1
|
Baerends EJ, Aguirre NF, Austin ND, Autschbach J, Bickelhaupt FM, Bulo R, Cappelli C, van Duin ACT, Egidi F, Fonseca Guerra C, Förster A, Franchini M, Goumans TPM, Heine T, Hellström M, Jacob CR, Jensen L, Krykunov M, van Lenthe E, Michalak A, Mitoraj MM, Neugebauer J, Nicu VP, Philipsen P, Ramanantoanina H, Rüger R, Schreckenbach G, Stener M, Swart M, Thijssen JM, Trnka T, Visscher L, Yakovlev A, van Gisbergen S. The Amsterdam Modeling Suite. J Chem Phys 2025; 162:162501. [PMID: 40260801 DOI: 10.1063/5.0258496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
In this paper, we present the Amsterdam Modeling Suite (AMS), a comprehensive software platform designed to support advanced molecular and materials simulations across a wide range of chemical and physical systems. AMS integrates cutting-edge quantum chemical methods, including Density Functional Theory (DFT) and time-dependent DFT, with molecular mechanics, fluid thermodynamics, machine learning techniques, and more, to enable multi-scale modeling of complex chemical systems. Its design philosophy allows for seamless coupling between components, facilitating simulations that range from small molecules to complex biomolecular and solid-state systems, making it a versatile tool for tackling interdisciplinary challenges, both in industry and in academia. The suite also emphasizes user accessibility, with an intuitive graphical interface, extensive scripting capabilities, and compatibility with high-performance computing environments.
Collapse
Affiliation(s)
- Evert Jan Baerends
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Nestor F Aguirre
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Nick D Austin
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo State University of New York, Buffalo, New York 14260-3000, USA
| | - F Matthias Bickelhaupt
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Department of Chemical Sciences, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Rosa Bulo
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- IMT School for Advanced Studies Lucca, Piazza San Francesco 19, I-55100 Lucca, Italy
| | - Adri C T van Duin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Franco Egidi
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Célia Fonseca Guerra
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Arno Förster
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Mirko Franchini
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Theodorus P M Goumans
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Thomas Heine
- Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstraße 66c, 01069 Dresden, Germany
| | - Matti Hellström
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Christoph R Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, USA
| | - Mykhaylo Krykunov
- Insilico Medicine AI Limited, Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, P.O. Box 145748, Abu Dhabi, United Arab Emirates
| | - Erik van Lenthe
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Artur Michalak
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| | - Mariusz M Mitoraj
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| | - Johannes Neugebauer
- Universität Münster, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Corrensstraße 36, 48149 Münster, Germany
| | | | - Pier Philipsen
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Harry Ramanantoanina
- Department Chemie, Johannes Gutenberg-Universität, Fritz-Strassmann Weg 2, 55128 Mainz, Germany
| | - Robert Rüger
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Mauro Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli studi di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Marcel Swart
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- IQCC and Department Química, Universitat de Girona, Campus Montilivi, 17003 Girona, Spain
| | - Jos M Thijssen
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Tomáš Trnka
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lucas Visscher
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Alexei Yakovlev
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Stan van Gisbergen
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
2
|
Zhou Y, Limbu I, Garson MJ, Krenske EH. Conformational Sampling in Computational Studies of Natural Products: Why Is It Important? JOURNAL OF NATURAL PRODUCTS 2024; 87:2543-2549. [PMID: 39315508 DOI: 10.1021/acs.jnatprod.4c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Conformational sampling is a vital component of a reliable computational chemistry investigation. With the aim of illustrating the importance of conformational sampling, and building awareness among new practitioners, we present a series of case studies that show how the quality and reliability of computational studies depend on undertaking a thorough conformer search. The examples are drawn from the most common types of research questions in natural products chemistry, but the fundamental principles apply more generally to computational studies of molecular structure and behavior in any field of chemistry.
Collapse
Affiliation(s)
- Yuchen Zhou
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Ingso Limbu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Mary J Garson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| |
Collapse
|
3
|
Fusè M, Mazzeo G, Longhi G, Abbate S, Yang Q, Bloino J. Scaling-up VPT2: A feasible route to include anharmonic correction on large molecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123969. [PMID: 38330757 DOI: 10.1016/j.saa.2024.123969] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Vibrational analysis plays a crucial role in the investigation of molecular systems. Though methodologies like second-order vibrational perturbation theory (VPT2) have paved the way to more accurate simulations, the computational cost remains a difficult barrier to overcome when the molecular size increases. Building upon recent advances in the identification of resonances, we propose an approach making anharmonic simulations possible for large-size systems, typically unreachable by standard means. This relies on the fact that, often, only portions of the whole spectra are of actual interest. Therefore, the anharmonic corrections can be included selectively on subsets of normal modes directly related to the regions of interest. Starting from the VPT2 equations, we evaluate rigorously and systematically the impact of the truncated anharmonic treatment onto simulations. The limit and feasibility of the reduced-dimensionality approach are detailed, starting on a smaller model system. The methodology is then challenged on the IR absorption and vibrational circular dichroism spectra of an organometallic complex in three different spectral ranges.
Collapse
Affiliation(s)
- Marco Fusè
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123, Brescia, Italy; Istituto Nazionale di Ottica (INO), CNR, Research Unit of Brescia, c/o CSMT, VIA Branze 45, 25123, Brescia, Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123, Brescia, Italy; Istituto Nazionale di Ottica (INO), CNR, Research Unit of Brescia, c/o CSMT, VIA Branze 45, 25123, Brescia, Italy
| | - Qin Yang
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague, Czech Republic
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri, 56125, Pisa, Italy.
| |
Collapse
|
4
|
Fusè M, Mazzeo G, Abbate S, Ruzziconi R, Bloino J, Longhi G. Mid-IR and CH stretching vibrational circular dichroism spectroscopy to distinguish various sources of chirality: The case of quinophaneoxazoline based ruthenium(II) complexes. Chirality 2024; 36:e23649. [PMID: 38409881 DOI: 10.1002/chir.23649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/28/2024]
Abstract
Five diastereomers of ruthenium(II) complexes based on quinolinophaneoxazoline ligands were investigated by vibrational circular dichroism (VCD) in the mid-IR and CH stretching regions. Diastereomers differ in three sources of chirality: the planar chirality of the quinolinophane moiety, the central chirality of an asymmetric carbon atom of the oxazoline ring, and the chirality of the ruthenium atom. VCD, allied to DFT calculations, has been found to be effective in disentangling the various forms of chirality. In particular, a VCD band is identified in the CH stretching region directly connected to the chirality of the metal. The analysis of the calculated VCD spectra is carried out by partitioning the complexes into fragments. The anharmonic analysis is also performed with a recently proposed reduced-dimensionality approach: such treatment is particularly important when examining spectroscopic regions highly perturbed by resonances, like the CH stretching region.
Collapse
Affiliation(s)
- Marco Fusè
- Dipartimento di Medicina Molecolare e Traslazionale (DMMT), Università di Brescia, Brescia, Italy
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale (DMMT), Università di Brescia, Brescia, Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale (DMMT), Università di Brescia, Brescia, Italy
- Istituto Nazionale di Ottica (INO), CNR, Research Unit Brescia, Brescia, Italy
| | - Renzo Ruzziconi
- Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri, Pisa, Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale (DMMT), Università di Brescia, Brescia, Italy
- Istituto Nazionale di Ottica (INO), CNR, Research Unit Brescia, Brescia, Italy
| |
Collapse
|
5
|
Arandhara M, Ramesh SG. Nuclear quantum effects in gas-phase 2-fluoroethanol. Phys Chem Chem Phys 2024; 26:6885-6902. [PMID: 38333949 DOI: 10.1039/d3cp05657k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Torsional motions along the FCCO and HOCC dihedrals lead to the five unique conformations of 2-fluoroethanol, of which the conformer that is gauche along both dihedrals has the lowest energy. In this work, we explore how nuclear quantum effects (NQEs) manifest in the structural parameters of the lowest energy conformer, in the intramolecular free energy landscape along the FCCO and HOCC dihedrals, and also in the infrared spectrum of the title molecule, through the use of path integral simulations. We have first developed a full dimensional potential energy surface using the reaction surface Hamiltonian framework. On this potential, we have carried out path integral molecular dynamics simulations at several temperatures starting from the minimum energy well to explore structural influences of NQEs including geometrical markers of the interaction between the OH and F groups. From the computed free energy landscapes, significant reduction of the torsional barrier is found at low temperature near the cis region of the dihedrals, which can be understood through the trends in the radii of gyration of the atomic ring polymers. We find that the inclusion of NQEs in the computation of infrared spectrum is important to obtain good agreement with the experimental band positions.
Collapse
Affiliation(s)
- Mrinal Arandhara
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Sai G Ramesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
6
|
Yang Y, Alshalalfeh M, Xu Y. Conformational distributions of tetrahydro-2-turoic acid in water at different pH values by their IR and vibrational circular dichroism spectra. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123634. [PMID: 37976578 DOI: 10.1016/j.saa.2023.123634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Infrared (IR) and vibrational circular dichroism (VCD) spectra of tetrahydro-2-furoic acid (THFA) in aqueous solutions under several different pH conditions were recorded. To interpret the IR and VCD spectra of THFA obtained in highly acidic and basic aqueous solutions, extensive and systematic conformational searches were conducted to acquire the low-energy minima for both the neutral and deprotonated forms of THFA species, as well as their hydrated clusters. This was accomplished by using the conformer-rotamer ensemble sampling tool (CREST) with an implicit solvation model for water. The CREST candidates were further optimized at the B3LYP-D3BJ/def2-TZVP level of theory. The simulated VCD spectra of the neutral THFA conformers in the polarizable continuum model (PCM) of water alone exhibit little agreement with the experimental data under highly acidic conditions. Applying the clusters-in-a-liquid solvation model by considering the monohydrate THFA conformers in the PCM of water, significantly improved agreement with the experimental data. Similarly, the deprotonated THFA species solvated with one to four explicit water molecules in the PCM of water were considered. While the IR and VCD spectra of the deprotonated THFA monohydrate conformers offer the best agreement with the experimental data, other larger hydrated clusters, particularly the dihydrates, also contribute to the spectra. Through the synergistic combined experimental and theoretical approach used in the study, comprehensive conformational distributions of the predominant THFA species across various pH conditions were extracted.
Collapse
Affiliation(s)
- Yanqing Yang
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Mutasem Alshalalfeh
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Yunjie Xu
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
| |
Collapse
|
7
|
Taherivardanjani S, Wylie L, Dötzer R, Kirchner B. Exploring the Influence of the Phosphorus-Heteroatom Substitution in Nicotine on Its Electronic and Vibrational Spectroscopic Properties. Chemistry 2024; 30:e202302534. [PMID: 37984418 DOI: 10.1002/chem.202302534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
The influence of phosphorus substitution of nitrogen in heterocyclic compounds on the vibrational spectroscopy as well as frontier molecular orbitals are analyzed. Nicotine with two nitrogen atoms in its structure is taken as the sample system to be studied computationally. By replacing the nitrogen atom in one or both rings of this molecule with phosphorus, three nicotine derivatives are created. The vibrational circular dichroism and infrared spectra of these four molecules in their monomer state, as well as the assemblies up to trimers are determined. The aforementioned spectra are calculated using static quantum chemical calculations employing a cluster-weighted approach. The calculated gas phase spectra of nicotine are compared to their respective experimental spectra. It is observed that the nicotine derivatives with phosphorus in the methylpyrrolidine ring have considerably different gas phase and bulk phase vibrational circular dichroism spectra when compared to nicotine. The phosphorus substitution reduces the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital as well as altering the polarizability and reactivity of the investigated molecules.
Collapse
Affiliation(s)
- Shima Taherivardanjani
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Beringstr. 4, D-53115, Bonn, Germany
| | - Luke Wylie
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Beringstr. 4, D-53115, Bonn, Germany
| | | | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Beringstr. 4, D-53115, Bonn, Germany
| |
Collapse
|
8
|
Covington CL, Puente AR, Polavarapu PL. Pitfalls in the Optimization of Conformer Populations to Maximize the Similarity between Predicted and Experimental Chiroptical Spectra. J Phys Chem A 2024; 128:129-138. [PMID: 38154123 DOI: 10.1021/acs.jpca.3c06544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The conformational populations of pantolactone, epichlorohydrin, and N-acetyl-tryptophan methyl ester were investigated by using similarity analysis between their calculated and experimental chiroptical spectra. By performing the analysis on pantolactone using two different chiroptical methods, namely, vibrational circular dichroism and Raman optical activity, it was found that the optimal sets of conformers do not match between the two methods, indicating that the conformational populations obtained by optimizing the similarity between calculated and experimental spectra are unlikely to be more accurate than energy-based Boltzmann populations. Also, it was found for pantolactone, epichlorohydrin, and N-acetyl-tryptophan methyl ester that the similarity between calculated and experimental spectra would often not vary significantly if each of the populated conformers was discarded, one at a time. This observation indicates that more than one set of conformers can provide acceptable similarity between the predicted and experimental spectra. Therefore, the correct set of conformers cannot be accurately determined by similarity analysis.
Collapse
Affiliation(s)
- Cody L Covington
- Department of Chemistry, Austin Peay State University, Clarksville, Tennessee 37044, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Andrew R Puente
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Prasad L Polavarapu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
9
|
Marton G, Koenis MAJ, Liu HB, Bewley CA, Buma WJ, Nicu VP. An Artificial Intelligence Approach for Tackling Conformational Energy Uncertainties in Chiroptical Spectroscopies. Angew Chem Int Ed Engl 2023; 62:e202307053. [PMID: 37335229 PMCID: PMC11416722 DOI: 10.1002/anie.202307053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Determination of the absolute configuration of chiral molecules is a prerequisite for obtaining a fundamental understanding in any chirality-related field. The interaction with polarised light has proven to be a powerful means to determine this absolute configuration, but its application rests on the comparison between experimental and computed spectra for which the inherent uncertainty in conformational Boltzmann factors has proven to be extremely hard to tackle. Here we present a novel approach that overcomes this issue by combining a genetic algorithm that identifies the relevant conformers by accounting for the uncertainties in DFT relative energies, and a hierarchical clustering algorithm that analyses the trends in the spectra of the considered conformers and identifies on-the-fly when a given chiroptical technique is not able to make reliable predictions. The effectiveness of this approach is demonstrated by considering the challenging cases of papuamine and haliclonadiamine, two bis-indane natural products with eight chiral centres and considerable conformational heterogeneity that could not be assigned unambiguously with current approaches.
Collapse
Affiliation(s)
- Gabriel Marton
- Provitam Foundation, Caisului Street 16, Cluj-Napoca, Romania
| | - Mark A. J. Koenis
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Hong-Bing Liu
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health Bethesda, Maryland 20892-0820, United States
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health Bethesda, Maryland 20892-0820, United States
| | - Wybren Jan Buma
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| | | |
Collapse
|
10
|
Batista JM, Nicu VP. Simplified and enhanced VCD analysis of cyclic peptides guided by artificial intelligence. Phys Chem Chem Phys 2023; 25:22111-22116. [PMID: 37560904 DOI: 10.1039/d3cp01986a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Cyclic peptides are privileged structures in medicinal chemistry; however, their solution-state structure characterization is difficult. Vibrational circular dichroism (VCD) spectroscopy is a powerful alternative to NMR, but requires challenging calculations. We present a VCD approach guided by a genetic algorithm, which is simple, more effective, and has a higher conformer resolution.
Collapse
Affiliation(s)
- João M Batista
- Federal University of São Paulo, Institute of Science and Technology, R. Talim 330, 12231-280, São José dos Campos-SP, Brazil.
| | | |
Collapse
|
11
|
Vermeyen T, Batista ANL, Valverde AL, Herrebout W, Batista JM. Pushing the boundaries of VCD spectroscopy in natural product chemistry. Phys Chem Chem Phys 2023; 25:13825-13832. [PMID: 37191271 DOI: 10.1039/d3cp00886j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Vibrational circular dichroism (VCD) is one of the most powerful techniques to assess the stereochemistry of chiral molecules in solution state. The need for quantum chemical calculations to interpret experimental data, however, has precluded its widespread use by non-experts. Herein, we propose the search and validation of IR and VCD spectral markers to circumvent the requirement of DFT calculations allowing for absolute configuration assignments even in complex mixtures. To that end, a combination of visual inspection and machine learning based methods is used. Monoterpene mixtures are selected for this proof-of-concept study.
Collapse
Affiliation(s)
- Tom Vermeyen
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
- Department of Chemistry, Ghent University, Krijgslaan 281, B-9000 Ghent, Belgium
| | - Andrea N L Batista
- Institute of Chemistry, Fluminense Federal University, Outeiro de São João Batista s/n, 24020-141 Niterói-RJ, Brazil
| | - Alessandra L Valverde
- Institute of Chemistry, Fluminense Federal University, Outeiro de São João Batista s/n, 24020-141 Niterói-RJ, Brazil
| | - Wouter Herrebout
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | - João M Batista
- Federal University of São Paulo, Institute of Science and Technology, R. Talim 330, 12231-280, São José dos Campos-SP, Brazil.
| |
Collapse
|
12
|
Lam J, Lewis RJ, Goodman JM. Interpreting vibrational circular dichroism spectra: the Cai•factor for absolute configuration with confidence. J Cheminform 2023; 15:36. [PMID: 36945031 PMCID: PMC10031863 DOI: 10.1186/s13321-023-00706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023] Open
Abstract
Vibrational circular dichroism (VCD) spectroscopy can generate the data required for the assignment of absolute configuration, but the spectra are hard to interpret. We have recorded VCD data for thirty pairs of small organic compounds and we use this database to validate a method for the automated analysis of VCD spectra and the assignment of absolute configuration: the Cai•factor (Configuration: absolute information). The analysis of the data demonstrates that the procedure is a reliable and time-efficient method for determination of absolute configuration, which gives both the assignment and a measure of confidence in the outcome, even when the spectra are imperfect. The majority of molecules tested have a high confidence score and all of these have the correct assignment.
Collapse
Affiliation(s)
- Jonathan Lam
- Centre for Molecular Informatics, Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Richard J Lewis
- Department of Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
| | - Jonathan M Goodman
- Centre for Molecular Informatics, Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
13
|
Dobšíková K, Michal P, Spálovská D, Kuchař M, Paškanová N, Jurok R, Kapitán J, Setnička V. Conformational analysis of amphetamine and methamphetamine: a comprehensive approach by vibrational and chiroptical spectroscopy. Analyst 2023; 148:1337-1348. [PMID: 36857656 DOI: 10.1039/d2an02014a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
After cannabis, the most commonly used illicit substance worldwide is amphetamine and its derivatives, such as methamphetamine, with an ever-increasing number of synthetic modifications. Thus, fast and reliable methods are needed to identify them according to their spectral patterns and structures. Here, we have investigated the use of molecular spectroscopy methods to describe the 3D structures of these substances in a solution that models the physiological environment. The substances were analyzed by Raman and infrared (IR) absorption spectroscopy and by chiroptical methods, vibrational circular dichroism (VCD) and Raman optical activity (ROA). The obtained experimental data were supported by three different computational approaches based on density functional theory (DFT) and molecular dynamics (MD). Successful interpretation relies on good agreement between experimental and predicted spectra. The determination of the conformer populations of the studied molecules was based on maximizing the similarity overlap of weighted conformer spectra by a global minimization algorithm. Very good agreement was obtained between the experimental spectra and optimized-population weighted spectra from MD, providing a detailed insight into the structure of the molecules and their interaction with the solvent. The relative population of three amphetamine and six methamphetamine conformers was determined and is consistent with a previous NMR study. However, this work shows that only a few isolated conformers are not sufficient for the successful interpretation of the spectra, but the entire conformational space needs to be sampled appropriately and explicit interaction with the solvent needs to be included.
Collapse
Affiliation(s)
- Kristýna Dobšíková
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.
| | - Pavel Michal
- Department of Optics, Palacký University Olomouc, Olomouc, 771 46, Czech Republic.
| | - Dita Spálovská
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.
| | - Martin Kuchař
- Forensic Laboratory of Biologically Active Substances, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.,Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.,National Institute of Mental Health, Klecany 250 67, Czech Republic
| | - Natalie Paškanová
- Forensic Laboratory of Biologically Active Substances, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.,Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic
| | - Radek Jurok
- Forensic Laboratory of Biologically Active Substances, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.,Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.,Department of Organic Chemistry, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic
| | - Josef Kapitán
- Department of Optics, Palacký University Olomouc, Olomouc, 771 46, Czech Republic.
| | - Vladimír Setnička
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.
| |
Collapse
|
14
|
Harris CM, Harris TM, Stec DF, Schley ND, Johnson JL, Covington CL, Polavarapu PL. Synthesis, characterization and absolute configurations of methyl ladderanoates. Chirality 2023; 35:49-57. [PMID: 36367323 DOI: 10.1002/chir.23515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022]
Abstract
Methyl esters of [5]-ladderanoic acid and [3]-ladderanoic acid were prepared by esterification of the acids isolated from biomass at a wastewater treatment plant. Optical rotations at six different wavelengths (633, 589, 546, 436, 405 and 365 nm) and vibrational circular dichroism (VCD) spectra in the 1800-900 cm-1 region were measured in CDCl3 solvent and compared with quantum chemical (QC) predictions using B3LYP functional and 6-311++G(2d,2p) basis set with polarizing continuum model representing the solvent. QC predictions gave negative optical rotations at all six wavelengths for (R)-methyl [5]-ladderanoate and positive optical rotations for (R)-methyl [3]-ladderanoate, the same signs as previously reported for the corresponding acids. The crystal structure of (-)-methyl [5]-ladderanoate independently confirmed (R) configuration. The QC-predicted VCD spectra using Boltzmann population weighted spectra of individual conformers did not provide satisfactory quantitative agreement with the experimental VCD spectra. An improved quantitative agreement for VCD spectra could be obtained when conformer populations were optimized to maximize the similarity between experimental and predicted VCD spectra, but more improvements in VCD predictions are needed.
Collapse
Affiliation(s)
- Constance M Harris
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Thomas M Harris
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Donald F Stec
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Nathan D Schley
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Jordan L Johnson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Cody L Covington
- Department of Chemistry, Austin Peay State University, Clarksville, Tennessee, USA
| | | |
Collapse
|
15
|
Muñoz MA, Burgueño-Tapia E, Joseph-Nathan P. Individual scale factor approach for the vibrational circular dichroism similarity-guided spectral and conformational analysis of perezone and dihydroperezone. Chirality 2023; 35:67-79. [PMID: 36398355 DOI: 10.1002/chir.23517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/18/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
Evaluation of DFT calculated vibrational parameters for the IR and VCD spectra similarity of perezone (1) and dihydroperezone (2) was undertaken. Conformational sets were obtained using different search engines, and the parameters needed for spectra prediction were obtained using several combinations of commonly employed functionals and basis sets, and then weighted spectra were generated and compared with observed traces to provide infrared similarity (SIR ) and enantiomeric similarity index (ESI) values. These values evidenced a poor performance of the evaluated levels of theory that were overcome when using the individual scaling factors approach, providing 16% to 139% increases of the ESI values. The best performing level of theory was the B3LYP/DGDZVP2 with ESI values of 0.722 and 0.792 for 1 and 2. Moreover, a correlation analysis showed that the irregular DFT performance arises from rotational strength deviations, which suggests to discard conformational abundance accuracy as the main source of differences. Furthermore, a similarity guided conformational analysis showed that conformations with high ESI values prefer particular orientations of the CC bonds directly attached to the stereogenic carbon atom, with more distant dihedral angles having less influence. Additionally, folded and extended conformers appear to be equally capable to yield high individual ESI values, although abundances of folded conformers just account for 16% of the total population. Nevertheless, abundance optimization showed that a high ESI similarity value of 0.834, is possible when the population of these conformers is increased to 26%, suggesting that a larger abundance of these conformers might be present in solution.
Collapse
Affiliation(s)
- Marcelo A Muñoz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Eleuterio Burgueño-Tapia
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Pedro Joseph-Nathan
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
16
|
Taherivardanjani S, Blasius J, Brehm M, Dötzer R, Kirchner B. Conformer Weighting and Differently Sized Cluster Weighting for Nicotine and Its Phosphorus Derivatives. J Phys Chem A 2022; 126:7070-7083. [PMID: 36170053 DOI: 10.1021/acs.jpca.2c03133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Weighting methods applied to systems with many conformers have been broadly employed to calculate thermodynamic properties, structural characteristics, and populations. To better understand and test the sensitivity of conventional weighting methods, the conformational distributions of nicotine and its phosphorus-substituted derivatives are investigated. The weighting schemes used for this are all based on Boltzmann statistics. Classical Boltzmann factors based on the electronic energy and the Gibbs free energy are calculated at different quantum chemical levels of theory and compared to cluster weights obtained by the quantum cluster equilibrium method. Furthermore, the influence of the modified rigid-rotor-harmonic-oscillator (mRRHO) approximation on the cluster weights is investigated. The substitution of the nitrogen atom in the methylpyrrolidine ring by a phosphorus atom results in more monomer conformers and clusters being populated. The conformational distribution of the monomers remained stable at different levels of theory and weighting methods. However, going to dimers and trimers, we observe a significant influence of the level of theory, weighting method, and mRRHO cutoff on the populations of these clusters. We show that mRRHO cutoff values of 50 and 100 cm-1 yield similar results, which is why 50 cm-1 is recommended as a robust choice. Furthermore, we observe that the global minimum for ΔE0 and ΔG varies in a few cases and that the global minimum is not always the dominantly occupied structure.
Collapse
Affiliation(s)
- Shima Taherivardanjani
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4 + 6, D-53115 Bonn, Germany
| | - Jan Blasius
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4 + 6, D-53115 Bonn, Germany
| | - Martin Brehm
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Reinhard Dötzer
- Competence Center Analytics, BASF SE, D-67056 Ludwigshafen, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4 + 6, D-53115 Bonn, Germany
| |
Collapse
|
17
|
Golub TP, Feßner M, Engelage E, Merten C. Dynamic Stereochemistry of a Biphenyl-Bisprolineamide Model Catalyst and its Imidazolidinone Intermediates. Chemistry 2022; 28:e202201317. [PMID: 35611719 PMCID: PMC9545261 DOI: 10.1002/chem.202201317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 12/15/2022]
Abstract
In this study, we characterize the dynamic stereochemistry of a biphenyl-2,2'-bis(proline amide) catalyst in chloroform and DMSO as representative weakly and strongly hydrogen bonding solvents. Using vibrational circular dichroism (VCD) spectroscopy and density functional theory (DFT) based spectra calculations, we show that the preferred axial stereochemistry of the catalyst is determined by solute-solvent interactions. Explicitly considering solvation with DMSO molecules is found to be essential to correctly predict the conformational preferences of the catalyst. Furthermore, we investigate the stereochemistry of the corresponding enamines and imidazolidinones that are formed upon reaction with isovaleraldehyde. The enamines are found to rapidly convert to endo-imidazolidinones and the thermodynamically favored exo-imidazolidinones are formed only slowly. The present study demonstrates that the stereochemistry of these imidazolidinones can be deduced directly from the VCD spectra analysis without any further detailed analysis of NMR spectra. Hence, we herein exemplify the use of VCD spectroscopy for an in situ characterization of intermediates relevant in asymmetric catalysts.
Collapse
Affiliation(s)
- Tino P. Golub
- Ruhr Universität BochumFakultät für Chemie und BiochemieOrganische Chemie IIUniversitätsstraße 15044801BochumGermany
| | - Malte Feßner
- Ruhr Universität BochumFakultät für Chemie und BiochemieOrganische Chemie IIUniversitätsstraße 15044801BochumGermany
| | - Elric Engelage
- Ruhr Universität BochumFakultät für Chemie und BiochemieOrganische Chemie IIUniversitätsstraße 15044801BochumGermany
| | - Christian Merten
- Ruhr Universität BochumFakultät für Chemie und BiochemieOrganische Chemie IIUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
18
|
Zhou S, Bian J, Chen P, Xie M, Chao J, Hu W, Lu Y, Zhang W. Polarization-dispersive imaging spectrometer for scattering circular dichroism spectroscopy of single chiral nanostructures. LIGHT, SCIENCE & APPLICATIONS 2022; 11:64. [PMID: 35304873 PMCID: PMC8933428 DOI: 10.1038/s41377-022-00755-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 05/29/2023]
Abstract
Circular dichroism spectroscopy is one of the most important tools in nanoscopic chiroptics. However, there is lack of simple, fast and reliable method for measuring the circular dichroism responses of single nanostructures. To tackle this issue, we report a polarization-dispersive imaging spectrometer which is capable of measuring the scattering circular dichroism response of a single chiral nanostructure with a single shot. Using this technique, we studied the scattering circular dichroism spectra of a model system, the vertically coupled plasmonic nanorod pair. Both experimental and theoretical results indicate that the polarization-dispersive spectrometer measures the imaginary part of nonlocal susceptibility of the structure. We further applied the technique to 3-dimensional Au nanorod structures assembled on DNA origami templates together with correlated scanning electron microscopic measurements. Rich chiroptical phenomena were unveiled at the single nanostructure level.
Collapse
Affiliation(s)
- Shuang Zhou
- College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing university, Nanjing, 210023, China
| | - Jie Bian
- College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing university, Nanjing, 210023, China.
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China.
| | - Peng Chen
- College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing university, Nanjing, 210023, China
| | - Mo Xie
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jie Chao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wei Hu
- College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing university, Nanjing, 210023, China
| | - Yanqing Lu
- College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing university, Nanjing, 210023, China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing university, Nanjing, 210023, China.
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
19
|
Bravin C, Mazzeo G, Abbate S, Licini G, Longhi G, Zonta C. Helicity control of a perfluorinated carbon chain within a chiral supramolecular cage monitored by VCD. Chem Commun (Camb) 2022; 58:2152-2155. [PMID: 35059695 DOI: 10.1039/d1cc06861j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Confinement within supramolecular systems is the leading technology to finely tune guest functional properties. In this communication we report the synthesis of a chiral supramolecular cage able to bias the helicity of a perfluorinated carbon chain hosted within the cage. We monitor the phenomenon of chiral induction by Vibrational Circular Dichroism (VCD) experiments complemented by DFT calculations over the possible conformers.
Collapse
Affiliation(s)
- Carlo Bravin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, PD, Italy.
| | - Giuseppe Mazzeo
- Department of Molecular and Translational Medicine, Università di Brescia, Viale Europa 11, 25123 Brescia, BS, Italy.
| | - Sergio Abbate
- Department of Molecular and Translational Medicine, Università di Brescia, Viale Europa 11, 25123 Brescia, BS, Italy.
| | - Giulia Licini
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, PD, Italy.
| | - Giovanna Longhi
- Department of Molecular and Translational Medicine, Università di Brescia, Viale Europa 11, 25123 Brescia, BS, Italy.
| | - Cristiano Zonta
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, PD, Italy.
| |
Collapse
|
20
|
Golub T, Kano T, Maruoka K, Merten C. VCD spectroscopy distinguishes the enamine and iminium ion of a 1,1’-binaphthyl azepine. Chem Commun (Camb) 2022; 58:8412-8415. [DOI: 10.1039/d2cc02863h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a VCD spectroscopic characterization of a chiral 1,1’-binaphthyl azepine catalyst and show that the VCD spectra of an in-situ generated enamine and an ex-situ prepared iminium ion are...
Collapse
|
21
|
Jähnigen S, Sebastiani D, Vuilleumier R. The important role of non-covalent interactions for the vibrational circular dichroism of lactic acid in aqueous solution. Phys Chem Chem Phys 2021; 23:17232-17241. [PMID: 34369531 DOI: 10.1039/d1cp03106f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We present a computational study of vibrational circular dichroism (VCD) in solutions of (S)-lactic acid, relying on ab initio molecular dynamics (AIMD) and full solvation with bulk water. We discuss the effect of the hydrogen bond network on the aggregation behaviour of the acid: while aggregates of the solute represent conditions encountered in a weakly interacting solvent, the presence of water drastically interferes with the clusters - more strongly than originally anticipated. For both scenarios we computed the VCD spectra by means of nuclear velocity perturbation theory (NVPT). The comparison with experimental data allows us to establish a VCD-structure relationship that includes the solvent network around the chiral solute. We suggest that fundamental modes with strong polarisation such as the carbonyl stretching vibration can borrow VCD from the chirally restructured solvent cage, which extends the common explanatory models of VCD generation in aqueous solution.
Collapse
Affiliation(s)
- Sascha Jähnigen
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| | | | | |
Collapse
|
22
|
Jähnigen S, Zehnacker A, Vuilleumier R. Computation of Solid-State Vibrational Circular Dichroism in the Periodic Gauge. J Phys Chem Lett 2021; 12:7213-7220. [PMID: 34310135 DOI: 10.1021/acs.jpclett.1c01682] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We introduce a new theoretical formalism to compute solid-state vibrational circular dichroism (VCD) spectra from molecular dynamics simulations. Having solved the origin-dependence problem of the periodic magnetic gauge, we present IR and VCD spectra of (1S,2S)-trans-1,2-cyclohexanediol obtained from first-principles molecular dynamics calculations and nuclear velocity perturbation theory, along with the experimental results. Because the structure model imposes periodic boundary conditions, the common origin of the rotational strength has hitherto been ill-defined and was approximated by means of averaging multiple origins. The new formalism reconnects the periodic model with the finite physical system and restores gauge freedom. It nevertheless fully accounts for nonlocal spatial couplings from the gauge transport term. We show that even for small simulation cells the rich nature of solid-state VCD spectra found in experiments can be reproduced to a very satisfactory level.
Collapse
Affiliation(s)
- Sascha Jähnigen
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, 91405 Orsay, France
- PASTEUR Laboratory, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS,, 75005 Paris, France
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Rodolphe Vuilleumier
- PASTEUR Laboratory, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS,, 75005 Paris, France
| |
Collapse
|
23
|
Aerts R, Vanhove J, Herrebout W, Johannessen C. Paving the way to conformationally unravel complex glycopeptide antibiotics by means of Raman optical activity. Chem Sci 2021; 12:5952-5964. [PMID: 35342545 PMCID: PMC8867523 DOI: 10.1039/d1sc01446c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 01/06/2023] Open
Abstract
It is crucial for fundamental physical chemistry techniques to find their application in tackling real-world challenges. Hitherto, Raman optical activity (ROA) spectroscopy is one of the examples where a promising future within the pharmaceutical sector is foreseen, but has not yet been established. Namely, the technique is believed to be able to contribute in investigating the conformational behaviour of drug candidates. We, herein, strive towards the alignment of the ROA analysis outcome and the pharmaceutical expectations by proposing a fresh strategy that ensures a more complete, reliable, and transferable ROA study. The strategy consists of the treatment of the conformational space by means of a principal component analysis (PCA) and a clustering algorithm, succeeded by a thorough ROA spectral analysis and a novel way of estimating the contributions of the different chemical fragments to the total ROA spectral intensities. Here, vancomycin, an antibiotic glycopeptide, has been treated; it is the first antibiotic glycopeptide studied by means of ROA and is a challenging compound in ROA terms. By applying our approach we discover that ROA is capable of independently identifying the correct conformation of vancomycin in aqueous solution. In addition, we have a clear idea of what ROA can and cannot tell us regarding glycopeptides. Finally, the glycopeptide class turns out to be a spectroscopically curious case, as its spectral responses are unlike the typical ROA spectral responses of peptides and carbohydrates. This preludes future ROA studies of this intriguing molecular class.
Collapse
Affiliation(s)
- Roy Aerts
- Department of Chemistry, University of Antwerp Groenenborgerlaan 171 B-2020 Antwerp Belgium
| | - Jente Vanhove
- Department of Chemistry, University of Antwerp Groenenborgerlaan 171 B-2020 Antwerp Belgium
| | - Wouter Herrebout
- Department of Chemistry, University of Antwerp Groenenborgerlaan 171 B-2020 Antwerp Belgium
| | - Christian Johannessen
- Department of Chemistry, University of Antwerp Groenenborgerlaan 171 B-2020 Antwerp Belgium
| |
Collapse
|
24
|
Demarque DP, Kemper M, Merten C. VCD spectroscopy reveals that a water molecule determines the conformation of azithromycin in solution. Chem Commun (Camb) 2021; 57:4031-4034. [PMID: 33885696 DOI: 10.1039/d1cc00932j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the IR and VCD spectra of azithromycin, a macrolide antibiotic with a total of 18 stereogenic centers. The computational analysis of the spectra reveals that a single water molecule has to be considered in the conformational search. Its key role is the stabilization of an extended hydrogen bonding network and an otherwise unstable conformation that determines the VCD spectral signatures.
Collapse
Affiliation(s)
- Daniel P Demarque
- Ruhr-Universität Bochum, Organische Chemie 2, Stereochemistry and Chiroptical Spectroscopy, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Michael Kemper
- Ruhr-Universität Bochum, Organische Chemie 2, Stereochemistry and Chiroptical Spectroscopy, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Christian Merten
- Ruhr-Universität Bochum, Organische Chemie 2, Stereochemistry and Chiroptical Spectroscopy, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
25
|
Koenis MAJ, Nicu VP, Visscher L, Kuehn C, Bremer M, Krier M, Untenecker H, Zhumaev U, Küstner B, Buma WJ. Vibrational circular dichroism studies of exceptionally strong chirality inducers in liquid crystals. Phys Chem Chem Phys 2021; 23:10021-10028. [DOI: 10.1039/d1cp00854d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chiral dopants are used in liquid crystal displays to introduce uniform helical alignment. VCD can provide unambiguous determination of the absolute configuration and structural details of such a dopant, while X-ray crystallography fails.
Collapse
|
26
|
Kirchner B, Blasius J, Esser L, Reckien W. Predicting Vibrational Spectroscopy for Flexible Molecules and Molecules with Non‐Idle Environments. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Barbara Kirchner
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Beringstr. 4+6 D‐53115 Bonn Germany
| | - Jan Blasius
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Beringstr. 4+6 D‐53115 Bonn Germany
| | - Lars Esser
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Beringstr. 4+6 D‐53115 Bonn Germany
| | - Werner Reckien
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Beringstr. 4+6 D‐53115 Bonn Germany
| |
Collapse
|
27
|
Assignment of protonated R-homocitrate in extracted FeMo-cofactor of nitrogenase via vibrational circular dichroism spectroscopies. Commun Chem 2020; 3:145. [PMID: 34337161 PMCID: PMC8323615 DOI: 10.1038/s42004-020-00392-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Protonation of FeMo-cofactor is important for the process of substrate hydrogenation. Its structure has been clarified as Δ-Mo*Fe7S9C(R-homocit*)(cys)(Hhis) for the efforts of nearly 30 years, while it remains controversial whether FeMo-cofactor is protonated or deprotonated with chelated ≡C-O(H) homocitrate. We have used protonated molybdenum(V) lactates 1 and its enantiomer as model compounds for R-homocitrate in FeMo-cofactor of nitrogenase. Vibrational circular dichroism (VCD) spectrum of 1 at 1051 cm-1 is attributed to ≡C-OH vibration, and molybdenum(VI) R-lactate at 1086 cm-1 is assigned as ≡C-O α-alkoxy vibration. These vibrations set up labels for the protonation state of coordinated α-hydroxycarboxylates. The characteristic VCD band of NMF-extracted FeMo-cofactor is assigned to ν(C-OH), which is based on the comparison of molybdenum(VI) R-homocitrate. Density Functional Theory calculations are in consistent with these assignments. To the best of our knowledge, this is the first time that protonated R-homocitrate in FeMo-cofactor is confirmed by VCD spectra.
Collapse
|
28
|
Domingos SR, Pérez C, Marshall MD, Leung HO, Schnell M. Assessing the performance of rotational spectroscopy in chiral analysis. Chem Sci 2020; 11:10863-10870. [PMID: 34123188 PMCID: PMC8162261 DOI: 10.1039/d0sc03752d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
The capabilities of rotational spectroscopy-based methods as tools to deliver accurate and precise chirality-sensitive information are still breaking ground, but their applicability in the challenging field of analytical chemistry is already clear. In this mini review, we explore the current abilities and challenges of two emergent techniques for chiral analysis based on rotational spectroscopy. For that, we will showcase the two methods (microwave 3-wave mixing and chiral tag rotational spectroscopy) while testing their performance to solve the absolute configuration and the enantiomeric excess of a blind sample containing a mixture of enantiomers of styrene oxide.
Collapse
Affiliation(s)
- Sérgio R Domingos
- Deutsches Elektronen-Synchrotron DESY Notkestraße 85 22607 Hamburg Germany
| | - Cristóbal Pérez
- Deutsches Elektronen-Synchrotron DESY Notkestraße 85 22607 Hamburg Germany
| | - Mark D Marshall
- Department of Chemistry, Amherst College P.O. Box 5000 Amherst Massachusetts 01002-5000 USA
| | - Helen O Leung
- Department of Chemistry, Amherst College P.O. Box 5000 Amherst Massachusetts 01002-5000 USA
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron DESY Notkestraße 85 22607 Hamburg Germany
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel Max-Eyth-Str.1 24118 Kiel Germany
| |
Collapse
|
29
|
Koenis MAJ, Chibueze CS, Jinks MA, Nicu VP, Visscher L, Goldup SM, Buma WJ. Vibrational circular dichroism spectroscopy for probing the expression of chirality in mechanically planar chiral rotaxanes. Chem Sci 2020; 11:8469-8475. [PMID: 34123106 PMCID: PMC8163398 DOI: 10.1039/d0sc02485f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/23/2020] [Indexed: 11/21/2022] Open
Abstract
Mechanically interlocked molecules can exhibit molecular chirality that arises due to the mechanical bond rather than covalent stereogenic units. Developing applications of such systems is made challenging by the absence of techniques for assigning the absolute configuration of products and methods to probe how the mechanical stereogenic unit influences the spatial arrangements of the functional groups in solution. Here we demonstrate for the first time that Vibrational Circular Dichroism (VCD) can be used to not only discriminate between mechanical stereoisomers but also provide detailed information on their (co)conformations. The latter is particularly important as these molecules are now under investigation in catalysis and sensing, both of which rely on the solution phase shape of the interlocked structure. Detailed analysis of the VCD spectra shows that, although many of the signals arise from coupled oscillators isolated in the covalent sub-components, intercomponent coupling between the macrocycle and axle gives rise to several VCD bands.
Collapse
Affiliation(s)
- Mark A J Koenis
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - C S Chibueze
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - M A Jinks
- Department of Chemistry, University of Southampton University Road, Highfield Southampton SO17 1BJ UK
| | - Valentin P Nicu
- Department of Environmental Science, Physics, Physical Education and Sport, Lucian Blaga University of Sibiu loan Ratiu Street, Nr. 7-9 550012 Sibiu Romania
| | - Lucas Visscher
- Amsterdam Center for Multiscale Modeling, Section Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - S M Goldup
- Department of Chemistry, University of Southampton University Road, Highfield Southampton SO17 1BJ UK
| | - Wybren J Buma
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University Toernooiveld 7c 6525 ED Nijmegen The Netherlands
| |
Collapse
|
30
|
Vermeyen T, Merten C. Solvation and the secondary structure of a proline-containing dipeptide: insights from VCD spectroscopy. Phys Chem Chem Phys 2020; 22:15640-15648. [PMID: 32617548 DOI: 10.1039/d0cp02283g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study we investigate the IR and VCD spectra of the diastereomeric dipeptide Boc-Pro-Phe-(n-propyl) 1 in chloroform-d1 (CDCl3) and the strongly hydrogen bonding solvent dimethylsulfoxide-d6 (DMSO-d6). From comparison of the experimental spectra, the amide II spectral region is identified as marker signature for the stereochemistry of the dipeptide: the homochiral LL-1 features a (+/-)-pattern in the amide II region of the VCD spectrum, while the amide II signature of the diastereomer LD-1 is inverted. Computational analysis of the IR and VCD spectra of LL-1 reveals that the experimentally observed amide II signature is characteristic for a βI-turn structure of the peptide. Likewise, the inverted pattern found for LD-1 arises from a βII-turn structure of the dipeptide. Following a micro-solvation approach, the experimental spectra recorded in DMSO-d6 are computationally well reproduced by considering only a single solvent molecule in a hydrogen bond with N-H groups. Considering a second solvent molecule, which would lead to a cleavage of intramolecular hydrogen bonds in 1, is found to give a significantly worse match with the experiment. Hence, the detailed computational analysis of the spectra of LL- and LD-1 recorded in DMSO-d6 confirms that the intramolecular hydrogen bonding pattern, that stabilizes the β-turns and other conformations of LL- and LD-1 in apolar solvents, remains intact. Our findings also show that it is essential to consider solvation explicitly in the analysis of the IR and VCD spectra of dipeptides in strongly hydrogen bonding solvents. As the solute-solvent interactions affect both conformational preferences and spectral signatures, it is also demonstrated that this inclusion of solvent molecules cannot be circumvented by applying fitting procedures to non-solvated structures.
Collapse
Affiliation(s)
- Tom Vermeyen
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany. and University of Antwerp, Department of Chemistry, MolSpec Group, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Christian Merten
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
31
|
Blasius J, Kirchner B. Cluster-Weighting in Bulk Phase Vibrational Circular Dichroism. J Phys Chem B 2020; 124:7272-7283. [DOI: 10.1021/acs.jpcb.0c06313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jan Blasius
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| |
Collapse
|
32
|
Polavarapu PL, Santoro E, Covington CL, Raghavan V. Enhancement of the chiroptical response of α-amino acids via N-substitution for molecular structure determination using vibrational circular dichroism. Chirality 2020; 32:564-578. [PMID: 32115784 DOI: 10.1002/chir.23205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/23/2020] [Accepted: 02/14/2020] [Indexed: 11/12/2022]
Abstract
The chiroptical response in the form of vibrational circular dichroism (VCD) in the midinfrared region is found to be enhanced when a hydrogen of amino group of l-tryptophan is substituted with acetyl, acryloyl, or maleyl group. The order of preference for VCD enhancement is found to be acryloyl > acetyl > maleyl group. The resulting experimental VCD spectra are also found to be satisfactorily reproduced by the quantum mechanical (QM) predicted spectra. The QM predicted spectra were simulated using the conformer populations, (a) predicted by Gibbs energies and (b) optimized to maximize the similarity between experimental and predicted VCD spectra. It is found that the conformer populations predicted by Gibbs energies do not yield the maximum possible similarity between experimental and the QM predicted spectra. This work identifies the N-substitution of α-amino acids and determining the conformer populations that best reproduce the experimental spectra as two new approaches for molecular structure determination.
Collapse
Affiliation(s)
| | - Ernesto Santoro
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Cody L Covington
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee.,Department of Chemistry, Austin Peay State University, Clarksville, Tennessee
| | - Vijay Raghavan
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
33
|
Nafie LA. Vibrational optical activity: From discovery and development to future challenges. Chirality 2020; 32:667-692. [DOI: 10.1002/chir.23191] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
|
34
|
Le Barbu-Debus K, Bowles J, Jähnigen S, Clavaguéra C, Calvo F, Vuilleumier R, Zehnacker A. Assessing cluster models of solvation for the description of vibrational circular dichroism spectra: synergy between static and dynamic approaches. Phys Chem Chem Phys 2020; 22:26047-26068. [DOI: 10.1039/d0cp03869e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solvation effects are essential for defining the shape of vibrational circular dichroism (VCD) spectra.
Collapse
Affiliation(s)
- Katia Le Barbu-Debus
- Institut des Sciences Moléculaires d’Orsay (ISMO)
- CNRS
- Université Paris-Saclay
- F-91405 Orsay
- France
| | - Jessica Bowles
- Université Paris-Saclay
- CNRS
- Institut de Chimie Physique
- UMR8000
- 91405 Orsay
| | - Sascha Jähnigen
- PASTEUR
- Département de Chimie
- Ecole Normale Supérieure
- PSL University
- Sorbonne Université
| | - Carine Clavaguéra
- Université Paris-Saclay
- CNRS
- Institut de Chimie Physique
- UMR8000
- 91405 Orsay
| | - Florent Calvo
- Université Grenoble Alpes
- CNRS
- LiPhy
- F-38000 Grenoble
- France
| | - Rodolphe Vuilleumier
- PASTEUR
- Département de Chimie
- Ecole Normale Supérieure
- PSL University
- Sorbonne Université
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d’Orsay (ISMO)
- CNRS
- Université Paris-Saclay
- F-91405 Orsay
- France
| |
Collapse
|
35
|
Analytical chemistry on many-center chiral compounds based on vibrational circular dichroism: Absolute configuration assignments and determination of contaminant levels. Anal Chim Acta 2019; 1090:100-105. [DOI: 10.1016/j.aca.2019.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 01/04/2023]
|
36
|
Fusè M, Mazzeo G, Longhi G, Abbate S, Masi M, Evidente A, Puzzarini C, Barone V. Unbiased Determination of Absolute Configurations by vis-à-vis Comparison of Experimental and Simulated Spectra: The Challenging Case of Diplopyrone. J Phys Chem B 2019; 123:9230-9237. [PMID: 31580674 DOI: 10.1021/acs.jpcb.9b08375] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A new experimental-computational strategy for the determination of the absolute configuration (AC) of complex chiral molecules is proposed by combining diverse experimental spectroscopies with quantum-mechanical simulations well beyond the current computational practice. Key features are the conformer search and relative stability evaluation performed by a new stochastic two-level tool followed by a vis-à-vis comparison of experimental and computed spectra without any ad hoc adjustment. The entire computational procedure is embedded in the user-friendly VMS software, and its reliability is granted by the inclusion of mechanic/electric/magnetic anharmonicity as well as ro-vibrational and vibronic couplings by means of generalized perturbation theory in conjunction with double-hybrid functionals combined with empirical dispersion contributions and suitable basis sets. To test and validate the new approach, the puzzling case of diplopyrone, a fungal phytotoxic metabolite, has been chosen: the close match between new experimental and simulated infrared absorption and vibrational circular dichroism spectra has led to the unbiased evaluation of its AC.
Collapse
Affiliation(s)
- Marco Fusè
- Scuola Normale Superiore , Piazza dei Cavalieri 7 , I-56126 Pisa , Italy
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale , Università di Brescia , Viale Europa 11 , 25123 Brescia , Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale , Università di Brescia , Viale Europa 11 , 25123 Brescia , Italy.,Consiglio Nazionale delle Ricerche-I.N.O. c/o CSMT , via Branze, 45 - 25123 Brescia , Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale , Università di Brescia , Viale Europa 11 , 25123 Brescia , Italy.,Consiglio Nazionale delle Ricerche-I.N.O. c/o CSMT , via Branze, 45 - 25123 Brescia , Italy
| | - Marco Masi
- Dipartimento di Scienze Chimiche , Università di Napoli Federico II , Complesso Universitario Monte S. Angelo, Via Cintia 4 , 80126 Napoli , Italy
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche , Università di Napoli Federico II , Complesso Universitario Monte S. Angelo, Via Cintia 4 , 80126 Napoli , Italy
| | - Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician" , Università di Bologna , Via Selmi 2 , I-40126 Bologna , Italy
| | - Vincenzo Barone
- Scuola Normale Superiore , Piazza dei Cavalieri 7 , I-56126 Pisa , Italy
| |
Collapse
|
37
|
N. L. Batista A, dos Santos FM, Valverde AL, Batista JM. Stereochemistry of spongosoritins: beyond optical rotation. Org Biomol Chem 2019; 17:9772-9777. [DOI: 10.1039/c9ob02010a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combination of spectroscopic methods reveals the dependence of the chiroptical properties of spongosoritins on achiral structural features.
Collapse
Affiliation(s)
- Andrea N. L. Batista
- Department of Organic Chemistry
- Chemistry Institute
- Fluminense Federal University
- Niteroi RJ 24020-141
- Brazil
| | - Fernando M. dos Santos
- Department of Organic Chemistry
- Chemistry Institute
- Fluminense Federal University
- Niteroi RJ 24020-141
- Brazil
| | - Alessandra L. Valverde
- Department of Organic Chemistry
- Chemistry Institute
- Fluminense Federal University
- Niteroi RJ 24020-141
- Brazil
| | - Joao M. Batista
- Institute of Science and Technology
- Federal University of Sao Paulo
- Sao Jose dos Campos
- Brazil
| |
Collapse
|