1
|
Li H, Yuan X, Ren M, Liu J, Zheng Y, Lin Z, Chen Z, Yang Z, Su X, Shen H. PAMAM-Based DNA Fluorescence Nanoprobe for Rapid Whole Cellular APE1 Detection and Imaging. Anal Chem 2025; 97:6694-6701. [PMID: 40106447 DOI: 10.1021/acs.analchem.4c06820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/ref-1, APE1), a vital protein for DNA repair and cellular redox regulation, is frequently overexpressed in tumor cells, underscoring the importance of developing sensitive detection methods for early cancer diagnosis. However, the rapid detection and visualization of nuclear APE1 in tumor cells are still challenging. In this study, we successfully developed a novel DNA fluorescent nanoprobe based on polyamidoamine (PAMAM) for the rapid detection of cytoplasmic and nuclear APE1. The PAMAM surface was modified with arginine (Arg), named PR, and its hydrophobic core encapsulated the 1,6,7,12-tetrachloroperylene tetracarboxylic acid dianhydride (TA) dye to construct fluorescent nanoparticles (TPR). Furthermore, an APE1-responsive dsDNA (SP) was linked on the TPR surface, containing apurinic/apyrimidinic sites (AP sites) and the black hole quencher 2 (BHQ2) and ensuring that fluorescence remains off in the absence of APE1. TPR-SP exhibited a detection range of 0.125-25 U mL-1 and a detection limit as low as 0.03 U mL-1. Compared with the Arg-free nanoprobes (TP-SP), TPR-SP significantly accelerated endocytosis and nuclear penetration, reducing the APE1 detection time to one-quarter (from 2 to 0.5 h). Notably, the APE1 signal in the whole nucleus can also be significantly detected. Thus, the TPR nanoprobe achieves the rapid enrichment and amplification of fluorescence signals, leading to highly sensitive whole cellular APE1 detection. This innovative and efficient detection method greatly expands the technological means for early cancer detection.
Collapse
Affiliation(s)
- Huimin Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinru Yuan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mei Ren
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiajia Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yixin Zheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziyi Lin
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zixin Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhao Yang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Su
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Heyun Shen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Qiu Y, Qiu Y, Zhou W, Lu D, Wang H, Li B, Liu B, Wang W. Advancements in functional tetrahedral DNA nanostructures for multi-biomarker biosensing: Applications in disease diagnosis, food safety, and environmental monitoring. Mater Today Bio 2025; 31:101486. [PMID: 39935897 PMCID: PMC11810847 DOI: 10.1016/j.mtbio.2025.101486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/29/2024] [Accepted: 01/11/2025] [Indexed: 02/13/2025] Open
Abstract
Deoxyribonucleic acid (DNA) offers the fundamental building blocks for the precisely controlled assemblies due to its inherent self-assembly and programmability. The tetrahedral DNA nanostructure (TDN) stands out as a widely utilized nanostructure, attracting attention for its high biostability, excellent biocompatibility, and versatile modification sites. The capability of DNA tetrahedron to interact with various signal outputs makes it ideal for developing functional DNA nanostructures in biosensing platforms. This review highlights recent advancements in functional tetrahedral DNA nanostructures (FTDN) for various biomarkers monitoring, including nucleic acid, protein, mycotoxin, agent, and metal ion. Additionally, it discusses the potential of FTDN in the fields of disease diagnosis, food safety, and environmental monitoring. The review also introduces the application of FTDN-based biosensors for simultaneous identification of multiple biomarkers. Finally, challenges and prospects are addressed to provide guidance for the continued development of FTDN-based biosensing platforms.
Collapse
Affiliation(s)
- Yun Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yixing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wenchao Zhou
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Dai Lu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| |
Collapse
|
3
|
Chen ZP, Zeng WJ, Lei YM, Liang WB, Yang X, Yuan R, Yang C, Zhuo Y. Engineering of a Multi-Modular DNA Nanodevice for Spatioselective Imaging and Evaluation of NK Cell-Mediated Cancer Immunotherapy. Angew Chem Int Ed Engl 2025; 64:e202414064. [PMID: 39375853 DOI: 10.1002/anie.202414064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
Granzyme A (GzmA) secreted by natural killer (NK) cells has garnered considerable interest as a biomarker to evaluate the efficacy of cancer immunotherapy. However, current methodologies to selectively monitor the spatial distribution of GzmA in cancer cells during NK cell-targeted therapy are extremely challenging, primarily due to the existence of diverse cell populations, the low levels of GzmA expression, and the limited availability of GzmA probes. Herein we develop a multi-modular, structurally-ordered DNA nanodevice for evaluating NK cell-mediated cancer immunotherapy (MODERN), that permits spatioselective imaging of GzmA in cancer cells through GzmA-induced apurinic/apyrimidinic endonuclease 1 (APE1) inactivation. The MODERN incorporates multiple functional modules, including an APE1-gated recognition module, a photo-activated amplification module, an aptamer-mediated tumor-target module, and a polycatenane DNA module, enabling improved sensitivity and specificity towards intracellular GzmA. The MODERN was activated (on) in cancer cells due to the overexpression of APE1, whereas it remained silent (off) in the NK-treated cancer cells owing to the GzmA-induced APE1 inactivation. Furthermore, we demonstrated that GzmA-induced APE1 inactivation blocks the cellular repair of target cells, resulting in efficient cell death. This MODERN that relies on the specific inactivation of APE1 by GzmA should be beneficial for evaluating the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Zhao-Peng Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei-Jia Zeng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yan-Mei Lei
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, 400715, China
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|
4
|
Hu M, Zhang Y, Zhang P, Liu K, Zhang M, Li L, Yu Z, Zhang X, Zhang W, Xu Y. Targeting APE1: Advancements in the Diagnosis and Treatment of Tumors. Protein Pept Lett 2025; 32:18-33. [PMID: 39648425 DOI: 10.2174/0109298665338519241114103223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 12/10/2024]
Abstract
With the emergence of the precision medicine era, targeting specific proteins has emerged as a pivotal breakthrough in tumor diagnosis and treatment. Apurinic/apyrimidinic Endonuclease 1 (APE1) is a multifunctional protein that plays a crucial role in DNA repair and cellular redox regulation. This article comprehensively explores the fundamental mechanisms of APE1 as a multifunctional enzyme in biology, with particular emphasis on its potential significance in disease diagnosis and strategies for tumor treatment. Firstly, this article meticulously analyzes the intricate biological functions of APE1 at a molecular level, establishing a solid theoretical foundation for subsequent research endeavors. In terms of diagnostic applications, the presence of APE1 can be detected in patient serum samples, biopsy tissues, and through cellular in situ testing. The precise detection methods enable changes in APE1 levels to serve as reliable biomarkers for predicting tumor occurrence, progression, and patient prognosis. Moreover, this article focuses on elucidating the potential role of APE1 in tumor treatment by exploring various inhibitors, including nucleic acid-based inhibitors and small molecule drug inhibitors categories, and revealing their unique advantages in disrupting DNA repair function and modulating oxidative-reduction activity. Finally, the article provides an outlook on future research directions for APE1 while acknowledging major technical difficulties and clinical challenges that need to be overcome despite its immense potential as a target for tumor therapy.
Collapse
Affiliation(s)
- Minghui Hu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Pin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Kangbo Liu
- Henan Institute for Drug and Medical Device Inspection (Henan Vaccine Issuance Center), Zhengzhou, 450018, China
| | - Mengxin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Lifeng Li
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Zhidan Yu
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Ying Xu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| |
Collapse
|
5
|
Duan M, Chang Y, Chen X, Wang Z, Wu S, Duan N. Recent advances in the construction strategy, functional properties, and biosensing application of self-assembled triangular unit-based DNA nanostructures. Biotechnol Adv 2024; 76:108436. [PMID: 39209178 DOI: 10.1016/j.biotechadv.2024.108436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/13/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Research on self-assembled deoxyribonucleic acid (DNA) nanostructures with different shapes, sizes, and functions has recently made rapid progress owing to its biocompatibility, programmability, and stability. Among these, triangular unit-based DNA nanostructures, which are typically multi-arm DNA tiles, have been widely applied because of their unique structural rigidity, spatial flexibility, and cell permeability. Triangular unit-based DNA nanostructures are folded from multiple single-stranded DNA using the principle of complementary base pairing. Its shape and size can be determined using pre-set scaffold strands, segmented base complementary regions, and sequence lengths. The resulting DNA nanostructures retain the desired sequence length to serve as binding sites for other molecules and obtain satisfactory results in molecular recognition, spatial orientation, and target acquisition. Therefore, extensive research on triangular unit-based DNA nanostructures has shown that they can be used as powerful tools in the biosensing field to improve specificity, sensitivity, and accuracy. Over the past few decades, various design strategies and assembly techniques have been established to improve the stability, complexity, functionality, and practical applications of triangular unit-based DNA nanostructures in biosensing. In this review, we introduce the structural design strategies and principles of typical triangular unit-based DNA nanostructures, including triangular, tetrahedral, star, and net-shaped DNA. We then summarize the functional properties of triangular unit-based DNA nanostructures and their applications in biosensing. Finally, we critically discuss the existing challenges and future trends.
Collapse
Affiliation(s)
- Mengxia Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuting Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaowan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Hu M, Yingyu Z, Zhang M, Wang Q, Cheng W, Hou L, Yuan J, Yu Z, Li L, Zhang X, Zhang W. Functionalizing tetrahedral framework nucleic acids-based nanostructures for tumor in situ imaging and treatment. Colloids Surf B Biointerfaces 2024; 240:113982. [PMID: 38788473 DOI: 10.1016/j.colsurfb.2024.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Timely in situ imaging and effective treatment are efficient strategies in improving the therapeutic effect and survival rate of tumor patients. In recent years, there has been rapid progress in the development of DNA nanomaterials for tumor in situ imaging and treatment, due to their unsurpassed structural stability, excellent material editability, excellent biocompatibility and individual endocytic pathway. Tetrahedral framework nucleic acids (tFNAs), are a typical example of DNA nanostructures demonstrating superior stability, biocompatibility, cell-entry performance, and flexible drug-loading ability. tFNAs have been shown to be effective in achieving timely tumor in situ imaging and precise treatment. Therefore, the progress in the fabrication, characterization, modification and cellular internalization pathway of tFNAs-based functional systems and their potential in tumor in situ imaging and treatment applications were systematically reviewed in this article. In addition, challenges and future prospects of tFNAs in tumor in situ imaging and treatment as well as potential clinical applications were discussed.
Collapse
Affiliation(s)
- Minghui Hu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Zhang Yingyu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Mengxin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Qionglin Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Weyland Cheng
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Ligong Hou
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Jingya Yuan
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Zhidan Yu
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Lifeng Li
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| | - Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
7
|
Li M, Luo H, Wang Z, Mo Q, Zhong S, Mao YA, Li S, Li X. Tuning quantum dots emission on DNA tetrahedron/silica nanosphere/graphene oxide nanointerface for ratiometric fluorescence assay of Pb 2+ in multiplex samples. Anal Chim Acta 2024; 1310:342716. [PMID: 38811135 DOI: 10.1016/j.aca.2024.342716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Assembling framework nucleic acid (FNA) nanoarchitectures and tuning luminescent quantum dots (QDs) for fluorescence assays represent a versatile strategy in analytical territory. Rationally, FNA constructs could offer a preferential orientation to efficiently recognize the target and improve detection sensitivity, meanwhile, regulating size-dependent multicolor emissions of QDs in one analytical setting for ratiometric fluorescence assay would greatly simplify operation procedures. Nonetheless, such FNA/QDs-based ratiometric fluorescence nanoprobes remain rarely explored. RESULTS We designed a sensitive and signal amplification-free fluorescence aptasensor for lead ions (Pb2+) that potentially cause extensive contamination to environment, cosmetic, food and pharmaceuticals. Red and green emission CdTe quantum dots (rQDs and gQDs) were facilely prepared. Moreover, silica nanosphere encapsulating rQDs served as quantitative internal reference and scaffold to anchor a predesigned FNA and DNA sandwich containing Pb2+ binding aptamer and gQD modified DNA signal reporter. On binding of Pb2+, the gQD-DNA signal reporter was set free, resulting in fluorescence quenching at graphene oxide (GO) interface. Owing to the rigid structure of FNA, the fluorescence signal reporter orderly arranged at the silica nanosphere could sensitively respond to Pb2+ stimulation. The dose-dependent fluorescence signal-off mode enabled ratiometric analysis of Pb2+ without cumbersome signal amplification. Linear relationship was established between fluorescence intensity ratio (I555/I720) and Pb2+ concentration from 10 nM to 2 μM, with detection limit of 1.7 nM (0.43 ppb), well addressing the need for Pb2+ routine monitoring. The designed nanoprobe was applied to detection of Pb2+ in soil, cosmetic, milk, drug, and serum samples, with the sensitivity comparable to conventional ICP-MS technique. SIGNIFICANCE Given the programmable design of FNA and efficient recognition of target, flexible tuning of QDs emission, and signal amplification-free strategy, the present fluorescence nanoprobe could be a technical criterion for other heavy metal ions detection in a straightforward manner.
Collapse
Affiliation(s)
- Manting Li
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China; Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Haikun Luo
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Zhao Wang
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Qian Mo
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Shanshan Zhong
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Yu-Ang Mao
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China.
| | - Shuting Li
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Xinchun Li
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China; Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China; State Key Laboratory of Targeting Oncology, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China.
| |
Collapse
|
8
|
Gao Y, Gong C, Chen M, Huan S, Zhang XB, Ke G. Endogenous Enzyme-Driven Amplified DNA Nanocage Probe for Selective and Sensitive Imaging of Mature MicroRNAs in Living Cancer Cells. Anal Chem 2024; 96:9453-9459. [PMID: 38818873 DOI: 10.1021/acs.analchem.4c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Selective and sensitive imaging of intracellular mature microRNAs (miRNAs) is of great importance for biological process study and medical diagnostics. However, this goal remains challenging because of the interference of precursor miRNAs (pre-miRNAs) and the low abundance of mature miRNAs. Herein, we develop an endogenous enzyme-driven amplified DNA nanocage probe (Acage) for the selective and sensitive imaging of mature miRNAs in living cells. The Acage consists of a microRNA-responsive probe, an endogenous enzyme-driven fuel strand, and a DNA nanocage framework with an inner cavity. Benefiting from the size selectivity of DNA nanocage, smaller mature miRNAs rather than larger pre-miRNAs are allowed to enter the cavity of DNA nanocage for molecular recognition; thus, Acage can significantly reduce the signal interference of pre-miRNAs. Moreover, with the driving force of an endogenous enzyme apurinic/apyrimidinic endonuclease 1 (APE1) for efficient signal amplification, Acage enables sensitive intracellular miRNA imaging without an additional external intervention. With these features, Acage was successfully applied for intracellular imaging of mature miRNAs during drug treatment. We believe that this strategy provides a promising pathway for better understanding the functions of mature microRNAs in biological processes and medical diagnostics.
Collapse
Affiliation(s)
- Yingying Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Chaonan Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Mei Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
9
|
Li W, Shi Y, Zhang X, Hu X, Huang X, Liang N, Shen T, Zou X, Shi J. A DNA tetrahedral scaffolds-based electrochemical biosensor for simultaneous detection of AFB1 and OTA. Food Chem 2024; 442:138312. [PMID: 38219562 DOI: 10.1016/j.foodchem.2023.138312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/10/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
Herein, a bifunctional electrochemical biosensor based on the DNA tetrahedral scaffolds (TDNs) was proposed, OTA@TDNs and AFB1@TDNs were adopted for electrochemical signal output in response to OTA and AFB1 concentration, simultaneously. In order to increase the conductivity of the biosensor, highly porous gold (HPG) was loaded on electrode surface by pulse electrodeposition. Under optimal conditions, the PFc displayed a linear range with AFB1 concentration between 0.05 ∼ 360 ng·mL-1 with the LOD of 3.5 pg·mL-1. And the PMB selective and sensitive responses to OTA are achieved with a linear range of 0.05 ∼ 420 ng·mL-1 and a LOD of 2.4 pg·mL-1. This biosensor has high sensitivity, selectivity and stability for OTA and AFB1 detection in peanut samples. The approach streamlines the experimental procedure, leading to significantly improve the detection efficiency of mycotoxins. Collectively, this method suggest a novel approach for the detection and monitoring of OTA and AFB1 in food sample.
Collapse
Affiliation(s)
- Wenting Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yongqiang Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xuetao Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Nini Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tingting Shen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Joint Laboratory of China-UK on Food Nondestructive Sensing, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Joint Laboratory of China-UK on Food Nondestructive Sensing, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
10
|
Li XQ, Jia YL, Zhang YW, Shi PF, Chen HY, Xu JJ. Simulation-Assisted DNA Nanodevice Serve as a General Optical Platform for Multiplexed Analysis of Micrornas. Adv Healthc Mater 2024; 13:e2302652. [PMID: 37794560 DOI: 10.1002/adhm.202302652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/29/2023] [Indexed: 10/06/2023]
Abstract
Small frame nucleic acids (FNAs) serve as excellent carrier materials for various functional nucleic acid molecules, showcasing extensive potential applications in biomedicine development. The carrier module and function module combination is crucial for probe design, where an improper combination can significantly impede the functionality of sensing platforms. This study explores the effect of various combinations on the sensing performance of nanodevices through simulations and experimental approaches. Variances in response velocities, sensitivities, and cell uptake efficiencies across different structures are observed. Factors such as the number of functional molecules loaded, loading positions, and intermodular distances affect the rigidity and stability of the nanostructure. The findings reveal that the structures with full loads and moderate distances between modules have the lowest potential energy. Based on these insights, a multisignal detection platform that offers optimal sensitivity and response speed is developed. This research offers valuable insights for designing FNAs-based probes and presents a streamlined method for the conceptualization and optimization of DNA nanodevices.
Collapse
Affiliation(s)
- Xiao-Qiong Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi-Lei Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yu-Wen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Peng-Fei Shi
- College of Medicine, Linyi University, Linyi, 276005, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
11
|
Kou Q, Yang J, Wang L, Zhao H, Zhang L, Su X. Enhanced DNA Entropy-Driven Circuit by Locked Nucleic Acids and Simulation-Guided Localization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47415-47424. [PMID: 37773989 DOI: 10.1021/acsami.3c11189] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Signal amplification methods based on DNA molecular interactions are promising tools for detecting various biomarkers in low abundance. The entropy-driven circuit (EDC), as an enzyme-free signal amplification method, has been used in detecting and imaging a variety of biomarkers. The localization strategy can effectively increase the local concentration of the DNA reaction modules to improve the signal amplification effect. However, the localization strategy may also amplify the leak reaction of the EDC, and effective signal amplification can be limited by the unclear structure-function relationship. Herein, we utilized locked nucleic acid (LNA) modification to enhance the stability of the localized entropy-driven circuit (LEDC), which suppressed a 94.6% leak signal. The coarse-grained model molecular simulation was used to guide the structure design of the LEDC, and the influence of critical factors such as the localized distance and spacer length was analyzed at the molecular level to obtain the best reaction performance. The sensitivities of miR-21 and miR-141 detected by a simulation-guided optimal LEDC probe were 17.45 and 65 pM, 1345 and 521 times higher than free-EDC, respectively. The LEDC was further employed for the fluorescence imaging of miRNA in cancer cells, showing excellent specificity and sensitivity. This work utilizes LNA and molecular simulations to comprehensively improve the performance of a localized DNA signal amplification circuit, providing an advanced DNA probe design strategy for biosensing and imaging as well as valuable information for the designers of DNA-based probes.
Collapse
Affiliation(s)
- Qiaoni Kou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiarui Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lei Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongyang Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Linghao Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
12
|
Lu W, Chen T, Xiao D, Qin X, Chen Y, Shi S. Application and prospects of nucleic acid nanomaterials in tumor therapy. RSC Adv 2023; 13:26288-26301. [PMID: 37670995 PMCID: PMC10476027 DOI: 10.1039/d3ra04081j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023] Open
Abstract
Cancer poses a great threat to human life, and current cancer treatments, such as radiotherapy, chemotherapy, and surgery, have significant side effects and limitations that hinder their application. Nucleic acid nanomaterials have specific spatial configurations and can be used as nanocarriers to deliver different therapeutic drugs, thereby enabling various biomedical applications, such as biosensors and cancer therapy. In recent decades, a variety of DNA nanostructures have been synthesized, and they have demonstrated remarkable potential in cancer therapy related applications, such as DNA origami structures, tetrahedral framework nucleic acids, and dynamic DNA nanostructures. Importantly, more attention is also being paid to RNA nanostructures, which play an important role in gene therapy. Therefore, this review introduces the developmental history of nucleic acid nanotechnology, summarizes the applications of DNA and RNA nanostructures for tumor treatment, and discusses the development opportunities for nucleic acid nanomaterials in the future.
Collapse
Affiliation(s)
- Weitong Lu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Tianyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Xin Qin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Yang Chen
- Department of Pediatric Surgery, Department of Liver Surgery & Liver Transplantation Center, West China Hospital of Sichuan University Chengdu Sichuan 610041 China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| |
Collapse
|
13
|
Tang Q, Li Q, Shi L, Liu W, Li B, Jin Y. Multifunctional DNA nanoprobe for tumor-targeted synergistic therapy by integrating chemodynamic therapy with gene silencing. NANOSCALE HORIZONS 2023; 8:1106-1112. [PMID: 37317707 DOI: 10.1039/d2nh00575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Due to the high complexity, diversity and heterogeneity of tumor occurrence and development, multi-mode synergistic therapy is more effective than single treatment modes to improve the antitumor efficacy. Also, multifunctional probes are crucial to realize synergistic therapy. Herein, a multifunctional DNA tetrahedron nanoprobe was ingeniously designed to simultaneously achieve chemodynamic therapy (CDT) and gene silencing for synergistic antitumor. The multifunctional DNA tetrahedron nanoprobe, DNA tetrahedron-silver nanocluster-antagomir-21 (D-sgc8-DTNS-AgNCs-Anta-21), integrated a CDT reagent (DNA-AgNCs) and miRNA-21 inhibitor (Anta-21) with a specific recognition probe (aptamer). After targeted entry in cancer cells, D-sgc8-DTNS-AgNCs-Anta-21 silenced endogenous miRNA-21 by Anta-21 and produced highly toxic ˙OH by reacting with H2O2, which induced apoptosis in the tumor cells. The targeted recognition of aptamers led to the concentration-dependent death of HeLa cells. On the contrary, the cell survival rate of normal cells was basically unaffected with an increase in the concentration of D-sgc8-DTNS-AgNCs-Anta-21. Therefore, the diverse functions, biocompatibility and programmability of DNA provide a useful and easy way to assemble multifunctional probes for synergistic therapy.
Collapse
Affiliation(s)
- Qiaorong Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Qianqian Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
14
|
Li XQ, Jia YL, Zhang YW, Chen HY, Xu JJ. Intracellular activated logic nanomachines based on framework nucleic acids for low background detection of microRNAs in living cells. Chem Sci 2023; 14:7699-7708. [PMID: 37484658 PMCID: PMC10356544 DOI: 10.1039/d3sc01162c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/18/2023] [Indexed: 07/25/2023] Open
Abstract
DNA molecular machines based on DNA logic circuits show unparalleled potential in precision medicine. However, delivering DNA nanomachines into real biological systems and ensuring that they perform functions specifically, quickly and logically remain a challenge. Here, we developed an efficient DNA molecular machine integrating transfer-sensor-computation-output functions to achieve high fidelity detection of intracellular biomolecules. The introduction of pH nanoswitches enabled the nanomachines to be activated after entering the cell, and the spatial-confinement effect of the DNA triangular prism (TP) enables the molecular machine to process complex information at the nanoscale, with higher sensitivity and shorter response time than diffuse-dominated logic circuits. Such cascaded activation molecular machines follow the logic of AND to achieve specific capture and detection of biomolecules in living cells through a multi-hierarchical response, providing a new insight into the construction of efficient DNA molecular machines.
Collapse
Affiliation(s)
- Xiao-Qiong Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yi-Lei Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yu-Wen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
15
|
Zhuo C, Song Z, Cui J, Gong Y, Tang Q, Zhang K, Song X, Liao X. Electrochemical biosensor strategy combining DNA entropy-driven technology to activate CRISPR-Cas13a activity and triple-stranded nucleic acids to detect SARS-CoV-2 RdRp gene. Mikrochim Acta 2023; 190:272. [PMID: 37351704 DOI: 10.1007/s00604-023-05848-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023]
Abstract
By merging DNA entropy-driven technology with triple-stranded nucleic acids in an electrochemical biosensor to detect the SARS-CoV-2 RdRp gene, we tackled the challenges of false negatives and the high cost of SARS-CoV-2 detection. The approach generates a CRISPR-Cas 13a-activated RNA activator, which then stimulates CRISPR-Cas 13a activity using an entropy-driven mechanism. The activated CRISPR-Cas 13a can cleave Hoogsteen DNA due to the insertion of two uracil (-U-U-) in Hoogsteen DNA. The DNA tetrahedra changed on the electrode surface and can therefore not construct a three-stranded structure after cleaving Hoogsteen DNA. Significantly, this DNA tetrahedron/Hoogsteen DNA-based biosensor can regenerate at pH = 10.0, which keeps Hoogsteen DNA away from the electrode surface, allowing the biosensor to function at pH = 7.0. We could use this technique to detect the SARS-CoV-2 RdRp gene with a detection limit of 89.86 aM. Furthermore, the detection method is very stable and repeatable. This technique offers the prospect of detecting SARS-CoV-2 at a reasonable cost. This work has potential applications in the dynamic assessment of the diagnostic and therapeutic efficacy of SARS-CoV-2 infection and in the screening of environmental samples.
Collapse
Affiliation(s)
- Chenyi Zhuo
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, China
| | - Zichun Song
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, China
| | - Jiuying Cui
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, China
| | - Yuanxun Gong
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, China
| | - Qianli Tang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, China
| | - Kai Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 210044, Nanjing, People's Republic of China.
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China.
| | - Xinlei Song
- Maternity & Child Care Center of Dezhou, Dezhou, 25300, China
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, China.
| |
Collapse
|
16
|
Chai Q, Chen J, Zeng S, Zhu T, Chen J, Qi C, Mao G, Liu Y. Closed Cyclic DNA Machine for Sensitive Logic Operation and APE1 Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207736. [PMID: 36916696 DOI: 10.1002/smll.202207736] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/16/2023] [Indexed: 06/08/2023]
Abstract
DNA self-assembly has been developed as a kind of robust signal amplification strategy, but most of reported assembly pathways are programmed to amplify signal in one direction. Herein, based on mutual-activated cascade cycle of hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA), a closed cycle circuit (CCC) based DNA machine is developed for sensitive logic operation and molecular recognition. Benefiting from the synergistically accelerated signal amplification, the closed cyclic DNA machine enabled the logic computing with strong and significant output signals even at weak input signals. The typical logic operations such as OR, YES, AND, INHIBIT, NOR, and NAND gate, are conveniently and clearly executed with this DNA machine through rational design of the input and computing elements. Moreover, by integrating the target recognition module with the CCC module, the proposed DNA machine is further employed in the homogeneous detection of apurinic/apyrimidinic endonuclease 1 (APE1). The precise recognition and exponential signal amplification facilitated the highly selective and sensitive detection of APE1 with limit of detection (LOD) of 7.8 × 10-5 U mL-1 . Besides, the normal cells and tumor cells are distinguished unambiguously by this method according to the detected concentration difference of cellular APE1, which indicates the robustness and practicability of this method.
Collapse
Affiliation(s)
- Qingli Chai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, 435002, China
| | - Jinyang Chen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, 435002, China
| | - Shasha Zeng
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, 435002, China
| | - Ting Zhu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, 435002, China
| | - Jintao Chen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, 435002, China
| | - Chunjiao Qi
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, 435002, China
| | - Guobin Mao
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yucheng Liu
- Core Facility of Wuhan University, Wuhan, Hubei, 430072, China
| |
Collapse
|
17
|
Huang Z, Xu K, Zhao L, Zheng LE, Xu N, Yan C, Hu X, Zhang Q, Liu J, Zhao Q, Xia Y. AND-Gated Nanosensor for Imaging of Glutathione and Apyrimidinic Endonuclease 1 in Cells, Animals, and Organoids. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37245159 DOI: 10.1021/acsami.3c02236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The development of a strategy for imaging of glutathione (GSH) and apurinic/apyrimidinic endonuclease 1 (APE1) in an organism remains challenging despite their significance in elaborating the correlated pathophysiological processes. Therefore, in this study, we propose a DNA-based AND-gated nanosensor for fluorescence imaging of the GSH as well as APE1 in living cells, animals, and organoids. The DNA probe is composed of a G-strand and A-strand. The disulfide bond in the G-strand is cleaved through a GSH redox reaction, and the hybridization stability between the G-strand and A-strand is decreased, leading to a conformational change of the A-strand. In the presence of APE1, the apurinic/apyrimidinic (AP) site in the A-strand is digested, producing a fluorescence signal for the correlated imaging of GSH and APE1. This nanosensor enables monitoring of the expression level change of GSH and APE1 in cells. Additionally, we illustrate the capability of this "dual-keys-and-locked" conceptual methodology in achieving specific tumor imaging when GSH and APE1 are present simultaneously (overexpressed GSH and APE1 in tumor cells) with improving tumor-to-normal tissue ratio in vivo. Furthermore, using this nanosensor, the GSH and APE1 also are visualized in organoids that recapitulate the phenotypic and functional traits of the original biological specimens. Overall, this study demonstrates the potential of our proposed biosensing technology in investigating the roles of various biological molecules involved in specific diseases.
Collapse
Affiliation(s)
- Zening Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Kaixiang Xu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Lijuan Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Li-E Zheng
- Department of Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Nana Xu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Caixia Yan
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Xingjiang Hu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Qiao Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Jian Liu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Qingwei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Yaokun Xia
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| |
Collapse
|
18
|
Wang H, Zhang L, Sun H, Xu S, Li K, Su X. Screening and application of inhibitory aptamers for DNA repair protein apurinic/apyrimidinic endonuclease 1. Int J Biol Macromol 2023:124918. [PMID: 37244341 DOI: 10.1016/j.ijbiomac.2023.124918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/29/2023]
Abstract
The base excision repair (BER) pathway is crucial for DNA repair, and apurinic/apyrimidinic endonuclease 1 (APE1) is a critical enzyme in this pathway. Overexpression of APE1 has been linked to multidrug resistance in various cancers, including lung cancer, colorectal cancer, and other malignant tumors. Therefore, reducing APE1 activity is desirable to improve cancer treatment. Inhibitory aptamers, which are versatile oligonucleotides for protein recognition and function restriction, are a promising tool for this purpose. In this study, we developed an inhibitory aptamer for APE1 using systematic evolution of ligands by exponential (SELEX) technology. We used carboxyl magnetic beads as the carrier and APE1 with a His-Tag as the positive screening target, while the His-Tag itself served as the negative screening target. The aptamer APT-D1 was selected based on its high binding affinity for APE1, with a dissociation constant (Kd) of 1.306 ± 0.1418 nM. Gel electrophoresis analysis showed that APT-D1 at a concentration of 1.6 μM could entirely inhibit APE1 with 21 nM. Our results suggest that these aptamers can be utilized for early cancer diagnosis and the treatment, and as an essential tool for studying the function of APE1.
Collapse
Affiliation(s)
- Huanhuan Wang
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; Hebei Provincial Key Laboratory of NanoBiotechnology, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Material Preparation Technology and Science, Yanshan University, Qinhuangdao 066004, China
| | - Linghao Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huaqing Sun
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; Hebei Provincial Key Laboratory of NanoBiotechnology, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Material Preparation Technology and Science, Yanshan University, Qinhuangdao 066004, China
| | - Shufeng Xu
- First Hospital of Qinhuangdao, Hebei Province 066000, China
| | - Kun Li
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; Hebei Provincial Key Laboratory of NanoBiotechnology, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Material Preparation Technology and Science, Yanshan University, Qinhuangdao 066004, China.
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
19
|
Zhai J, Huang F, Yang Y, Liu X, Luan T, Deng J. Development of a Repair Enzyme Fluorescent Probe to Reveal the Intracellular DNA Damage Induced by Benzo[a]pyrene in Living Cells. Anal Chem 2023; 95:7788-7795. [PMID: 37130082 DOI: 10.1021/acs.analchem.3c01251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pollutant exposure causes a series of DNA damage in cells, resulting in the initiation and progression of diseases and even cancers. An investigation of the DNA damage induced by pollutants in living cells is significant to evaluate the cytotoxicity, genotoxicity, and carcinogenicity of environmental exposure, providing critical insight in the exploration of the etiologies of diseases. In this study, we develop a repair enzyme fluorescent probe to reveal the DNA damage caused by an environmental pollutant in living cells by single-cell fluorescent imaging of the most common base damage repair enzyme named human apurinic/apyrimidinic endonuclease 1 (APE1). The repair enzyme fluorescent probe is fabricated by conjugation of an APE1 high affinity DNA substrate on a ZnO2 nanoparticle surface to form a ZnO2@DNA nanoprobe. The ZnO2 nanoparticle serves as both a probe carrier and a cofactor supplier, releasing Zn2+ to activate APE1 generated by pollutant exposure. The AP-site in the DNA substrate of the fluorescent probe is cleaved by the activated APE1, releasing fluorophore and generating fluorescent signals to indicate the position and degree of APE1-related DNA base damage in living cells. Subsequently, the developed ZnO2@DNA fluorescent probe is applied to investigate the APE1-related DNA base damage induced by benzo[a]pyrene (BaP) in living human hepatocytes. Significant DNA base damage by BaP exposure is revealed, with a positive correlation of the damage degree with exposure time in 2-24 h and the concentration in 5-150 μM, respectively. The experimental results demonstrate that BaP has a significant effect on the AP-site damage, and the degree of DNA base damage is time-dependent and concentration-dependent.
Collapse
Affiliation(s)
- Junqiu Zhai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Fanglin Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yunyun Yang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Xiaoxin Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Tiangang Luan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiewei Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
20
|
Zhang P, Zhuo Y, Chai YQ, Yuan R. Structural DNA tetrahedra and its electrochemical-related surface sensing. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
21
|
Zhang P, Ouyang Y, Zhuo Y, Chai Y, Yuan R. Recent Advances in DNA Nanostructures Applied in Sensing Interfaces and Cellular Imaging. Anal Chem 2023; 95:407-419. [PMID: 36625113 DOI: 10.1021/acs.analchem.2c04540] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Pu Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yu Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China.,Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
22
|
Kou Q, Wang L, Zhang L, Ma L, Fu S, Su X. Simulation-Assisted Localized DNA Logical Circuits for Cancer Biomarkers Detection and Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205191. [PMID: 36287076 DOI: 10.1002/smll.202205191] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/30/2022] [Indexed: 06/16/2023]
Abstract
DNA-based nanodevices equipped with localized modules have been promising probes for biomarker detection. Such devices heavily rely on the intramolecular hybridization reaction. However, there is a lack of mechanistic insights into this reaction that limits the sensing speed and sensitivity. A coarse-grained model is utilized to simulate the intramolecular hybridization of localized DNA circuits (LDCs) not only optimizing the performance, but also providing mechanistic insights into the hybridization reaction. The simulation guided-LDCs enable the detection of multiple biomarkers with high sensitivity and rapid speed showing good consistency with the simulation. Fluorescence assays demonstrate that the simulation-guided LDC shows an enhanced sensitivity up to 9.3 times higher than that of the same probes without localization. The detection limits of ATP, miRNA, and APE1 reach 0.14 mM, 0.68 pM, and 0.0074 U mL-1 , respectively. The selected LDC is operated in live cells with good success in simultaneously detecting the biomarkers and discriminating between cancer cells and normal cells. LDC is successfully applied to detect the biomarkers in cancer tissues from patients, allowing the discrimination of cancer/adjacent/normal tissues. This work herein presents a design workflow for DNA nanodevices holding great potential for expanding the applications of DNA nanotechnology in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Qiaoni Kou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lei Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Linghao Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Liang Ma
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing, 100029, P. R. China
| | - Shengnan Fu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
23
|
Liang M, Li N, Liu F, Zeng N, Yu C, Li S. Apurinic/apyrimidinic endonuclease triggered doxorubicin-releasing DNA nanoprism for target therapy. Cell Cycle 2022; 21:2627-2634. [PMID: 35943146 PMCID: PMC9704400 DOI: 10.1080/15384101.2022.2108567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Drug delivery and triggered release in tumor cells would realize the ultimate goal of precise cancer treatment. An APE1 triggered DNA nanoprism was designed, aiming at the applications of both drug delivery and precise triggered drug release in cancer cell. We demonstrate that the AP-Prism was successfully used as a vehicle based on the intracellular endogenous enzyme APE1 triggered for controlled drug delivery and triggered release. The box like DNA prism was self-assembled by annealing process and Doxorubicin molecules were then inserted into the GC base pairs. The reaction of AP-Prism enzymolysis and stability of DNA prism were investigated. Encouraged by the demonstration of AP-Prism as a drug delivery carrier, the cellular uptake and Dox release were with investigated in a human cervical cancer cell HeLa and human embryonic kidney cell HEK-293 T. Thanks to the overexpression level of APE1 in cancer cells, DNA prism could selectively release the trapped doxorubicin in response to APE1 activity in cancer cells, and provide a new strategy for the development of precision medicine.
Collapse
Affiliation(s)
- Meng Liang
- Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Na Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Fei Liu
- Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Nan Zeng
- Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China,CONTACT Changyuan Yu College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuo Li
- Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China,Shuo Li Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518053, China
| |
Collapse
|
24
|
Chen J, Li D, Zhao T, Wang J, Shi J, Chen S, Yin Y, Xu S, Luo X. DNA Computation-Modulated Self-Assembly of Stimuli-Responsive Plasmonic Nanogap Antennas for Correlated Multiplexed Molecular Imaging. Anal Chem 2022; 94:16887-16893. [DOI: 10.1021/acs.analchem.2c04051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jing Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Dan Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Tingting Zhao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Junhao Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jiaheng Shi
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shuwei Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yue Yin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shenghao Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
25
|
Qin Z, Liu Y, Zhang L, Liu J, Su X. Programming Dissipation Systems by DNA Timer for Temporally Regulating Enzyme Catalysis and Nanostructure Assembly. ACS NANO 2022; 16:14274-14283. [PMID: 36102909 DOI: 10.1021/acsnano.2c04405] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Live cells precisely control their temporal pattern in energy dissipative processes such as catalysis and assembly. Here, we demonstrate a DNA-based artificial dissipative nonequilibrium system where the transient state is controlled by the processive digestion of λ-exonuclease (λ Exo). This enzyme reaction serves as an orthogonal and independent molecular timer allowing for the programmable regulation of the transient-state lifetime. This dissipation system is concatenated to enzyme catalysis and nanostructure assembly networks. Dynamic activation of enzyme catalysis and dynamic disassembly of DNA nanotubes (DNT) are realized, and the state lifetimes of these systems are accurately encoded by the DNA timer. This work demonstrates nontrivial dissipation systems with built-in molecular timers, which can be a useful tool for developing artificial reaction networks and nanostructures with enhanced complexities and intelligence.
Collapse
Affiliation(s)
- Zhaohui Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yu Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Linghao Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jiajia Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
26
|
Deng Y, Tan Y, Zhang Y, Zhang L, Zhang C, Ke Y, Su X. Design of Uracil-Modified DNA Nanotubes for Targeted Drug Release via DNA-Modifying Enzyme Reactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34470-34479. [PMID: 35867518 DOI: 10.1021/acsami.2c09488] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
DNA nanostructure-based responsive drug delivery has become an increasingly potent method in cancer therapy. However, a variety of important cancer biomarkers have not been explored in searching of new and efficient targeted delivery systems. Uracil degradation glycosylase and human apurinic/apyrimidinic endonuclease are significantly more active in cancer cells. Here, we developed uracil-modified DNA nanotubes that can deliver drugs to tumor cells through an enzyme-induced disassembly process. Although the reaction of these enzymes on their natural DNA substrates has been established, their reactivity on self-assembled nanostructures of nucleic acids is not well understood. We leveraged molecular dynamic simulation based on coarse-grained model to forecast the enzyme reactivity on different DNA designs. The experimental data are highly consistent with the simulation results. It is the first example of molecule simulation being used to guide the design of enzyme-responsive DNA nano-delivery systems. Importantly, we found that the efficiency of drug release from the nanotubes can be regulated by tuning the positions of uracil modification. The DNA nanotubes equipped with cancer-specific aptamer AS1411 are used to deliver doxorubicin to tumor-bearing mice not only effectively inhibiting tumor growth but also protecting major organs from drug-caused damage. We believe that this work provides new knowledge on and insights into future design of enzyme-responsive DNA-based nanocarriers for drug delivery.
Collapse
Affiliation(s)
- Yingnan Deng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanhang Tan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - YingWei Zhang
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Linghao Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - ChunYi Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yonggang Ke
- Wallance H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
27
|
Chai DD, Zhuo Y, Tu TT, Li HL, Yuan R, Wei SP. Ag@Pyc Nanocapsules as Electrochemiluminescence Emitters for an Ultrasensitive Assay of the APE1 Activity. Anal Chem 2022; 94:9934-9939. [PMID: 35766464 DOI: 10.1021/acs.analchem.2c02122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, Ag@pyrenecarboxaldehyde nanocapsules (Ag@Pyc nanocapsules) as emitters were prepared to construct an ultrasensitive electrochemiluminescence (ECL) biosensor for the detection of the human apurinic/apyrimidinic endonuclease1 (APE1) activity. Ag nanoparticles on the surface of Pyc nanocapsules as coreaction accelerators could significantly promote coreactant peroxydisulfate (S2O82-) to generate massive reactive intermediates of sulfate radical anion (SO4•-), which interacted with the Pyc nanocapsules to achieve a strong ECL response. In addition, with the aid of APE1-triggered 3D DNA machine, trace target could be converted into a large number of mimic targets (MTs), which were positively correlated with the activity of APE1. Consequently, the proposed ECL biosensor realized an ultrasensitive detection of APE1 activity with an exceptional linear working range from 5 × 10-10 to 5 × 10-4 U·μL-1 and a lower limit of detection of 1.36 × 10-11 U·μL-1. This strategy provided a new approach to construct an efficient ternary system for the detection of biomolecules and early diagnosis of diseases.
Collapse
Affiliation(s)
- Duo-Duo Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Ting-Ting Tu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Hong-Ling Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Sha-Ping Wei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
28
|
Lu X, Li D, Luo Z, Duan Y. A dual-functional fluorescent biosensor based on enzyme-involved catalytic hairpin assembly for the detection of APE1 and miRNA-21. Analyst 2022; 147:2834-2842. [PMID: 35621039 DOI: 10.1039/d2an00108j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Both apurinic/apyrimidinic endonuclease 1 (APE1) and microRNA-21 (miRNA-21) have been reported to be related to tumors, enabling them to be the biomarkers of several cancers. This has led to the development of various biosensors to detect APE1 or miRNA-21. However, biosensors that focus on single target detection are subject to low accuracy. In this work, a fluorescent biosensor based on enzyme-involved catalytic hairpin assembly (CHA) for the detection of APE1 and miRNA-21 was developed, aimed at improving the accuracy of early-phase diagnosis of cancers. Two hairpin structured DNA probes (H1 and H2) were utilized to concatenate the enzyme-assisted circuit and CHA circuit in the system. The stem of H1 with a blunt end was modified with an AP site, while H2 was modified with 6-FAM at the 5' terminal and Dabcyl at the 3' terminal. In the presence of APE1, H1 was cleaved from the AP site to expose the toehold sequence. Then, miRNA-21 bound with the toehold sequence to initiate the CHA reaction between H1 and H2. The assembled product of CHA triggered the 6-FAM of H2 at a distance from Dabcyl, which recovered the fluorescence signal. It is worth noting that only under the co-stimulation of APE1 and miRNA-21 can the fluorescence signal be detected, indicating that the biosensor could work as an AND logic gate. The proposed dual-functional biosensor achieved a limit of detection (LOD) of 0.016 U mL-1 for APE1 and 0.25 nM for miRNA-21 and APE1, respectively, and also exhibits good selectivity and stability for the two biomarkers. Thus, the biosensor has great potential to be applied as a new platform for cancer diagnosis.
Collapse
Affiliation(s)
- Xiaoyong Lu
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, P.R. China.
| | - Dan Li
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, P.R. China.
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, P.R. China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, P.R. China.
| |
Collapse
|
29
|
Probing and modulating the interactions of the DNAzyme with DNA-functionalized nanoparticles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Li Z, Feng X, Hu W, Li L. An activatable DNA nanodevice for correlated imaging of apoptosis-related dual proteins. NANOSCALE 2022; 14:6465-6470. [PMID: 35416226 DOI: 10.1039/d2nr00537a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Apoptosis plays an important role in the life cycle of multicellular organisms. The development of techniques for sensitive monitoring of apoptosis-related key molecules can be used to assess not only disease progression but also its therapeutic interventions. However, there is still a lack of an imaging probe amenable for simultaneously detecting multiple biomarkers during drug-induced apoptosis. Herein, a novel activatable DNA nanodevice was designed to image apoptosis-related dual proteins in real time. The turn-on and specific recognition properties of our probe allow the spatially selective detection of apoptotic-related marker cytochrome c and apurinic/apyrimidinic endonuclease 1 in living cells. We demonstrated that the DNA nanodevice has the ability to monitor apoptosis and evaluate the efficacy of apoptosis-related drugs, which potentially can be used as a tool to evaluate the molecular mechanism of apoptosis regulation or to screen apoptotic drugs.
Collapse
Affiliation(s)
- Zhixiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin 300072, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Xueyan Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin 300072, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| |
Collapse
|
31
|
Chen J, Fu S, Zhang C, Liu H, Su X. DNA Logic Circuits for Cancer Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2108008. [PMID: 35254723 DOI: 10.1002/smll.202108008] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Cancer diagnosis and therapeutics (theranostics) based on the tumor microenvironment (TME) and biomarkers has been an emerging approach for precision medicine. DNA nanotechnology dynamically controls the self-assembly of DNA molecules at the nanometer scale to construct intelligent DNA chemical reaction systems. The DNA logic circuit is a particularly emerging approach for computing within the DNA chemical systems. DNA logic circuits can sensitively respond to tumor-specific markers and the TME through logic operations and signal amplification, to generate detectable signals or to release anti-cancer agents. In this review, the fundamental concepts of DNA logic circuits are clarified, the basic modules in the circuit are summarized, and how this advanced nano-assembly circuit responds to tumor-related molecules, how to perform logic operations, to realize signal amplification, and selectively release drugs through discussing over 30 application examples, are demonstrated. This review shows that DNA logic circuits have powerful logic judgment and signal amplification functions in improving the specificity and sensitivity of cancer diagnosis and making cancer treatment controllable. In the future, researchers are expected to overcome the existing shortcomings of DNA logic circuits and design smarter DNA devices with better biocompatibility and stability, which will further promote the development of cancer theranostics.
Collapse
Affiliation(s)
- Jing Chen
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shengnan Fu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chunyi Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huiyu Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
32
|
Langlois NI, Clark HA. Characterization of DNA nanostructure stability by size exclusion chromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1006-1014. [PMID: 35171148 PMCID: PMC9491180 DOI: 10.1039/d1ay02146j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
DNA-based nanostructures (DNs) are advantageous for the design of functional materials for biology and medicine due to the nanoscale control provided by their predictable self-assembly. However, the use of DNs in vivo has been limited due to structural instability in biofluids. As the stability of a particular DN sets the scope of its potential biological applications, efficient methods to characterize stability are required. Here, we apply size exclusion chromatography (SEC) to study the stability of a tetrahedron DNA nanostructure (TDN) and demonstrate the analytical capabilities of our method in characterizing degradation by enzymes and a diluted human serum matrix. We show that SEC analysis can reliably assay TDN degradation by a nuclease through direct injection and peak integration. Furthermore, data analysis using a ratio chromatogram technique enables TDN peak deconvolution from the matrix of serum proteins. Using our method, we found that TDNs exhibit half-lives of 23.9 hours and 10.1 hours in 20% and 50% diluted human serum, respectively, which is consistent with reported stability studies in 10% fetal bovine serum. We anticipate that this method can be broadly applicable to characterize a variety of DNs and serve as an efficient technique toward analysis of the stability of new DN designs in complex biological matrixes.
Collapse
Affiliation(s)
- Nicole I Langlois
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA.
| | - Heather A Clark
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA.
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
33
|
Closing-upon-repair DNA tetrahedron nanoswitch for FRET imaging the repair activity of 8-oxoguanine DNA glycosylase in living cells. Anal Chim Acta 2022; 1196:339481. [DOI: 10.1016/j.aca.2022.339481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 11/19/2022]
|
34
|
Zhao W, Jiang Y, Zhou H, Zhang S. Hairpin-functionalized DNA tetrahedra for miRNA imaging in living cells via self-assembly to form dendrimers. Analyst 2022; 147:2074-2079. [DOI: 10.1039/d2an00080f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A DNA tetrahedron-based intramolecular catalytic hairpin self-assembly platform that uses fluorescence signals to image miRNAs in live cells for accurate tumor cell identification.
Collapse
Affiliation(s)
- Wenjing Zhao
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Yao Jiang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Huimin Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| |
Collapse
|
35
|
Chen Y, Gong X, Gao Y, Shang Y, Shang J, Yu S, Li R, He S, Liu X, Wang F. Bioorthogonal regulation of DNA circuits for smart intracellular microRNA imaging. Chem Sci 2021; 12:15710-15718. [PMID: 35003602 PMCID: PMC8654030 DOI: 10.1039/d1sc05214d] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Catalytic DNA circuits represent a versatile toolbox for tracking intracellular biomarkers yet are constrained with low anti-interference capacity originating from their severe off-site activation. Herein, by introducing an unprecedented endogenous DNA repairing enzyme-powered pre-selection strategy, we develop a sequential and specific on-site activated catalytic DNA circuit for achieving the cancer cell-selective imaging of microRNA with high anti-interference capacity. Initially, the circuitry reactant is firmly caged by an elongated stabilizing duplex segment with a recognition/cleavage site of a cell-specific DNA repairing enzyme, which can prevent undesired signal leakage prior to its exposure to target cells. Then, the intrinsic DNA repairing enzyme of target cells can liberate the DNA probe for efficient intracellular microRNA imaging via the multiply guaranteed molecular recognition/activation procedures. This bioorthogonal regulated DNA circuit presents a modular and programmable amplification strategy for highly reliable assays of intracellular biomarkers, and provides a pivotal molecular toolbox for living systems. An on-site bioorthogonal regulated DNA circuit was developed by introducing an endogenous DNA repairing enzyme-mediated sequential activation strategy to achieve cancer cell-selective microRNA imaging with high anti-interference ability.![]()
Collapse
Affiliation(s)
- Yingying Chen
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Xue Gong
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Yuhui Gao
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Yu Shang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Shanshan Yu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Ruomeng Li
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Shizhen He
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China.,Research Institute of Shenzhen, Wuhan University Shenzhen 518057 P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China.,Research Institute of Shenzhen, Wuhan University Shenzhen 518057 P. R. China
| |
Collapse
|
36
|
Huang X, He Z, Zhou K, Zhi H, Yang J. Fabrication of bifunctional G-quadruplex-hemin DNAzymes for colorimetric detection of apurinic/apyrimidinic endonuclease 1 and microRNA-21. Analyst 2021; 146:7379-7385. [PMID: 34816841 DOI: 10.1039/d1an01603b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
G-quadruplex-based complexes have been widely used in various analytical methods due to their outstanding capabilities of generating colorimetric, fluorescent or electrochemical signals. However, since loop sequences in traditional G-quadruplex structures are quite short, it is difficult to establish biosensors solely using G-quadruplex-based complexes. Herein, we attempted to lengthen the loop sequences of G-quadruplex structures and found that G-quadruplex-hemin DNAzymes (G-DNAzymes) with long loops (even 30 nucleotides) maintain high peroxidase activity. In addition, the peroxidase activity is not affected by the hybridization of the long loop with its complementary counterpart. Consequently, G-DNAzyme can be endowed with an additional function by taking the long loop as a recognition element, which may facilitate the construction of diverse colorimetric biosensors. Furthermore, by designing an apurinic/apyrimidinic site or a complementary sequence of microRNA-21 (miRNA-21) in long loops, bifunctional G-DNAzymes can be split in the presence of apurinic/apyrimidinic endonuclease 1 (APE1) or miRNA-21, decreasing their peroxidase activities. Accordingly, APE1 and miRNA-21 are quantified using 3,3',5,5'-tetramethylbenzidine as a chromophore. Using the G-DNAzyme, APE1 can be detected in a linear range from 2.5 to 22.5 U mL-1 with a LOD of 1.8 U mL-1. It is to be noted that benefitting from duplex-specific nuclease-induced signal amplification, the linear range of the miRNA-21 biosensor is broadened to 5 orders of magnitude, while the limit of detection is as low as 73 fM. This work demonstrates that G-DNAzymes with long loops can both generate signals and recognize targets, providing an alternative strategy to design G-quadruplex-based analytical methods.
Collapse
Affiliation(s)
- Xiaodong Huang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | - Zhenni He
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | - Kejie Zhou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | - Huizhen Zhi
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | - Jinfei Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| |
Collapse
|
37
|
Zhang T, Tian T, Lin Y. Functionalizing Framework Nucleic-Acid-Based Nanostructures for Biomedical Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 34:e2107820. [PMID: 34787933 DOI: 10.1002/adma.202107820] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/07/2021] [Indexed: 02/05/2023]
Abstract
Strategies for functionalizing diverse tetrahedral framework nucleic acids (tFNAs) have been extensively explored since the first successful fabrication of tFNA by Turberfield. One-pot annealing of at least four DNA single strands is the most common method to prepare tFNA, as it optimizes the cost, yield, and speed of assembly. Herein, the focus is on four key merits of tFNAs and their potential for biomedical applications. The natural ability of tFNA to scavenge reactive oxygen species, along with remarkable enhancement in cellular endocytosis and tissue permeability based on its appropriate size and geometry, promotes cell-material interactions to direct or probe cell behavior, especially to treat inflammatory and degenerative diseases. Moreover, the structural programmability of tFNA enables the development of static tFNA-based nanomaterials via engineering of functional oligonucleotides or therapeutic molecules, and dynamic tFNAs via attachment of stimuli-responsive DNA apparatuses, leading to potential applications in targeted therapies, tissue regeneration, antitumor strategies, and antibacterial treatment. Although there are impressive performance and significant progress, the challenges and prospects of functionalizing tFNA-based nanostructures are still indicated in this review.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
- College of Biomedical Engineering Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
38
|
Li F, Xie Q, Qin Y, Tong C, Liu B, Wang W. Real-time monitoring and effector screening of APE1 based on rGO assisted DNA nanoprobe. Anal Biochem 2021; 633:114394. [PMID: 34610334 DOI: 10.1016/j.ab.2021.114394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 02/05/2023]
Abstract
Human apurinic/pyrimidine endonuclease 1 (APE1) played a critical role in the occurrence, progress and prognosis of tumors through overexpression and subcellular localization. Thus, it has become an important target for enhancing the sensitivity of tumor cells to radiotherapy and chemotherapy. Therefore, detecting and imaging its intracellular activity is of great significance for inhibitor discovery, cancer diagnosis and therapy. In this work, using DNA-based nanoprobe, we developed a new method for monitor intracellular APE1 activity. The detecting system was consisted by single fluorophore labeled hairpin probe and reduced graphene oxide (rGO). The in vitro result showed that a liner response of the detection method ranged from 0.02 U/mL to 2 U/mL with a limit of detection of 0.02 U/mL. Furthermore, this strategy possessing high specificity was successfully applied for APE1-related inhibitor screening using intracellular fluorescence imaging. Panaxytriol, an effective inhibitor of APE1 activity, was screened from traditional Chinese medicine (TCM) and its effect on APE1 activity was monitored in real time in A549 cells. In summary, this sensitive and specific APE1 detection technology is expected to provide an assistance for APE1-related inhibitor screening and diseases diagnosis.
Collapse
Affiliation(s)
- Fei Li
- College of Biology, Hunan University, Changsha, 410082, China
| | - Qian Xie
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yan Qin
- College of Biology, Hunan University, Changsha, 410082, China; TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chunyi Tong
- College of Biology, Hunan University, Changsha, 410082, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China.
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
39
|
Li XQ, Liu XN, Jia YL, Luo XL, Chen HY, Xu JJ. Dual Recognition DNA Triangular Prism Nanoprobe: Toward the Relationship between K + and pH in Lysosomes. Anal Chem 2021; 93:14892-14899. [PMID: 34709789 DOI: 10.1021/acs.analchem.1c04056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lysosomal acidification is essential for its degradative function, and the flux of H+ correlated with that of K+ in lysosomes. However, there is little research on their correlation due to the lack of probes that can simultaneously image these two ions. To deeply understand the role of K+ in lysosomal acidification, here, we designed and fabricated a nanodevice using a K+-aptamer and two pH-triggered nanoswitches incorporated into a DNA triangular prism (DTP) as a dual signal response platform to simultaneously visualize K+ and pH in lysosomes by a fluorescence method. This strategy could conveniently integrate two signal recognition modules into one probe, so as to achieve the goal of sensitive detection of two kinds of signals in the same time and space, which is suitable for the detection of various signals with the correlation of concentration. By co-imaging both K+ and H+ in lysosomes, we found that the efflux of K+ was accompanied by a decrease of pH, which is of great value in understanding lysosomal acidification. Moreover, this strategy also has broad prospects as a versatile optical sensing platform for multiplexed analysis of other biomolecules in living cells.
Collapse
Affiliation(s)
- Xiao-Qiong Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiang-Nan Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Lei Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xi-Liang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (MOE), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
40
|
Yu X, Zhang S, Guo W, Li B, Yang Y, Xie B, Li K, Zhang L. Recent Advances on Functional Nucleic-Acid Biosensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:7109. [PMID: 34770415 PMCID: PMC8587875 DOI: 10.3390/s21217109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023]
Abstract
In the past few decades, biosensors have been gradually developed for the rapid detection and monitoring of human diseases. Recently, functional nucleic-acid (FNA) biosensors have attracted the attention of scholars due to a series of advantages such as high stability and strong specificity, as well as the significant progress they have made in terms of biomedical applications. However, there are few reports that systematically and comprehensively summarize its working principles, classification and application. In this review, we primarily introduce functional modes of biosensors that combine functional nucleic acids with different signal output modes. In addition, the mechanisms of action of several media of the FNA biosensor are introduced. Finally, the practical application and existing problems of FNA sensors are discussed, and the future development directions and application prospects of functional nucleic acid sensors are prospected.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (S.Z.); (W.G.); (B.L.); (Y.Y.); (B.X.); (K.L.)
| |
Collapse
|
41
|
Guan L, Wu F, Ren G, Wang J, Yang X, Huang X, Yu P, Lin Y, Mao L. Role of rare-earth elements in enhancing bioelectrocatalysis for biosensing with NAD +-dependent glutamate dehydrogenase. Chem Sci 2021; 12:13434-13441. [PMID: 34777762 PMCID: PMC8528072 DOI: 10.1039/d1sc00193k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
Dehydrogenases (DHs) are widely explored bioelectrocatalysts in the development of enzymatic bioelectronics like biosensors and biofuel cells. However, the relatively low intrinsic reaction rates of DHs which mostly depend on diffusional coenzymes (e.g., NAD+) have limited their bioelectrocatalytic performance in applications such as biosensors with a high sensitivity. In this study, we find that rare-earth elements (REEs) can enhance the activity of NAD+-dependent glutamate dehydrogenase (GDH) toward highly sensitive electrochemical biosensing of glutamate in vivo. Electrochemical studies show that the sensitivity of the GDH-based glutamate biosensor is remarkably enhanced in the presence of REE cations (i.e., Yb3+, La3+ or Eu3+) in solution, of which Yb3+ yields the highest sensitivity increase (ca. 95%). With the potential effect of REE cations on NAD+ electrochemistry being ruled out, homogeneous kinetic assays by steady-state and stopped-flow spectroscopy reveal a two-fold enhancement in the intrinsic reaction rate of GDH by introducing Yb3+, mainly through accelerating the rate-determining NADH releasing step during the catalytic cycle. In-depth structural investigations using small angle X-ray scattering and infrared spectroscopy indicate that Yb3+ induces the backbone compaction of GDH and subtle β-sheet transitions in the active site, which may reduce the energetic barrier to NADH dissociation from the binding pocket as further suggested by molecular dynamics simulation. This study not only unmasks the mechanism of REE-promoted GDH kinetics but also paves a new way to highly sensitive biosensing of glutamate in vivo.
Collapse
Affiliation(s)
- Lihao Guan
- Department of Chemistry, Capital Normal University Beijing 100048 China
| | - Fei Wu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
| | - Guoyuan Ren
- Department of Chemistry, Capital Normal University Beijing 100048 China
| | - Jialu Wang
- Department of Chemistry, Capital Normal University Beijing 100048 China
| | - Xiaoti Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaohua Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University Beijing 100048 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
- College of Chemistry, Beijing Normal University Beijing 100875 China
| |
Collapse
|
42
|
Gao J, Hua X, Yuan R, Li Q, Xu W. Amplified electrochemical biosensing based on bienzymatic cascade catalysis confined in a functional DNA structure. Talanta 2021; 234:122643. [PMID: 34364452 DOI: 10.1016/j.talanta.2021.122643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 10/20/2022]
Abstract
Herein, an amplified and renewable electrochemical biosensor was developed via bienzymatic cascade catalysis of glucose oxidase (GOx) and horseradish peroxidase (HRP), which were confined in a functional Y-shaped DNA nanostructure oriented by a dual-thiol-ended hairpin probe (dSH-HP) with a paired stem as a rigid scaffold and unpaired loop as enclosed binding platform. For proof-of-concept assay of sequence-specific biomarker DNA related to Alzheimer's disease (aDNA), GOx and redox ferrocene-modified HRP (Fc@HRP) were chemically conjugated in two enzyme strands (GOx-ES1 and Fc@HRP-ES2), respectively. The repeated recycling of aDNA was powered by the displacement of GOx-ES1 by aDNA and exonuclease III (ExoIII)-assisted cleavage reaction for amplified output of numerous GOx-ES1 as dependent transducers, together with Fc@HRP-ES2 which was simultaneously hybridized with dSH-HP to assemble this DNA structure. Rationally, the bienzymatic cascade catalysis was motivated through GOx-catalyzed glucose oxidization to in situ generate hydrogen peroxide (H2O2) and overlapped HRP-catalyzed H2O2 decomposition to promote the electron transfer, producing significantly enhanced electrochemical signal of Fc with an ultrahigh sensitivity down to 0.22 fM of aDNA. Benefited from the unique design of dSH-HP-oriented bienzymatic cascades, this one-step strategy without non-specific blockers passivation was simple and renewable, and would pave a promising avenue for sensitive electrochemical assay of biomolecules.
Collapse
Affiliation(s)
- Jiaxi Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xiaoyu Hua
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Qiong Li
- College of Geophysics, Chengdu University of Technology, Chengdu, 610059, China.
| | - Wenju Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
43
|
Fu S, Zhang T, Jiang H, Xu Y, Chen J, Zhang L, Su X. DNA nanotechnology enhanced single-molecule biosensing and imaging. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Fan Z, Zhao J, Chai X, Li L. A Cooperatively Activatable, DNA‐based Fluorescent Reporter for Imaging of Correlated Enzymatic Activities. Angew Chem Int Ed Engl 2021; 60:14887-14891. [DOI: 10.1002/anie.202104408] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Zetan Fan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Xin Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
45
|
Fan Z, Zhao J, Chai X, Li L. A Cooperatively Activatable, DNA‐based Fluorescent Reporter for Imaging of Correlated Enzymatic Activities. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zetan Fan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Xin Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
46
|
Yu Y, Li L, Li G, Zhou X, Deng T, Liang M, Nie G. Intracellular enzyme-powered DNA circuit with a tunable amplifier for miRNA imaging. Chem Commun (Camb) 2021; 57:3753-3756. [PMID: 33876121 DOI: 10.1039/d1cc00536g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We describe an intracellular enzyme-powered DNA circuit probe with a tunable amplifier for sensitive and selective detection of miRNA. This approach has been successfully applied for in situ miRNA-21 fluorescence imaging in live cells. Also, we used chemicals to elevate the APE1 expression level rendering a tunable amplification strength for more flexible imaging applications.
Collapse
Affiliation(s)
- Yingjie Yu
- Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | | | | | | | | | | | | |
Collapse
|
47
|
Copp W, Pontarelli A, Wilds CJ. Recent Advances of DNA Tetrahedra for Therapeutic Delivery and Biosensing. Chembiochem 2021; 22:2237-2246. [PMID: 33506614 DOI: 10.1002/cbic.202000835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/16/2021] [Indexed: 11/11/2022]
Abstract
The chemical and self-assembly properties of nucleic acids make them ideal for the construction of discrete structures and stimuli-responsive devices for a diverse array of applications. Amongst the various three-dimensional assemblies, DNA tetrahedra are of particular interest, as these structures have been shown to be readily taken up by the cell, by the process of caveolin-mediated endocytosis, without the need for transfection agents. Moreover, these structures can be readily modified with a diverse range of pendant groups to confer greater functionality. This minireview highlights recent advances related to applications of this interesting DNA structure including the delivery of therapeutic agents ranging from small molecules to oligonucleotides in addition to its use for sensing and imaging various species within the cell.
Collapse
Affiliation(s)
- William Copp
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Alexander Pontarelli
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
48
|
Cao X, Sun Y, Lu P, Zhao M. Fluorescence imaging of intracellular nucleases-A review. Anal Chim Acta 2020; 1137:225-237. [PMID: 33153605 DOI: 10.1016/j.aca.2020.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 11/28/2022]
Abstract
Nucleases play crucial roles in maintaining genomic integrity. Visualization of intracellular distribution and translocation of nucleases are of great importance for understanding the in-vivo physiological functions of these enzymes and their roles in DNA repair and other cellular signaling pathways. Here we review the recently developed approaches for fluorescence imaging of nucleases in various eukaryotic cells. We mainly focused on the immunofluorescence techniques, the genetically encoded fluorescent probes and the chemically synthesized fluorescent DNA-substrate probes that enabled in-situ visualization of the subcellular localization of nucleases and their interactions with other protein/DNA molecules within cells. The targeted nucleases included important endonucleases, 3' exonucleases and 5' exonucleases that were involved in the DNA damage repair pathways and the intracellular DNA degradation. The advantages and limitations of the available tools were summarized and discussed.
Collapse
Affiliation(s)
- Xiangjian Cao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ying Sun
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peng Lu
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
49
|
Wang C, Yu Y, Irfan M, Xu B, Li J, Zhang L, Qin Z, Yu C, Liu H, Su X. Rational Design of DNA Framework-Based Hybrid Nanomaterials for Anticancer Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002578. [PMID: 33029935 DOI: 10.1002/smll.202002578] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/29/2020] [Indexed: 05/12/2023]
Abstract
Engineered DNA frameworks have been extensively exploited as affinity scaffolds for drug delivery. However, few studies focus on the rational design to comprehensively improve their stability, internalization kinetics, and drug loading efficiency. Herein, DNA framework-based hybrid nanomaterials are rationally engineered by using a molecular docking tool, where the framework acts as a template to support conjugated polymers. The hybrid materials exhibit high stability in biofluids owning to the multiple interactions between DNA and cationic conjugated polymer. Through molecular docking, it is found that a specific structure of the conjugated polymer at major grooves of DNA gives rise to a unique pocket for small-molecular drug doxorubicin (DOX) yielding lower binding energy than conventional DOX binding sites. This increases the binding affinity of DOX, allowing for high drug loading content and efficiency, and preventing drug leakage under physiological condition. As a proof of concept, the hybrid nanomaterials equipped with aptamer are used to carry DOX and antisense oligonucleotide G3139, which effectively inhibits solid tumor growth and shows negligible side effects on mice. It is anticipated that this approach would find broad applications in hybrid materials design and precise medicine.
Collapse
Affiliation(s)
- Congshan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingjie Yu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Muhammad Irfan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junjie Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Linghao Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhaohui Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Changyuan Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Su
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
50
|
Yan C, Yang L, Yao L, Xu J, Yao B, Liu G, Cheng L, Chen W. Ingenious Electrochemiluminescence Bioaptasensor Based on Synergistic Effects and Enzyme-Driven Programmable 3D DNA Nanoflowers for Ultrasensitive Detection of Aflatoxin B1. Anal Chem 2020; 92:14122-14129. [PMID: 32954718 DOI: 10.1021/acs.analchem.0c03132] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aflatoxin B1 (AFB1), one of the most toxic mycotoxins, has undergone a wide range of studies over the years. The development of rapid, simple, and sensitive analytical methods remains a major challenge for the accurate detection of AFB1 in foodstuffs. In this study, we designed an enhanced and stable ingenious electrochemiluminescence bioaptasensor (IEC-BA) for ultrasensitive detection of AFB1 based on the synergistic effects and enzyme-driven programmable assembled 3D DNA nanoflowers (EPDNs). This synergistic effect was comprised by the competitive impact on auxiliary probes (AP) and the cutting effect of the Hae III. Compared to the traditional aptamer direct-competition method, the synergistic effects ensured that the aptamer was more efficiently and adequately competed away by the target. Also, the redundant double-stranded probes were removed, which greatly facilitates simple, quick, and sensitive detection of AFB1. Besides, a large chunk of positively charged Ru(II) complexes (Ru(bpy)32+) was accumulated by the utilization of EPDNs, which resulted in tremendous improvement of the sensitivity of the designed method. Thus, even in the presence of trace amounts of AFB1, a sharply visual electrochemiluminescent signal was generated. The proposed method can realize the quantification of AFB1 with a good linear range from 1 ppt (pg mL-1) to 5 ppb (ng mL-1) with a detection limit of 0.27 ppt. In addition, it can also be successfully applied for the analysis of AFB1 in a peanut and wheat, with total recoveries ranging from 93.7 to 106.6%. Furthermore, the IEC-BA also exhibited good selectivity, reproducibility, and stability, revealing prospective applications of food safety monitoring and environmental analysis.
Collapse
Affiliation(s)
- Chao Yan
- Engineering Research Center of Bio-process, MOE, School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lijun Yang
- Engineering Research Center of Bio-process, MOE, School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Li Yao
- Engineering Research Center of Bio-process, MOE, School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, MOE, School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Bangben Yao
- Engineering Research Center of Bio-process, MOE, School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Guodong Liu
- Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang 233100, China
| | - Lin Cheng
- Fujian Institute for Food and Drug Quality Control, Fuzhou 350000, China
| | - Wei Chen
- Engineering Research Center of Bio-process, MOE, School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|