1
|
Morohashi S, Zhou L, Kanemoto K, Kwon E, Yoshikai N. Hexadehydro Diels-Alder/Alkynyliodanation Cascade: A Highly Regioselective Entry to Polycyclic Aromatics. Org Lett 2025; 27:4269-4274. [PMID: 40231630 PMCID: PMC12038833 DOI: 10.1021/acs.orglett.5c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
We report here a cascade process integrating the hexadehydro Diels-Alder (HDDA) reaction with alkynyliodanation, enabling efficient synthesis of highly substituted aryl-λ3-iodanes. Heating a mixture of a tetrayne and an alkynylbenziodoxole induces regioselective insertion of the tetrayne-derived aryne into the alkynyl-iodine(III) bond, yielding a 1,4-dialkynyl-2-iodanyl-3-aryl(or alkyl)benzene derivative. The unique regiochemistry facilitates subsequent π-extension, allowing divergent access to polyaromatic frameworks, such as helicenes and cyclopenta[cd]pyrenes, underscoring the utility of aryne carboiodanation in complex aromatic synthesis.
Collapse
Affiliation(s)
- Shunya Morohashi
- Graduate
School of Pharmaceutical Sciences, Tohoku
University, Sendai 980-8578, Japan
| | - Liejin Zhou
- Key
Laboratory of the Ministry of Education for Advanced Catalysis Materials,
College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Kazuya Kanemoto
- Graduate
School of Pharmaceutical Sciences, Tohoku
University, Sendai 980-8578, Japan
| | - Eunsang Kwon
- Research
and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
- Endowed
Research Laboratory of Dimensional Integrated Nanomaterials, Graduate
School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Naohiko Yoshikai
- Graduate
School of Pharmaceutical Sciences, Tohoku
University, Sendai 980-8578, Japan
| |
Collapse
|
2
|
Luo C, Zheng YX, Ji SB, Song HC, Wang GH, Hong FL, Xu Z, Wang B, Ye LW. Copper-Catalyzed Triyne Cyclization via Vinyl Cations. Org Lett 2025; 27:3368-3373. [PMID: 40145569 DOI: 10.1021/acs.orglett.5c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Herein, we describe an efficient copper-catalyzed cyclization of triynes via vinyl cation intermediates. The reaction leads to the practical and atom-economical synthesis of valuable polycyclic pyrroles by constructing three new rings in one step under mild reaction conditions. The proposed reaction mechanism shows the ordered and regioselective reaction of alkynes. Moreover, the possibility of such an asymmetric triyne cyclization also emerges.
Collapse
Affiliation(s)
- Chen Luo
- Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan-Xin Zheng
- Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sheng-Biao Ji
- Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huan-Chao Song
- Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guang-Hui Wang
- Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Feng-Lin Hong
- Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhou Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Binju Wang
- Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Long-Wu Ye
- Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
3
|
Chen HH, Chen YB, Gao JZ, Ye LW, Zhou B. Copper-Catalyzed Enantioselective Dehydro-Diels-Alder Reaction: Atom-Economical Synthesis of Axially Chiral Carbazoles. Angew Chem Int Ed Engl 2024; 63:e202411709. [PMID: 39267546 DOI: 10.1002/anie.202411709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
The dehydro-Diels-Alder (DDA) reaction is a powerful method for the construction of aromatic compounds. However, the enantioselective DDA reaction has been rarely developed, probably due to the competitive thermal reaction. Herein, we report a copper-catalyzed enantioselective DDA reaction through vinyl cation pathway. The reaction leads to the atom-economical synthesis of axially chiral phenyl and indolyl carbazoles in generally excellent yields with good to excellent atroposelectivities. This methodology represents the first example of non-noble metal-catalyzed enantioselective DDA reaction. Notably, new chiral ligand and organocatalyst derived from the constructed axially chiral carbazole are demonstrated to be useful in asymmetric catalysis.
Collapse
Affiliation(s)
- Hua-Hong Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yang-Bo Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Jun-Zhe Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- State Key Laboratory of Organometallic Chemistry, Shanghai, Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| |
Collapse
|
4
|
Sekine K, Fuji K, Kawashima K, Mori T, Kuninobu Y. Gold-Catalyzed Synthesis of 5H-Benzo[b]indeno[2,1-d]silines by Insertion of Vinyl Carbocations into the Si-H Bond. Chemistry 2024; 30:e202403163. [PMID: 39289886 DOI: 10.1002/chem.202403163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
We have developed a gold-catalyzed cascade reaction of aryldiynes bearing a hydrosilyl group to afford a variety of unexplored 5H-benzo[b]indeno[2,1-d]silines. The reaction system is applicable to the synthesis of bidirectionally π-extended silacycles from tetra(alkynyl)aryl compounds. Computational studies suggest that 5H-benzo[b]indeno[2,1-d]silines are formed via the insertion of a vinyl carbocation intermediate into the Si-H bond.
Collapse
Affiliation(s)
- Kohei Sekine
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| | - Kazuto Fuji
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| | - Kyohei Kawashima
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| | - Toshifumi Mori
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| |
Collapse
|
5
|
Wang X, Hua X, Zhang H, Wu L, Yuan C, Liu Z, Zhang HL, Shao X. Transforming Hetera-Buckybowls into Chiral Conjugated Polycycles Incorporating Epoxycyclooctadiene: a Two-Step Approach. Chemistry 2023; 29:e202303085. [PMID: 37877318 DOI: 10.1002/chem.202303085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Chiral π-conjugated polycycles have garnered increasing attention due to versatile applications in optoelectronic materials and biological sciences. In this study, we report the synthesis of chiral π-conjugated polycycles incorporating a chiral epoxycyclooctadiene moiety. Our synthetic strategy capitalizes on the novel reactions of hetera-buckybowl triselenasumanene (TSS) and is achieved in two-step manner. Firstly, the TSS is regio-selectively transformed into its ortho-quinone form. Subsequently, the nucleophilic addition reactions of TSS ortho-quinone by phenylethynides are metal ion-dependent. When utilizing (phenylethynyl)magnesium bromide as the nucleophile, two phenylethynyls are furnished onto the edged benzene ring of TSS. When the nucleophile is (phenylethynyl)lithium, a cascade of nucleophilic addition, intermolecular electron-transfer, ring-opening, and tetradehydro-Diels-Alder (TDDA) reactions occur sequentially in one-pot, ultimately affording chiral π-conjugated polycycles featuring the epoxycyclooctadiene moiety as an integral part of their backbones. This work represents a step forward in the synthesis of chiral π-conjugated polycycles using TSS as synthon.
Collapse
Affiliation(s)
- Xue Wang
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Xinqiang Hua
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Haomin Zhang
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Lingxi Wu
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Chengshan Yuan
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Zitong Liu
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Hao-Li Zhang
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Xiangfeng Shao
- Research Centre for Free Radical Chemistry of Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| |
Collapse
|
6
|
Chen H, Zhang H, Du H, Kuang Y, Pang Q, Gao L, Wang W, Yang C, Song Z. Enantioselective Synthesis of 6/5-Spirosilafluorenes by Asymmetric Ring Expansion of 4/5-Spirosilafluorenes with Alkynes. Org Lett 2023; 25:1558-1563. [PMID: 36847236 DOI: 10.1021/acs.orglett.3c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A rhodium-catalyzed asymmetric ring expansion of 4/5-spirosilafluorenes with terminal alkynes has been developed using sterically demanding binaphthyl phosphoramidite ligand. The reaction is not only strategically distinct from cyclization or cycloaddition but also showcases the first enantioselective synthesis of axially chiral 6/5-spirosilafluorenes.
Collapse
Affiliation(s)
- Hua Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Haixia Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huimin Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuzhong Kuang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qinjiao Pang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Delouche T, Hissler M, Bouit PA. Polycyclic aromatic hydrocarbons containing heavy group 14 elements: From synthetic challenges to optoelectronic devices. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Chauhan ANS, Mali G, Erande RD. Regioselectivity Switch Towards the Development of Innovative Diels‐Alder Cycloaddition and Productive Applications in Organic Synthesis. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Amar Nath Singh Chauhan
- IIT Jodhpur: Indian Institute of Technology Jodhpur Chemistry Chemistry departmentIIT Jodhpur 342037 Jodhpur INDIA
| | - Ghanshyam Mali
- IIT Jodhpur: Indian Institute of Technology Jodhpur chemistry Chemistry departmentIIT Jodhpur 342037 Jodhpur INDIA
| | - Rohan D. Erande
- Indian Institute of Technology Jodhpur Chemistry Office 103, Department of Chemistry, IIT Jodhpur, N.H. 62, Nagaur Road, Karwar 342037 Jodhpur INDIA
| |
Collapse
|
9
|
Delouche T, Taifour G, Cordier M, Roisnel T, Tondelier D, Manzhi P, Geffroy B, Le Guennic B, Jacquemin D, Hissler M, Bouit PA. Si-containing polycyclic aromatic hydrocarbons: synthesis and opto-electronic properties. Chem Commun (Camb) 2021; 58:88-91. [PMID: 34873602 DOI: 10.1039/d1cc06309j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report a straightforward synthesis of Si-containing Polycyclic Aromatic Hydrocarbons (PAHs). The impact of π-extension and exocyclic modifications on both the optical and redox properties is investigated using a joint experimental/theoretical approach. By taking advantage of the solid-state luminescence of these derivatives, electroluminescent devices are prepared. Such preliminary opto-electronic results highlight that these heteroatom-containing PAHs are promising building blocks for organic electronics.
Collapse
Affiliation(s)
| | | | - Marie Cordier
- Univ Rennes, CNRS, ISCR - UMR 6226, Rennes 35000, France.
| | | | - Denis Tondelier
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), CNRS, Ecole Polytechnique, IP Paris, Palaiseau Cedex, France
| | - Payal Manzhi
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), CNRS, Ecole Polytechnique, IP Paris, Palaiseau Cedex, France.,Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, Gif-sur-Yvette, 91191, France
| | - Bernard Geffroy
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), CNRS, Ecole Polytechnique, IP Paris, Palaiseau Cedex, France.,Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, Gif-sur-Yvette, 91191, France
| | | | - Denis Jacquemin
- CEISAM UMR CNRS 6230, University of Nantes, Nantes 44322, France.
| | - Muriel Hissler
- Univ Rennes, CNRS, ISCR - UMR 6226, Rennes 35000, France.
| | | |
Collapse
|
10
|
Lynn M, Pierson Smela M, Hoye TR. Silicon as a powerful control element in HDDA chemistry: redirection of innate cyclization preferences, functionalizable tethers, and formal bimolecular HDDA reactions. Chem Sci 2021; 12:13902-13908. [PMID: 34760176 PMCID: PMC8549800 DOI: 10.1039/d1sc04082k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022] Open
Abstract
The 1,3-diyne and diynophile in hexadehydro-Diels–Alder (HDDA) reaction substrates are typically tethered by linker units that consist of C, O, N, and/or S atoms. We describe here a new class of polyynes based on silicon-containing tethers that can be disposed of and/or functionalized subsequent to the HDDA reaction. The cyclizations are efficient, and the resulting benzoxasiloles are amenable to protodesilylation, halogenation, oxygenation, and arylation reactions. The presence of the silicon atom can also override the innate mode of cyclization in some cases, an outcome attributable to a β-silyl effect on the structure of intermediate diradicals. Overall, this strategy equates formally to an otherwise unknown, bimolecular HDDA reaction and expands the versatility of this body of aryne chemistry. A designer silicon-containing linker enables HDDA chemistry that complements known modes of reactivity. Subsequent removal of the Si liberates a benzenoid product that is formally the result of an intermolecular HDDA reaction.![]()
Collapse
Affiliation(s)
- Mandy Lynn
- Department of Chemistry, University of Minnesota 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Merrick Pierson Smela
- Department of Chemistry, University of Minnesota 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota 207 Pleasant St. SE Minneapolis MN 55455 USA
| |
Collapse
|
11
|
Fluegel LL, Hoye TR. Hexadehydro-Diels-Alder Reaction: Benzyne Generation via Cycloisomerization of Tethered Triynes. Chem Rev 2021; 121:2413-2444. [PMID: 33492939 PMCID: PMC8008985 DOI: 10.1021/acs.chemrev.0c00825] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hexadehydro-Diels-Alder (HDDA) reaction is the thermal cyclization of an alkyne and a 1,3-diyne to generate a benzyne intermediate. This is then rapidly trapped, in situ, by a variety of species to yield highly functionalized benzenoid products. In contrast to nearly all other methods of aryne generation, no other reagents are required to produce an HDDA benzyne. The versatile and customizable nature of the process has attracted much attention due not only to its synthetic potential but also because of the fundamental mechanistic insights the studies often afford. The authors have attempted to provide here a comprehensive compilation of publications appearing by mid-2020 that describe experimental results of HDDA reactions.
Collapse
Affiliation(s)
- Lucas L Fluegel
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Welker ME. Boron and Silicon-Substituted 1,3-Dienes and Dienophiles and Their Use in Diels-Alder Reactions. Molecules 2020; 25:E3740. [PMID: 32824327 PMCID: PMC7465248 DOI: 10.3390/molecules25163740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Boron and silicon-substituted 1,3-dienes and boron and silicon-substituted alkenes and alkynes have been known for years and the last 10 years have seen a number of new reports of their preparation and use in Diels-Alder reactions. This review first covers boron-substituted dienes and dienophiles and then moves on to discuss silicon-substituted dienes and dienophiles.
Collapse
Affiliation(s)
- Mark E Welker
- Department of Chemistry, Center for Functional Materials, Wake Forest University, 455 Vine Street, Winston-Salem, NC 27101, USA
| |
Collapse
|
13
|
Liu Y, Yang Z, Chauvin R, Fu W, Yao Z, Wang L, Cui X. One-Pot Synthesis of Furo[3,4- c]indolo[2,1- a]isoquinolines through Rh(III)-Catalyzed Cascade Reactions of 2-Phenylindoles with 4-Hydroxy-2-alkynoates. Org Lett 2020; 22:5140-5144. [PMID: 32610929 DOI: 10.1021/acs.orglett.0c01744] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An efficient and regioselective synthesis of fused polycyclic furo[3,4-c]indolo[2,1-a]isoquinolines through Rh(III)-catalyzed cascade C-H activation/annulation/lactonization of 2-arylindoles and 4-hydroxy-2-alkynoates has been developed. This cascade reaction displays high step economy and efficiency and tolerates various functional groups. The titled polycyclic furo[3,4-c]indolo[2,1-a]isoquinolines exhibit fluorescence emission.
Collapse
Affiliation(s)
- Yihao Liu
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Zi Yang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Remi Chauvin
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, P. R. China.,LCC-CNRS, Université de Toulouse, UPS, 205 route de Narbonne, 31077 Toulouse, France
| | - Wei Fu
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Zhenyu Yao
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Lianhui Wang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| |
Collapse
|
14
|
Advances in Synthesis of π-Extended Benzosilole Derivatives and Their Analogs. Molecules 2020; 25:molecules25030548. [PMID: 32012731 PMCID: PMC7037468 DOI: 10.3390/molecules25030548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 11/17/2022] Open
Abstract
Benzosiloles and their π-extended derivatives are present in many important advanced materials due to their excellent physical properties. Especially, they have found many potential applications in the development of novel electronic materials such as OLEDs, semiconductors and solar cells. In this review, we have summarized several main approaches to construct (di)benzosilole derivatives and (benzo)siloles fused to aromatic five- and six-membered heterocycles.
Collapse
|