo P, Kundu S, Roy S, Sharma SK, Ghosh J, Mishra S, Mukherjee A, Ghosh CK. Fundamental understanding of the size and surface modification effects on r 1, the relaxivity of Prussian blue nanocube@ m-SiO 2: a novel targeted chemo-photodynamic theranostic agent to treat colon cancer. RSC Adv 2022; 12:24555-24570. [PMID: 36128364 PMCID: PMC9425834 DOI: 10.1039/d2ra03995h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
A targeted multimodal strategy on a single nanoplatform is attractive in the field of nanotheranostics for the complete ablation of cancer. Herein, we have designed mesoporous silica (m-SiO2)-coated Prussian blue nanocubes (PBNCs), functionalized with hyaluronic acid (HA) to construct a multifunctional PBNC@m-SiO2@HA nanoplatform that exhibited good biocompatibility, excellent photodynamic activity, and in vitro T 1-weighted magnetic resonance imaging ability (r 1 ∼ 3.91 mM-1 s-1). After loading doxorubicin into the as-prepared PBNC@m-SiO2@HA, the developed PBNC@m-SiO2@HA@DOX displayed excellent pH-responsive drug release characteristics. Upon irradiation with 808 nm (1.0 W cm-2) laser light, PBNC@m-SiO2@HA@DOX exhibited synergistic photodynamic and chemotherapeutic efficacy (∼78% in 20 minutes) for human colorectal carcinoma (HCT 116) cell line compared to solo photodynamic or chemotherapy. Herein, the chemo-photodynamic therapeutic process was found to follow the apoptotic pathway via ROS-mediated mitochondrion-dependent DNA damage with a very low cellular uptake of PBNC@m-SiO2@HA@DOX for the human embryonic kidney (HEK 293) cell line, illustrating its safety. Hence, it may be stated that the developed nanoplatform can be a potential theranostic agent for future applications. Most interestingly, we have noted variation in r 1 at each step of the functionalization along with size variation that has been the first time modelled on the basis of the Solomon-Bloembergen-Morgan theory considering changes in the defect crystal structure, correlation time, water diffusion rate, etc., due to varied interactions between PBNC and water molecules.
Collapse
Affiliation(s)
- Panchanan Sahoo
- School of Materials Science and Nanotechnology, Jadavpur University Kolkata-700032 India
- Agricultural and Ecological Research Unit, Biological Science Division, Indian Statistical Institute Giridih Jharkhand India
| | - Sudip Kundu
- School of Materials Science and Nanotechnology, Jadavpur University Kolkata-700032 India
| | - Shubham Roy
- Department of Physics, Jadavpur University Kolkata-700032 India
| | - S K Sharma
- Eko X-Ray & Imaging Institute 54, Jawaharlal Nehru Road Kolkata-700071 India
| | - Jiten Ghosh
- XRD and SEM Units, Materials Characterization and Instrumentation Division, CSIR-Central Glass and Ceramic Research Institute India
| | - Snehasis Mishra
- School of Materials Science and Nanotechnology, Jadavpur University Kolkata-700032 India
| | - Abhishek Mukherjee
- Agricultural and Ecological Research Unit, Biological Science Division, Indian Statistical Institute Giridih Jharkhand India
| | - Chandan Kumar Ghosh
- School of Materials Science and Nanotechnology, Jadavpur University Kolkata-700032 India
| |
Collapse
|
9
|
Song Z, Bai J, Wang J, Liu L, Zhu X, Jin X. Different Agglomeration Processes Induced by the Varied Interaction of Fe-Fe Analogues with Differently Charged Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8469-8476. [PMID: 35762983 DOI: 10.1021/acs.langmuir.2c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The catalytic activity of Prussian blue analogues (PBAs) is mainly tuned via the control of material sizes and morphologies. However, the shapes and sizes of many PBAs are difficult to control. In this work, a facile approach is demonstrated using differently charged surfactants to tune the catalytic activity of PBAs. Fe-Fe PBAs prepared with non-ionic P123, cationic cetyltrimethylammonium bromide, and anionic sodium dodecyl sulfate are chosen to study the effect of surfactant charges on the catalytic activity. The transesterification of propylene carbonate to dimethyl carbonate by methanol is selected as a model reaction. Owing to the different agglomeration processes of PB particles after modified with differently charged surfactants, significantly varied shapes and sizes were observed. Accordingly, the catalytic activity is greatly varied by adding surfactants. The different catalytic activities may arise from the different behaviors of agglomeration of PB particles after surfactant modification as well as the material size and shape changes. Besides, apparent activation energies for PBs adding different surfactants were derived. Finally, the agglomeration mechanism of PB particles in the presence of differently charged surfactants was proposed.
Collapse
Affiliation(s)
- Ziwei Song
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Juan Bai
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Jinyao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Lijuan Liu
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Xu Zhu
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| |
Collapse
|
10
|
Li Y, Pan F, Yin S, Tong C, Zhu R, Li G. Nafion assisted preparation of prussian blue nanoparticles and its application in electrochemical analysis of l-ascorbic acid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Khramtsov P, Kropaneva M, Minin A, Bochkova M, Timganova V, Maximov A, Puzik A, Zamorina S, Rayev M. Prussian Blue Nanozymes with Enhanced Catalytic Activity: Size Tuning and Application in ELISA-like Immunoassay. NANOMATERIALS 2022; 12:nano12101630. [PMID: 35630852 PMCID: PMC9147909 DOI: 10.3390/nano12101630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
Abstract
Prussian blue nanozymes possessing peroxidase-like activity gather significant attention as alternatives to natural enzymes in therapy, biosensing, and environmental remediation. Recently, Prussian blue nanoparticles with enhanced catalytic activity prepared by reduction of FeCl3/K3[Fe(CN)6] mixture have been reported. These nanoparticles were denoted as ‘artificial peroxidase’ nanozymes. Our study provides insights into the process of their synthesis. We studied how the size of nanozymes and synthesis yield can be controlled via adjustment of the synthesis conditions. Based on these results, we developed a reproducible and scalable method for the preparation of ‘artificial peroxidase’ with tunable sizes and enhanced catalytic activity. Nanozymes modified with gelatin shell and functionalized with affine molecules were applied as labels in colorimetric immunoassays of prostate-specific antigen and tetanus antibodies, enabling detection of these analytes in the range of clinically relevant concentrations. Protein coating provides excellent colloidal stability of nanozymes in physiological conditions and stability upon long-term storage.
Collapse
Affiliation(s)
- Pavel Khramtsov
- Faculty of Biology, Perm State University, 614068 Perm, Russia; (M.K.); (M.B.); (S.Z.); (M.R.)
- Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia;
- Correspondence: ; Tel.: +7-342-280-77-94
| | - Maria Kropaneva
- Faculty of Biology, Perm State University, 614068 Perm, Russia; (M.K.); (M.B.); (S.Z.); (M.R.)
- Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia;
| | - Artem Minin
- Lab of Applied Magnetism, M.N. Mikheev Institute of Metal Physics of the UB RAS, 620108 Yekaterinburg, Russia;
- Faculty of Biology and Fundamental Medicine, Ural Federal University Named after The First President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia
| | - Maria Bochkova
- Faculty of Biology, Perm State University, 614068 Perm, Russia; (M.K.); (M.B.); (S.Z.); (M.R.)
- Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia;
| | - Valeria Timganova
- Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia;
| | - Andrey Maximov
- Department of Analytical Chemistry and Expertise, Faculty of Chemistry, Perm State University, 614068 Perm, Russia;
| | - Alexey Puzik
- Department of Mineralogy and Petrography, Faculty of Geology, Perm State University, 614068 Perm, Russia;
- Core Facilities and Lab of Hydrochemical Analysis, Perm State University, 614068 Perm, Russia
- Lab of Technological Mineralogy, Institute of Natural Science, Perm State University, 614068 Perm, Russia
- Lab of Biogeochemistry of Technogenic Landscapes, Perm State University, 614068 Perm, Russia
| | - Svetlana Zamorina
- Faculty of Biology, Perm State University, 614068 Perm, Russia; (M.K.); (M.B.); (S.Z.); (M.R.)
- Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia;
| | - Mikhail Rayev
- Faculty of Biology, Perm State University, 614068 Perm, Russia; (M.K.); (M.B.); (S.Z.); (M.R.)
- Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia;
| |
Collapse
|
12
|
Park B, Kim J, Ghoreishian SM, Rethinasabapathy M, Huh YS, Kang SM. Generation of multi-functional core-shell adsorbents: simultaneous adsorption of cesium, strontium and rhodamine B in aqueous solution. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Jiang Y, Yang Y, Shen L, Ma J, Ma H, Zhu N. Recent Advances of Prussian Blue-Based Wearable Biosensors for Healthcare. Anal Chem 2021; 94:297-311. [PMID: 34874165 DOI: 10.1021/acs.analchem.1c04420] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yu Jiang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China.,Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yupeng Yang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Liuxue Shen
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Junlin Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Hongting Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
14
|
Novel One-Pot Solvothermal Synthesis of High-Performance Copper Hexacyanoferrate for Cs+ Removal from Wastewater. J CHEM-NY 2021. [DOI: 10.1155/2021/3762917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efficient removal of radioactive cesium from complex wastewater is a challenge. Unlike traditional precipitation and hydrothermal synthesis, a novel vast specific surface area adsorbent of copper hexacyanoferrates named EA-CuHCF was synthesized using a one-pot solvothermal method under the moderate ethanol media characterized by XRD, SEM, EDS, BET, and FTIR. It was found that the maximum adsorption capacity towards Cs+ was 452.5 mg/g, which is far higher than most of the reported Prussian blue analogues so far. Moreover, EA-CuHCF could effectively adsorb Cs+ at a wide pH range and low concentration of Cs+ in geothermal water within 30 minutes, and the removal rate of Cs+ was 92.1%. Finally, the separation factors between Cs+ and other competitive ions were higher than 553, and the distribution coefficient of Cs+ reached up to 2.343 × 104 mL/g. These properties suggest that EA-CuHCF synthesized by the solvothermal method has high capacity and selectivity and can be used as a candidate for Cs+ removal from wastewater.
Collapse
|
15
|
Ngo G, Félix G, Dorandeu C, Devoisselle JM, Costa L, Milhiet PE, Guari Y, Larionova J, Chopineau J. A Novel Approach to the Facile Growth and Organization of Photothermal Prussian Blue Nanocrystals on Different Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1749. [PMID: 34361135 PMCID: PMC8308188 DOI: 10.3390/nano11071749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 01/16/2023]
Abstract
We report here a novel "one-pot" approach for the controlled growth and organization of Prussian blue nanostructures on three different surfaces: pure Au0, cysteamine-functionalized Au0, and SiO2-supported lipid bilayers with different natures of lipids. We demonstrate that fine control over the size, morphology, and the degree and homogeneity of the surface coverage by Prussian Blue (PB) nanostructures may be achieved by manipulating different parameters, which are the precursor concentration, the nature of the functional groups or the nature of lipids on the surfaces. This allows the growth of isolated PB nanopyramids and nanocubes or the design of thin dense films over centimeter square surfaces. The formation of unusual Prussian blue nanopyramids is discussed. Finally, we demonstrate, by using experimental techniques and theoretical modeling, that PB nanoparticles deposited on the gold surface exhibit strong photothermal properties, permitting a rapid temperature increase up to 90 °C with a conversion of the laser power of almost 50% for power source heat.
Collapse
Affiliation(s)
- Giang Ngo
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.N.); (C.D.); (J.-M.D.); (J.L.)
| | - Gautier Félix
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.N.); (C.D.); (J.-M.D.); (J.L.)
| | - Christophe Dorandeu
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.N.); (C.D.); (J.-M.D.); (J.L.)
| | - Jean-Marie Devoisselle
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.N.); (C.D.); (J.-M.D.); (J.L.)
| | - Luca Costa
- CBS, Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France; (L.C.); (P.-E.M.)
| | | | - Yannick Guari
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.N.); (C.D.); (J.-M.D.); (J.L.)
| | - Joulia Larionova
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.N.); (C.D.); (J.-M.D.); (J.L.)
| | - Joël Chopineau
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.N.); (C.D.); (J.-M.D.); (J.L.)
| |
Collapse
|
16
|
Fan S, Jiang X, Yang M, Wang X. Sensitive colorimetric assay for the determination of alkaline phosphatase activity utilizing nanozyme based on copper nanoparticle-modified Prussian blue. Anal Bioanal Chem 2021; 413:3955-3963. [PMID: 33885935 DOI: 10.1007/s00216-021-03347-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
Nanozyme based on Prussian blue nanocubes (PB NCs) loaded with copper nanoparticles (Cu@PB NCs) was synthesized. The peroxidase (POD)-like activity of Cu@PB NCs was studied and utilized for detecting the activity of alkaline phosphatase (ALP). The Cu@PB NCs possess higher POD-like activity compared with PB NCs and natural horseradish peroxidase (HRP) due to the loading of copper nanoparticles. 3,3',5,5'-Tetramethylbenzidine (TMB) can be oxidized to oxTMB in the presence of Cu@PB NCs and H2O2, generating blue-colored compound, while introduction of pyrophosphate (PPi) leads to the POD-like activity of Cu@PB NCs decreased obviously. In the presence of ALP, PPi was hydrolyzed and then the POD-like activity of Cu@PB NCs was restored. So, according to the change of the POD-like activity of Cu@PB NCs, a sensitive colorimetric assay for ALP activity was reported. The limit of detection of the assay is 0.08 mU/mL, with linear range from 0.1 to 50 mU/mL. In addition, the assay was also applied for screening the inhibitors of ALP. Nanozyme based on Prussian blue nanocube (PB NCs) loaded with copper nanoparticles was synthesized and utilized for detecting the activity of alkaline phosphatase (ALP).
Collapse
Affiliation(s)
- Shengnan Fan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Xingxing Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China.
| | - Xianggui Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Changsha, 410078, Hunan, China.
| |
Collapse
|
17
|
Shiba F, Yamamoto A, Shinta Y, Mameuda U, Tahara Y, Okawa Y. Formation mechanisms of hollow manganese hexacyanoferrate particles and construction of a multiple-shell structure. RSC Adv 2021; 11:8767-8774. [PMID: 35423360 PMCID: PMC8695330 DOI: 10.1039/d1ra00464f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/11/2021] [Indexed: 11/21/2022] Open
Abstract
Formation mechanisms of hollow manganese hexacyanoferrate (Mn-HCF) particles have been investigated. Mn-HCF particles, which were precipitated by mixing an aqueous solution of K3[Fe(CN)6] with MnCl2 in the presence of sodium citrate, could be converted into a hollow structure just by washing with distilled water. The powder X-ray diffractometry suggested that the as-prepared particle has a core/shell morphology with different crystal structures: cubic-core and monoclinic-shell. The time evolutions of the particle size and shell thickness indicated that the core was rapidly (but not instantaneously) formed at the initial stage of the precipitation process, followed by a slower shell growth. In addition, the solubility of the cubic core was estimated to be about 2.5 times higher than that of the monoclinic shell, resulting in the preferential dissolution of the interior of the particle by the washing process. The formation procedure has been used to construct multiple-shell hollow Mn-HCF particles containing up to quadruple separated nesting shells by associating an additional growth technique.
Collapse
Affiliation(s)
- Fumiyuki Shiba
- Department of Materials Science, Graduate School of Engineering, Chiba University 1-33 Yayoicho, Inageku Chiba 263-8522 Japan
| | - Asumi Yamamoto
- Department of Image and Materials Science, Graduate School of Advanced Integration Science, Chiba University 1-33 Yayoicho, Inageku Chiba 263-8522 Japan
| | - Yuuki Shinta
- Department of Image Science, Faculty of Engineering, Chiba University 1-33 Yayoicho, Inageku Chiba 263-8522 Japan
| | - Ushio Mameuda
- Department of Materials Science, Graduate School of Engineering, Chiba University 1-33 Yayoicho, Inageku Chiba 263-8522 Japan
| | - Yuuki Tahara
- Department of Image Science, Faculty of Engineering, Chiba University 1-33 Yayoicho, Inageku Chiba 263-8522 Japan
| | - Yusuke Okawa
- Department of Materials Science, Graduate School of Engineering, Chiba University 1-33 Yayoicho, Inageku Chiba 263-8522 Japan
| |
Collapse
|
18
|
Gao Y, Yu G, Xing K, Gorin D, Kotelevtsev Y, Tong W, Mao Z. Finely tuned Prussian blue-based nanoparticles and their application in disease treatment. J Mater Chem B 2020; 8:7121-7134. [PMID: 32648878 DOI: 10.1039/d0tb01248c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Prussian blue (PB) based nanostructure is a mixed-valence coordination network with excellent biosafety, remarkable photothermal effect and multiple enzyme-mimicking behaviours. Compared with other nanomaterials, PB-based nanoparticles (NPs) exhibit several unparalleled advantages in biomedical applications. This review begins with the chemical composition and physicochemical properties of PB-based NPs. The tuning strategies of PB-based NPs and their biomedical properties are systemically demonstrated. Afterwards, the biomedical applications of PB-based NPs are comprehensively recounted, mainly focusing on treatment of tumors, bacterial infection and inflammatory diseases. Finally, the challenges and future prospects of PB-based NPs and their application in disease treatment are discussed.
Collapse
Affiliation(s)
- Yong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kuoran Xing
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| | - Dmitry Gorin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, Russian Federation
| | - Yuri Kotelevtsev
- Functional Genomics and RNAi Therapy CREI, Skolkovo Institute for Science and Technology, 3 Nobel Street, Skolkovo Moscow region, 143026, Russian Federation
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| |
Collapse
|
19
|
Busquets MA, Estelrich J. Prussian blue nanoparticles: synthesis, surface modification, and biomedical applications. Drug Discov Today 2020; 25:1431-1443. [PMID: 32492486 DOI: 10.1016/j.drudis.2020.05.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/30/2020] [Accepted: 05/21/2020] [Indexed: 01/02/2023]
Abstract
Prussian blue nanoparticles (PBNPs) are a nanomaterial that presents unique properties and an excellent biocompatibility. They can be synthesized in mild conditions and can be derivatized with polymers and/or biomolecules. PBNPs are used in biomedicine as therapy and diagnostic agents. In biomedical imaging, PBNPs constitute contrast agents in photoacoustic and magnetic resonance imaging (MRI). They are a good adsorbent to be used as antidotes for poisoning with cesium and/or thallium ions. Moreover, the ability to convert energy into heat makes them useful photothermal agents (PAs) in photothermal therapy (PTT) or as nonantibiotic substances with antibacterial properties. Finally, PBNPs can be both reduced to Prussian white and oxidized to Prussian green. A large window of redox potential exists between reduction and oxidation, which result in the enzyme-like characteristics of these NPs.
Collapse
Affiliation(s)
- Maria Antònia Busquets
- Pharmacy and Pharmaceutical Technology and Physical Chemistry Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31, 08028 Barcelona, Catalonia, Spain; Institute of Nanoscience and Nanotechnology, IN2UB, Diagonal 645, 08028 Barcelona, Catalonia, Spain
| | - Joan Estelrich
- Pharmacy and Pharmaceutical Technology and Physical Chemistry Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31, 08028 Barcelona, Catalonia, Spain; Institute of Nanoscience and Nanotechnology, IN2UB, Diagonal 645, 08028 Barcelona, Catalonia, Spain.
| |
Collapse
|