1
|
Gao X, Liu C, Zhao X. Isomer-resolved characterization of acylcarnitines reveals alterations in type 2 diabetes. Anal Chim Acta 2025; 1351:343856. [PMID: 40187868 DOI: 10.1016/j.aca.2025.343856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Acylcarnitines (CARs) are metabolites of fatty acids that play crucial roles in various cellular energy metabolism pathways. The structural diversity of CAR species arises from several modifications localized on the fatty acyl chain and there is currently a lack of reports characterizing these detailed structures. High-performance liquid chromatography (HPLC)-electrospray mass spectrometry (ESI-MS) is the common tool for CARs analysis. RESULTS In this study, we improved the MS detection signals of CARs by adding NH4HCO3 as buffer in the mobile phase of LC system. We demonstrated that electron activated dissociation (EAD) on the ZenoTOF 7600 system is capable of localizing the hydroxyl group and methyl branching position in CARs. The benzophenone Paternò-Büchi (PB) reaction was used for derivatizing the carbon-carbon double bond (CC). The capability of profiling CARs with detailed structural information was demonstrated by analyzing complex lipid extracts from mouse plasma. Our results also provided visualization of isomers composition, including branched chain isomers of CAR 4:0 and CAR 5:0 and CC location isomers of unsaturated CARs. Notably, we observed significant changes in the relative compositions of branched-chain isomers of CAR 5:0 and CC location isomers of several unsaturated CARs in mouse plasma samples from type 2 diabetes (T2D) compared to normal controls, suggesting their potential as diagnostic indicators for T2D. SIGNIFICANCE In this work, we enhanced the limit of detection for acylcarnitine species by incorporating ammonium bicarbonate into the LC system. The CC positions in the acyl chain of CARs were identified using Paternò-Büchi (PB) derivatization coupled with tandem mass spectrometry. Modifications such as methyl branching and hydroxyl groups along the acyl chain were localized through Electron-Activated Dissociation (EAD) on the Zeno-TOF 7600 system.
Collapse
Affiliation(s)
- Xiangyu Gao
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Chunli Liu
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Xue Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China.
| |
Collapse
|
2
|
Edwards ME, Sengupta A, Freitas DP, Hirtzel EA, Chen X, Kim JJ, Yan X. Interfacial electromigration for accelerated reactions. Anal Chim Acta 2025; 1349:343854. [PMID: 40074462 DOI: 10.1016/j.aca.2025.343854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Microdroplets have emerged as effective confined-volume reactors due to their remarkable ability to accelerate chemical reactions compared to bulk systems. Recent research highlights the crucial role of air-liquid interfaces in this acceleration. A microdroplet can be viewed as having two kinetically distinct regions: the interface and the interior. Although the surface area represents a small portion of the total droplet, the overall reaction acceleration hinges on efficient diffusion, ensuring that a substantial proportion of reagents reach the interface for rapid surface reactions. In larger droplets, however, the rate of acceleration can be hindered by slower diffusion. RESULTS In this study, we present a novel method that employs electromigration to deliver reactants directly to the surface of a chemical solution contained within an 80 μm diameter theta capillary. This approach, termed as the large orifice theta interfacial microreactor, enhances reaction rates by overcoming diffusion limitations and ensuring immediate acceleration at the air-liquid interface. We applied this approach to accelerated Pd electrocatalysis, electro-oxidative C-H/N-H coupling, and multi-level lipid derivatization. Moreover, by controlling thin film electromigration, we can selectively control product formation in competing reactions, the ability to selectively control product formation in competing reactions, such as the electro-oxidative C-H/N-H coupling of phenothiazine (PTZ) and N,N'-dimethylaniline (DMA), v.s. the dimerization of DMA, and lipid epoxidation v.s. Mn adduction, a feature unattainable in traditional single-barrel or bulk reactions. SIGNIFICANCE This work introduces a novel platform for accelerating chemical reactions at microdroplet interfaces. The large orifice theta interfacial microreactor not only improves reaction rates by overcoming diffusion barriers but also allows for selective product formation in multi-reaction systems. This method opens new avenues for studying and harnessing the unique properties of microdroplet interfaces for accelerated chemical reactions. Its potential for enhancing reaction selectivity and efficiency marks a significant advancement in the field of microdroplet chemistry.
Collapse
Affiliation(s)
- Madison E Edwards
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX, 77843, USA
| | - Annesha Sengupta
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX, 77843, USA
| | - Dallas P Freitas
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX, 77843, USA
| | - Erin A Hirtzel
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX, 77843, USA
| | - Xi Chen
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX, 77843, USA
| | - Joohan J Kim
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX, 77843, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX, 77843, USA.
| |
Collapse
|
3
|
Tsai CL, Chen X, Reddy RG, Yan X. Bifunctional Tagging through N-Doped Ozonide for Charge Switching and Isomeric Characterization of Glycerophospholipids Using Tandem Mass Spectrometry. Anal Chem 2025; 97:8992-8999. [PMID: 40245258 PMCID: PMC12044587 DOI: 10.1021/acs.analchem.5c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/06/2025] [Accepted: 04/12/2025] [Indexed: 04/19/2025]
Abstract
Glycerophospholipids (GPLs) are structurally diverse biomolecules that play crucial roles in cellular membranes, signaling, and metabolism. Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) has been widely used for GPL identification due to its high sensitivity and specificity. However, this method often falls short in distinguishing isomeric lipids, such as those differing in the positions of carbon-carbon double bonds. Additionally, the ion types naturally generated during ESI are not always optimal for lipid detection and identification. In this work, we introduce a novel bifunctional tag, nitrophenyl pyrazole (DNPZ), which reacts with double bonds in lipids to form N-doped ozonides. In-situ tandem MS analysis of these modified lipids enables simultaneous identification of double-bond positional isomers and charge switching, facilitating the acquisition of comprehensive structural information. Our findings demonstrate that this approach significantly improves ionization efficiency of GPLs in negative ion mode and provides detailed insights into fatty acyl chain compositions and double-bond positions in GPLs. We have demonstrated that this method allows for the characterization of various lipid classes, lipids with multiple double bonds as well as polar lipid extracts from complex biological samples without the need for authentic lipid reference standards.
Collapse
Affiliation(s)
- Chia-Lung Tsai
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, Texas 77843, United States
| | - Xi Chen
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, Texas 77843, United States
| | - Ramidi G. Reddy
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, Texas 77843, United States
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, Texas 77843, United States
| |
Collapse
|
4
|
Chen Y, Yang J, Wang X, Zhang Y, Shao Y, Li H, Dong X, Jiang F, Hu C, Xu G. Structural Annotation Method for Locating sn- and C═C Positions of Lipids Using Liquid Chromatography-Electron Impact Excitation of Ions from Organics (EIEIO)-Mass Spectrometry. Anal Chem 2025; 97:4998-5007. [PMID: 40008860 DOI: 10.1021/acs.analchem.4c05560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Definitive structural elucidation of lipids is pivotal for unraveling the functions of lipids in biological systems. Despite advancements in mass spectrometry (MS) for lipid analysis, challenges in annotation scope and efficiency remain, especially in resolving isomers. Herein, we introduce an optimized method using liquid chromatography coupled with electron impact excitation of ions from organic tandem mass spectrometry (LC-EIEIO-MS/MS) for comprehensive analysis and structural annotation of lipids. This approach integrates a six-step analytical protocol for precise lipid annotation, including (1) extracting MS information, (2) classifying lipids, (3) aligning sum composition, (4) determining sn-positions, (5) locating C═C positions, and (6) ascertaining annotation levels. In analyzing 34 lipid standards spiked into serum, our method achieved 100% and 82.4% annotation accuracy at the sn- and C═C isomer levels, respectively, compared to 26.5% and 0% in the CID mode using MS-DIAL. A total of 1312 sn-positions and 1033 C═C locations of lipids were annotated in quality control plasma pooled from healthy individuals and patients with Alzheimer's disease. The isomers of lipids revealed more pronounced differences between the healthy and diseased groups compared to the sum compositions of the lipids. Overall, the LC-EIEIO-MS/MS approach provides a comprehensive profiling and efficient annotation method for lipidomics, promising to shed new light on lipid-related biological pathways and disease mechanisms.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Jun Yang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Xinxin Wang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Yuqing Zhang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Yaping Shao
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Hang Li
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoyan Dong
- Dalian Seventh People's Hospital, Dalian 116023, China
- Department of Psychiatry, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Fei Jiang
- Dalian Seventh People's Hospital, Dalian 116023, China
- Department of Psychiatry, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Chunxiu Hu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Guowang Xu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| |
Collapse
|
5
|
Liu Y, Xia Y, Zhang W. Structural Lipidomics Enabled by Isomer-Resolved Tandem Mass Spectrometry. Anal Chem 2025; 97:4275-4286. [PMID: 39960352 DOI: 10.1021/acs.analchem.4c06680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Affiliation(s)
- Yikun Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
6
|
WANG X, YIN Y, OUYANG J, NA N. [Progress in applications of ambient ionization mass spectrometry for lipids identification]. Se Pu 2025; 43:22-32. [PMID: 39722618 PMCID: PMC11686479 DOI: 10.3724/sp.j.1123.2024.06007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Indexed: 12/28/2024] Open
Abstract
Lipids are indispensable components of living organisms and play pivotal roles in cell-membrane fluidity, energy provision, and neurotransmitter transmission and transport. Lipids can act as potential biomarkers of diseases given their abilities to indicate cell-growth status. For example, the lipid-metabolism processes of cancer cells are distinct from those of normal cells owing to their rapid proliferation and adaptation to ever-changing biological environments. As a result, the ability to rapidly detect, identify, and monitor lipid components is critical for tracking life-related processes and may enhance cancer diagnosis and treatment efficacy. Mass spectrometry (MS) is regarded to be among the most efficient methods for directly obtaining molecular-structural information, and is distinctly advantageous for identifying lipids. Recent years have witnessed the emergence of ambient mass spectrometry (AMS), which enables direct analyte sampling and ionization without the need for sample preprocessing. These characteristics endow AMS with special advantages for identifying and monitoring lipids. Furthermore, the ongoing development of soft ionization technologies has led to the widespread use of AMS for the detection of complex and diverse lipid molecules. Electrospray ionization (ESI) is a gentle ionization method that can be used to detect medium-to-high-polarity compounds and provide detailed chemical information for lipids by producing a fine mist of charged droplets from a liquid sample. Consequently, a series of ESI-based ionization methods have been developed for fabricating different AMS systems capable of rapidly detecting lipids in a simple manner. For example, desorption electrospray ionization (DESI) is among the most extensively employed ambient ionization techniques, and has been used to detect a wide range of samples, including solids, liquids, and gases. DESI involves spraying a charged solvent onto the surface of a sample, after which the solvent is desorbed, the analyte is ionized, and the generated ions are transferred to the detector of the mass spectrometer via a gas plume. DESI can easily and precisely regulate the sampling space, thereby offering a highly effective approach for the in-situ detection of lipids from tissue samples. Additionally, single-cell lipid analysis is limited by small cell volumes, complex cellular matrices, and minimal absolute amounts of analyte. Common detection methods for single cells include flow cytometry and fluorescence microscopy, both of which require fluorescent labeling to detect specific target molecules, which limits detection selectivity and reproducibility to some extent. ESI-based single-cell mass spectrometry has emerged as a more-effective method for detecting cellular lipids owing to advantages that include high sensitivity, low sample consumption, high throughput, and multiple-detection capabilities. Moreover, lipid chemical diversity poses a significant challenge for determining structural details. Therefore, AMS-based lipid detection has been augmented with a series of chemical-treatment methods that provide more-comprehensive structural information for lipids. For example, diverse gas-phase dissociation techniques have been used to discriminate between lipid C=C-bond isomers and their sn-positions. Strategies that involve chemically modifying specific target C=C bonds prior to MS detection have also been employed. For example, the Paternò-Büchi (P-B) photochemical reaction oxidizes C=C bonds in unsaturated lipids to form oxetane structures, C=C bonds can be epoxidized to form the corresponding oxaziridines, the N-H aziridination reaction converts C=C bonds into aziridines, and the 1ΔO2 ene reaction adds an OOH group to a C=C bond. In this review, we discuss various environmental ionization techniques for lipid AMS developed over the past five years, with an emphasis on typical chemical strategies used to analyze lipid fine structures. Obtaining a high-coverage, high-sensitivity lipid-detection platform based on AMS remains challenging and requires further in-depth studies despite significant improvements in lipid MS-based detection techniques.
Collapse
|
7
|
Zhang X, Chen Q, Wu L, Zhang W, Zhao X. Radical-directed dissociation mass spectrometry for differentiation and relative quantitation of isomeric ether-linked phosphatidylcholines. Anal Chim Acta 2024; 1331:343337. [PMID: 39532421 DOI: 10.1016/j.aca.2024.343337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Ether-linked phosphatidylcholines (PCs) include both plasmanyl and plasmenyl PCs, which contain an ether or a vinyl ether bond at the sn-1 linkage position, respectively. Profiling and quantifying ether PCs with accurate structural information is challenging because of the common presence of isomeric and isobaric species in a lipidome. RESULTS In the present study, radical directed dissociation (RDD) from collision-induced dissociation (CID) of the bicarbonate anion adduct of ether PCs has been investigated to differentiate and relatively quantify ether PCs. Alkyl- and alkenyl- PCs give diagnostic characteristic fragment patterns that enable their confident identification and isomer differentiation. Additionally, the sn-position specific product ions have proven effective for relative quantitation among isomers in ether PCs and their isobaric PC species. Using this methodology, we successfully identified a total of 30 PC-O species, 21 PC-P species at the chain composition level, and 22 species of isobaric PC at the sn-position level in the human plasma lipid extract. The quantitative analysis revealed that ether PCs with a 20:4 fatty acyl chain are relatively more abundant in human plasma. Finally, the profile of ether PCs in type 2 diabetic (T2D) groups compared to normal control groups revealed a significant decrease in PC-O 18:1/20:5. We also found it is the PC species containing a 17-carbon fatty acyl chain, rather than their isobaric ether PCs, that shows a decreasing trend in the T2D groups. SIGNIFICANCE ether-linked PCs are firstly investigated by RDD mass spectrometry.
Collapse
Affiliation(s)
- Xiaohui Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 010021, Hohhot, China
| | - Qinhua Chen
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Guangzhou University of Chinese Medicine, 518101, Shenzhen, China
| | - Lun Wu
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, 442008, Shiyan, China
| | - Wenpeng Zhang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, 100084, Beijing, China
| | - Xue Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 010021, Hohhot, China.
| |
Collapse
|
8
|
Fujiwara K, Tanaka S, Tomoyuki K, Yoshinaga K, Gotoh N. Evaluation of the ionization efficiency in phosphatidylcholine positional isomers with docosahexaenoic acid bound to the sn-1 or sn-2 position. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1248:124355. [PMID: 39549631 DOI: 10.1016/j.jchromb.2024.124355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
Phosphatidylcholine (PC), a key phospholipid, contains 2 fatty acids that can be bound at the sn-1 and sn-2 positions, resulting in positional isomers when different fatty acids are attached. Currently, there is no established method for identifying phospholipid molecular species and quantifying individual isomers using authentic standards of each PC isomer. In this study, we prepare authentic analytical standards for PC positional isomers through chemical synthesis and preparative purification. These isomers contain docosahexaenoic acid (DHA, 22:6) and palmitic acid (16:0) attached at the sn-1 and sn-2 positions and are denoted as PC(22:6/16:0) and PC(16:0/22:6), respectively. Standard solutions of PC(22:6/16:0) and PC(16:0/22:6) were analyzed using liquid chromatography-tandem mass spectrometry, and calibration curves of the PC positional isomers were generated to compare their ionization efficiencies. The ionization efficiency of PC(22:6/16:0) was 2.32 times higher than that of PC(16:0/22:6), indicating that the ionization efficiency depends on the binding position of the fatty acid. Elucidating and correcting the differences in the ionization efficiencies of the PC positional isomers will enable the accurate quantitative analysis of lipidomes in the future.
Collapse
Affiliation(s)
- Kana Fujiwara
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Seiya Tanaka
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
| | - Koyama Tomoyuki
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Kazuaki Yoshinaga
- Faculty of Food and Agricultural Sciences, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
| | - Naohiro Gotoh
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| |
Collapse
|
9
|
Nilsson JM, Balgoma D, Pettersson C, Lennernäs H, Heindryckx F, Hedeland M. Ammonium bicarbonate buffers combined with hybrid surface technology columns improve the peak shape of strongly tailing lipids. Anal Chim Acta 2024; 1316:342811. [PMID: 38969401 DOI: 10.1016/j.aca.2024.342811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Lipids such as phosphatidic acids (PAs) and cardiolipins (CLs) present strongly tailing peaks in reversed phase liquid chromatography, which entails low detectability. They are usually analyzed by hydrophilic interaction liquid chromatography (HILIC), which hampers high-throughput lipidomics. Thus, there is a great need for improved analytical methods in order to obtain a broader coverage of the lipidome in a single chromatographic method. We investigated the effect of ammonium bicarbonate (ABC) on peak asymmetry and detectability, in comparison with ammonium formate (AFO) on both a conventional BEH C18 column and an HST-CSH C18 column. RESULTS The combination of 2.5 mM ABC buffer pH 8 with an HST-CSH C18 column produced significantly improved results, reducing the asymmetry factor at 10 % peak height of PA 16:0/18:1 from 8.4 to 1.6. Furthermore, on average, there was up to a 54-fold enhancement in the peak height of its [M - H]- ion compared to AFO and the BEH C18 column. We confirmed this beneficial effect on other strongly tailing lipids, with accessible phosphate moieties e.g., cardiolipins, phosphatidylinositol phosphate, phosphatidylinositol bisphosphate, phosphorylated ceramide and phosphorylated sphingosine. Furthermore, we found an increased detectability of phospho- and sphingolipids up to 28 times in negative mode when using an HST-CSH C18 column. The method was successfully applied to mouse liver samples, where previously undetected endogenous phospholipids could be analyzed with improved chromatographic separation. SIGNIFICANCE In conclusion, the use of 2.5 mM ABC substantially improved the peak shape of PAs and enhanced the detectability of the lipidome in negative mode on an RPLC-ESI-Q-TOF-MS system on both BEH C18 and HST-CSH C18 columns. This method provides a wider coverage of the lipidome with one single injection for future lipidomic applications in negative mode.
Collapse
Affiliation(s)
- Jenny M Nilsson
- Department of Medicinal Chemistry, Uppsala Biomedical Centre, Uppsala University, Box 574, 75123 Uppsala, Sweden
| | - David Balgoma
- Department of Medicinal Chemistry, Uppsala Biomedical Centre, Uppsala University, Box 574, 75123 Uppsala, Sweden; Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, C/ Sanz y Forés 3, 47003, Valladolid, Spain
| | - Curt Pettersson
- Department of Medicinal Chemistry, Uppsala Biomedical Centre, Uppsala University, Box 574, 75123 Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Uppsala Biomedical Centre, Uppsala University, Box 591, 75123 Uppsala, Sweden
| | - Femke Heindryckx
- Department of Medical Cell Biology, Uppsala Biomedical Centre, Uppsala University, Box 571, 75123 Uppsala, Sweden
| | - Mikael Hedeland
- Department of Medicinal Chemistry, Uppsala Biomedical Centre, Uppsala University, Box 574, 75123 Uppsala, Sweden.
| |
Collapse
|
10
|
Xu S, Zhu Z, Delafield DG, Rigby MJ, Lu G, Braun M, Puglielli L, Li L. Spatially and temporally probing distinctive glycerophospholipid alterations in Alzheimer's disease mouse brain via high-resolution ion mobility-enabled sn-position resolved lipidomics. Nat Commun 2024; 15:6252. [PMID: 39048572 PMCID: PMC11269705 DOI: 10.1038/s41467-024-50299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Dysregulated glycerophospholipid (GP) metabolism in the brain is associated with the progression of neurodegenerative diseases including Alzheimer's disease (AD). Routine liquid chromatography-mass spectrometry (LC-MS)-based large-scale lipidomic methods often fail to elucidate subtle yet important structural features such as sn-position, hindering the precise interrogation of GP molecules. Leveraging high-resolution demultiplexing (HRdm) ion mobility spectrometry (IMS), we develop a four-dimensional (4D) lipidomic strategy to resolve GP sn-position isomers. We further construct a comprehensive experimental 4D GP database of 498 GPs identified from the mouse brain and an in-depth extended 4D library of 2500 GPs predicted by machine learning, enabling automated profiling of GPs with detailed acyl chain sn-position assignment. Analyzing three mouse brain regions (hippocampus, cerebellum, and cortex), we successfully identify a total of 592 GPs including 130 pairs of sn-position isomers. Further temporal GPs analysis in the three functional brain regions illustrates their metabolic alterations in AD progression.
Collapse
Affiliation(s)
- Shuling Xu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhijun Zhu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daniel G Delafield
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Michael J Rigby
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Gaoyuan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Megan Braun
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, 53705, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin- Madison, Madison, WI, 53705, USA.
| |
Collapse
|
11
|
Mostafa ME, Agongo J, Grady SF, Pyles K, McCommis KS, Arnatt CK, Ford DA, Edwards JL. Double Cyclization Tandem Mass for Identification and Quantification of Phosphatidylcholines Using Isobaric Six-Plex Capillary nLC-MS/MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1403-1412. [PMID: 38870035 DOI: 10.1021/jasms.3c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Multiplexing of phosphatidylcholine analysis is hindered by a lack of appropriate derivatization. Presented here is a tagging scheme that uses a quaternary amine tag and targets the hydroxy group of the phosphate, which switches the net charge from neutral to +2. Quantitative yields were achieved from >99% reaction completion derived by dimethoxymethyl morpholinium (DMTMM) activation. Fragmentation of phosphatidylcholines (PCs) and lysophosphatidylcholines (LPCs) releases two trimethylamines and the acyl chains through neutral loss and generates a unique double cyclization constant mass reporter. Selective incorporation of isotopes onto the tag produces a six-plex set of isobaric reagents. For equivalent six-plex-labeled samples, <14% RSD was achieved, followed by a dynamic range of 1:10 without signal compression. Quantification of PCs/LPCs in human hepatic cancer cells was conducted as six-plex using data-dependent analysis tandem MS. We report a six-plex qualitative and quantitative isobaric tagging strategy expanding the limits of analyzing PCs/LPCs.
Collapse
Affiliation(s)
- Mahmoud Elhusseiny Mostafa
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Julius Agongo
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Scott F Grady
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Kelly Pyles
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Kyle S McCommis
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Christopher K Arnatt
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - James L Edwards
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
12
|
Li Y, Wang Y, Guo K, Tseng KF, Zhang X, Sun W. Aza-Prilezhaev Aziridination-Enabled Multidimensional Analysis of Isomeric Lipids via High-Resolution U-Shaped Mobility Analyzer-Mass Spectrometry. Anal Chem 2024; 96:7111-7119. [PMID: 38648270 DOI: 10.1021/acs.analchem.4c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Unsaturated lipids constitute a significant portion of the lipidome, serving as players of multifaceted functions involving cellular signaling, membrane structure, and bioenergetics. While derivatization-assisted liquid chromatography tandem mass spectrometry (LC-MS/MS) remains the gold standard technique in lipidome, it mainly faces challenges in efficiently labeling the carbon-carbon double bond (C═C) and differentiating isomeric lipids in full dimension. This presents a need for new orthogonal methodologies. Herein, a metal- and additive-free aza-Prilezhaev aziridination (APA)-enabled ion mobility mass spectrometric method is developed for probing multiple levels of unsaturated lipid isomerization with high sensitivity. Both unsaturated polar and nonpolar lipids can be efficiently labeled in the form of N-H aziridine without significant side reactions. The signal intensity can be increased by up to 3 orders of magnitude, achieving the nM detection limit. Abundant site-specific fragmentation ions indicate C═C location and sn-position in MS/MS spectra. Better yet, a stable monoaziridination product is dominant, simplifying the spectrum for lipids with multiple double bonds. Coupled with a U-shaped mobility analyzer, identification of geometric isomers and separation of different lipid classes can be achieved. Additionally, a unique pseudo MS3 mode with UMA-QTOF MS boosts the sensitivity for generating diagnostic fragments. Overall, the current method provides a comprehensive solution for deep-profiling lipidomics, which is valuable for lipid marker discovery in disease monitoring and diagnosis.
Collapse
Affiliation(s)
- Yuling Li
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Yiming Wang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Kang Guo
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Kuo-Feng Tseng
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Xiaoqiang Zhang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Wenjian Sun
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| |
Collapse
|
13
|
Gao Y, Zhang M, Feng H, Huang K, Xia B, Pan Y. Pulsed Direct Current Arc-Induced Nanoelectrospray Ionization Mass Spectrometry. Anal Chem 2024; 96:6106-6111. [PMID: 38594830 DOI: 10.1021/acs.analchem.3c05861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
This study explores the innovative field of pulsed direct current arc-induced nanoelectrospray ionization mass spectrometry (DCAI-nano-ESI-MS), which utilizes a low-temperature direct current (DC) arc to induce ESI during MS analyses. By employing a 15 kV output voltage, the DCAI-nano-ESI source effectively identifies various biological molecules, including angiotensin II, bradykinin, cytochrome C, and soybean lecithin, showcasing impressive analyte signals and facilitating multicharge MS in positive- and negative-ion modes. Notably, results show that the oxidation of fatty acids using a DC arc produces [M + O - H]- ions, which aid in identifying the location of C═C bonds in unsaturated fatty acids and distinguishing between isomers based on diagnostic ions observed during collision-induced dissociation tandem MS. This study presents an approach for identifying the sn-1 and sn-2 positions in phosphatidylcholine using phosphatidylcholine and nitrate adduct ions, accurately determining phosphatidylcholine molecular configurations via the Paternò-Büchi reaction. With all the advantages above, DCAI-nano-ESI holds significant promise for future analytical and bioanalytical applications.
Collapse
Affiliation(s)
- Yuanji Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, P. R. China
| | - Min Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, P. R. China
| | - Hongru Feng
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Kaineng Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, P. R. China
| | - Bing Xia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, P. R. China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| |
Collapse
|
14
|
Yang T, Tang S, Feng J, Yan X. Lipid Isobaric Mass Tagging for Enhanced Relative Quantification of Unsaturated sn-Positional Isomers. ACS MEASUREMENT SCIENCE AU 2024; 4:213-222. [PMID: 38645577 PMCID: PMC11027206 DOI: 10.1021/acsmeasuresciau.3c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 04/23/2024]
Abstract
Changes in the levels of lipid sn-positional isomers are associated with perturbation of the physiological environment within the biological system. Consequently, knowing the concentrations of these lipids holds significant importance for unraveling their involvement in disease diagnosis and pathological mechanisms. However, existing methods for lipid quantification often fall short in accuracy due to the structural diversity and isomeric forms of lipids. To address this challenge, we have developed an aziridine-based isobaric tag labeling strategy that allows (i) differentiation and (ii) enhanced relative quantification of lipid sn-positional isomers from distinct samples in a single run. The methodology enabled by aziridination, isobaric tag labeling, and lithiation has been applied to various phospholipids, enabling the determination of the sn-positions of fatty acyl chains and enhanced relative quantification. The analysis of Escherichia coli lipid extracts demonstrated the enhanced determination of the concentration ratios of lipid isomers by measuring the intensity ratios of mass reporters released from sn-positional diagnostic ions. Moreover, we applied the method to the analysis of human colon cancer plasma. Intriguingly, 17 PC lipid sn-positional isomers were identified and quantified simultaneously, and among them, 7 showed significant abundance changes in the colon cancer plasma, which can be used as potential plasma markers for diagnosis of human colon cancer.
Collapse
Affiliation(s)
- Tingyuan Yang
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Shuli Tang
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Jiaxin Feng
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Xin Yan
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| |
Collapse
|
15
|
Guo X, Cao W, Fan X, Chen Q, Wu L, Ma X, Ouyang Z, Zhang W. MS 3 Imaging Enables the Simultaneous Analysis of Phospholipid C═C and sn-Position Isomers in Tissues. Anal Chem 2024; 96:4259-4265. [PMID: 38418962 DOI: 10.1021/acs.analchem.3c05807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Mass spectrometry (MS) imaging of lipids in tissues with high structure specificity is challenging in the effective fragmentation of position-selective structures and the sensitive detection of multiple lipid isomers. Herein, we develop an MS3 imaging method for the simultaneous analysis of phospholipid C═C and sn-position isomers by on-tissue photochemical derivatization, nanospray desorption electrospray ionization (nano-DESI), and a dual-linear ion trap MS system. A novel laser-based sensing probe is developed for the real-time adjustment of the probe-to-surface distance for nano-DESI. This method is validated in mouse brain and kidney sections, showing its capability of sensitive resolving and imaging of the fatty acyl chain composition, the sn-position, and the C═C location of phospholipids in an MS3 scan. MS3 imaging of phospholipids has shown the capability of differentiation of cancerous, fibrosis, and adjacent normal regions in liver cancer tissues.
Collapse
Affiliation(s)
- Xiangyu Guo
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China
| | - Wenbo Cao
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China
| | - Xiaomin Fan
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China
| | - Qinhua Chen
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518101, China
| | - Lun Wu
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan 442008, China
| | - Xiaoxiao Ma
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China
| | - Zheng Ouyang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China
| | - Wenpeng Zhang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Michael JA, Young RSE, Balez R, Jekimovs LJ, Marshall DL, Poad BLJ, Mitchell TW, Blanksby SJ, Ejsing CS, Ellis SR. Deep Characterisation of the sn-Isomer Lipidome Using High-Throughput Data-Independent Acquisition and Ozone-Induced Dissociation. Angew Chem Int Ed Engl 2024; 63:e202316793. [PMID: 38165069 DOI: 10.1002/anie.202316793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
In recent years there has been a significant interest in the development of innovative lipidomics techniques capable of resolving lipid isomers. To date, methods applied to resolving sn-isomers have resolved only a limited number of species. We report a workflow based on ozone-induced dissociation for untargeted characterisation of hundreds of sn-resolved glycerophospholipid isomers from biological extracts in under 20 min, coupled with an automated data analysis pipeline. It provides an order of magnitude increase in the number of sn-isomer pairs identified as compared to previous reports and reveals that sn-isomer populations are tightly regulated and significantly different between cell lines. The sensitivity of this method and potential for de novo molecular discovery is further demonstrated by the identification of unexpected lipids containing ultra-long monounsaturated acyl chains at the sn-1 position.
Collapse
Affiliation(s)
- Jesse A Michael
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Reuben S E Young
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Rachelle Balez
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Lachlan J Jekimovs
- School of Chemistry and Physics and the Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - David L Marshall
- School of Chemistry and Physics and the Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics and the Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Todd W Mitchell
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics and the Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Shane R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
17
|
Li H, Xiong Q, Wu H, Zhang Y, Zhuang K, Zhao Y, Zhang H, Yi L. Mass filtering combined with photochemical derivatization enables high throughput mass spectrometric analysis of unsaturated phosphatidylcholine isomers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:371-377. [PMID: 37965845 DOI: 10.1039/d3ay01829f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Phosphatidylcholines (PCs) are closely related to coronary heart disease, such as myocardial infarction. The analysis of the deep structure of PCs is of great significance for exploring the effects of exercise rehabilitation and lipid metabolism. Here, we present a mass filtering combined with photochemical derivatization method for rapid screening and accurate identification of the CC position and sn-location isomer of PCs. This method is simple to execute and easily implementable for routine analysis. The accurate qualitative and quantitative analysis of PCs and isomers facilitates the discovery of biomarkers for exercise rehabilitation of patients with myocardial infarction.
Collapse
Affiliation(s)
- Huimin Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Qian Xiong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Hao Wu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- Department of Cardiology, First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650000, China.
| | - Yunmei Zhang
- Department of Cardiology, First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650000, China.
| | - Ke Zhuang
- Department of Cardiology, First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650000, China.
| | - Yan Zhao
- Department of Cardiology, First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650000, China.
- College of Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hong Zhang
- Department of Cardiology, First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650000, China.
- College of Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
18
|
Chen C, Shi Z, Fan X, Du L, Zhou C, Pan D. Combined application of high-throughput sequencing and LC-MS-based lipidomics in the evaluation of microorganisms and lipidomics of restructured ham of different salted substitution. Food Res Int 2023; 174:113596. [PMID: 37986459 DOI: 10.1016/j.foodres.2023.113596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
The optimization of processed meats through salt replacement using KCl and k-lactate may reduce the risk of chronic diseases through reduction in dietary sodium. The objective of this study was to investigate the changes and relationships between microbial and lipid metabolism during the fermentation of restructured duck ham with different salt substitutions. Lactobacillus and Staphylococcus were found to be the dominant bacterial species in the 30 % KCl + 70 % NaCl (w/w) and 25 % k-lactate + 75 % NaCl (w/w). The LefSe analysis showed that different biomarkers were present in different ham groups, and the PLS-DA showed that triglycerides (GL) and glycerophospholipids (GP) were the two classes with the highest abundance. Besides, the KEGG pathway analysis revealed that glycerophospholipid metabolism and triglyceride metabolism were also the main metabolic pathways. According to the correlation study, Staphylococcus, Halomonas, and Lactobacillus were mostly linked to the important metabolic pathways in restructured ham. Our findings serve as a foundation for quality assurance and product enhancement for low-salt restructured ham.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo 315832, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Zihang Shi
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo 315832, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Xiankang Fan
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo 315832, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Lihui Du
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo 315832, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo 315832, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo 315832, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China.
| |
Collapse
|
19
|
Sengupta A, Edwards ME, Yan X. Dual Metal Electrolysis in Theta Capillary for Lipid Analysis. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2023; 494:117137. [PMID: 38911479 PMCID: PMC11192522 DOI: 10.1016/j.ijms.2023.117137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Increasing studies associating glycerophospholipids with various pathological conditions highlight the need for their thorough characterization. However, the intricate composition of the lipidome due to the presence of lipid isomers poses significant challenges to structural lipidomics. This study uses the anodic corrosion of two metals in a single theta nESI emitter as a tool to simultaneously characterize lipids at multiple isomer levels. Anodic corrosion of cobalt and copper in the positive ion mode generates the metal-adducted lipid complexes, [M+Co]2+ and [M+Cu]+, respectively. Optimization of parameters such as the distances of the electrodes from the nESI tip allowed the achievement of the formation of one metal-adducted lipid product at a time. Collision-induced dissociation (CID) of [M+Co]2+ results in preferential loss of the fatty acyl (FA) chain at the sn-2 position, thus generating singly charged sn-specific fragment ions. Whereas, multistage fragmentation of [M+Cu]+ via CID generated a C=C bond position-specific characteristic ion pattern induced by the π-Cu+ interaction. The feasibility of the method was tested on PC lipid extract from egg yolk to identify lipids on multiple isomer levels. Thus, the application of dual metal anodic corrosion allows lipid isomer identification with reduced sample preparation time, no signal suppression by counter anions, low sample consumption, and no need for an extra apparatus.
Collapse
Affiliation(s)
- Annesha Sengupta
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Madison E. Edwards
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
20
|
Sun R, Tang W, Li P, Li B. Development of an Efficient On-Tissue Epoxidation Reaction Mediated by Urea Hydrogen Peroxide for MALDI MS/MS Imaging of Lipid C═C Location Isomers. Anal Chem 2023; 95:16004-16012. [PMID: 37844132 DOI: 10.1021/acs.analchem.3c03262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Unsaturated lipids containing different numbers and locations of C═C bonds are significantly associated with a variety of cellular and metabolic functions. Although matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) has been used to visualize the spatial distribution patterns of various lipids in biological tissues, in situ identification, discrimination, and visualization of lipid C═C location isomers remain challenging. Herein, an efficient and fast on-tissue chemical derivatization (OTCD) approach was developed to pinpoint the locations of C═C bonds in complex lipids in situ via methyltrioxorhenium (MTO)-catalyzed epoxidation of C═C with a urea hydrogen peroxide (UHP)/hexafluoroisopropanol (HFIP) system. The efficiency of OTCD could reach 100% via one-step spray deposition of the solution mixture of MTO/UHP/HFIP at room temperature. The developed OTCD method provided rich structural information on lipid C═C location isomers, and their accurate spatial distribution patterns were resolved in mouse brain tissues. Tissue-specific distributions and changes of lipid C═C location isomers in the liver sections of obese ob/ob and diabetic db/db mice were further investigated, and their correlation in two animal models was revealed. The simplicity and high efficiency of the OTCD method developed for MALDI tandem MSI of lipid C═C location isomers possess great potential for functional spatial lipidomics.
Collapse
Affiliation(s)
- Ruiyang Sun
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Weiwei Tang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
21
|
Wang D, Xiao H, Lv X, Chen H, Wei F. Mass Spectrometry Based on Chemical Derivatization Has Brought Novel Discoveries to Lipidomics: A Comprehensive Review. Crit Rev Anal Chem 2023; 55:21-52. [PMID: 37782560 DOI: 10.1080/10408347.2023.2261130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Lipids, as one of the most important organic compounds in organisms, are important components of cells and participate in energy storage and signal transduction of living organisms. As a rapidly rising field, lipidomics research involves the identification and quantification of multiple classes of lipid molecules, as well as the structure, function, dynamics, and interactions of lipids in living organisms. Due to its inherent high selectivity and high sensitivity, mass spectrometry (MS) is the "gold standard" analysis technique for small molecules in biological samples. The combination chemical derivatization with MS detection is a unique strategy that could improve MS ionization efficiency, facilitate structure identification and quantitative analysis. Herein, this review discusses derivatization-based MS strategies for lipidomic analysis over the past decade and focuses on all the reported lipid categories, including fatty acids and modified fatty acids, glycerolipids, glycerophospholipids, sterols and saccharolipids. The functional groups of lipids mainly involved in chemical derivatization include the C=C group, carboxyl group, hydroxyl group, amino group, carbonyl group. Furthermore, representative applications of these derivatization-based lipid profiling methods were summarized. Finally, challenges and countermeasures of lipid derivatization are mentioned and highlighted to guide future studies of derivatization-based MS strategy in lipidomics.
Collapse
Affiliation(s)
- Dan Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Huaming Xiao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Xin Lv
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Hong Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Fang Wei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
- Hubei Hongshan Laboratory, Wuhan, Hubei, PR China
| |
Collapse
|
22
|
Yeo J, Kang J, Kim H, Moon C. A Critical Overview of HPLC-MS-Based Lipidomics in Determining Triacylglycerol and Phospholipid in Foods. Foods 2023; 12:3177. [PMID: 37685110 PMCID: PMC10486615 DOI: 10.3390/foods12173177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
With the current advancement in mass spectrometry (MS)-based lipidomics, the knowledge of lipidomes and their diverse roles has greatly increased, enabling a deeper understanding of the action of bioactive lipid molecules in plant- and animal-based foods. This review provides in-depth information on the practical use of MS techniques in lipidomics, including lipid extraction, adduct formation, MS analysis, data processing, statistical analysis, and bioinformatics. Moreover, this contribution demonstrates the effectiveness of MS-based lipidomics for identifying and quantifying diverse lipid species, especially triacylglycerols and phospholipids, in foods. Further, it summarizes the wide applications of MS-based lipidomics in food science, such as for assessing food processing methods, detecting food adulteration, and measuring lipid oxidation in foods. Thus, MS-based lipidomics may be a useful method for identifying the action of individual lipid species in foods.
Collapse
Affiliation(s)
- JuDong Yeo
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea; (J.K.); (H.K.); (C.M.)
| | | | | | | |
Collapse
|
23
|
Xia T, Zhou F, Zhang D, Jin X, Shi H, Yin H, Gong Y, Xia Y. Deep-profiling of phospholipidome via rapid orthogonal separations and isomer-resolved mass spectrometry. Nat Commun 2023; 14:4263. [PMID: 37460558 DOI: 10.1038/s41467-023-40046-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
A lipidome comprises thousands of lipid species, many of which are isomers and isobars. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), although widely used for lipidomic profiling, faces challenges in differentiating lipid isomers. Herein, we address this issue by leveraging the orthogonal separation capabilities of hydrophilic interaction liquid chromatography (HILIC) and trapped ion mobility spectrometry (TIMS). We further integrate isomer-resolved MS/MS methods onto HILIC-TIMS, which enable pinpointing double bond locations in phospholipids and sn-positions in phosphatidylcholine. This system profiles phospholipids at multiple structural levels with short analysis time (<10 min per LC run), high sensitivity (nM detection limit), and wide coverage, while data analysis is streamlined using a home-developed software, LipidNovelist. Notably, compared to our previous report, the system doubles the coverage of phospholipids in bovine liver and reveals uncanonical desaturation pathways in RAW 264.7 macrophages. Relative quantitation of the double bond location isomers of phospholipids and the sn-position isomers of phosphatidylcholine enables the phenotyping of human bladder cancer tissue relative to normal control, which would be otherwise indistinguishable by traditional profiling methods. Our research offers a comprehensive solution for lipidomic profiling and highlights the critical role of isomer analysis in studying lipid metabolism in both healthy and diseased states.
Collapse
Affiliation(s)
- Tian Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Feng Zhou
- Bytedance Technology Co., 201103, Shanghai, China
| | - Donghui Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Department of Precision Instrument, 100084, Beijing, China
| | - Xue Jin
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Hengxue Shi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Hang Yin
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, 100084, Beijing, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, 100034, Beijing, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
24
|
Silzel J, Julian RR. RDD-HCD Provides Variable Fragmentation Routes Dictated by Radical Stability. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:452-458. [PMID: 36787650 PMCID: PMC9982999 DOI: 10.1021/jasms.2c00326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Radical-directed dissociation (RDD) is a fragmentation technique in which a radical created by selective 213/266 nm photodissociation of a carbon-iodine bond is reisolated and collisionally activated. In previous RDD experiments, collisional activation was effected by ion-trap collision-induced dissociation (CID). Higher-energy collisional dissociation (HCD) differs from CID both in terms of how ions are excited and in the number, type, or abundance of fragments that are observed. In this paper, we explore the use of HCD for activation in RDD experiments. While RDD-CID favors fragments produced from radical-directed pathways such as a/z-ions and side chain losses regardless of the activation energy employed, RDD-HCD spectra vary considerably as a function of activation energy, with lower energies favoring RDD while higher energies favor products resulting from cleavage directed by mobile protons (b/y-ions). RDD-HCD therefore affords more tunable fragmentation based on the HCD energy provided. Importantly, the abundance of radical products decreases as a function of increasing HCD energy, confirming that RDD generally proceeds via lower-energy barriers relative to mobile-proton-driven dissociation. The dominance of b/y-ions at higher energies for RDD-HCD can therefore be explained by the higher survivability of fragments not containing the radical after the initial or subsequent dissociation events. Furthermore, these results confirm previous suspicions that HCD spectra differ from CID spectra due to multiple dissociation events.
Collapse
|
25
|
Zhao X, Liang J, Chen Z, Jian R, Qian Y, Wang Y, Guo Z, Zhang W, Zhang Y, Yin H, Xia Y. sn-1 Specificity of Lysophosphatidylcholine Acyltransferase-1 Revealed by a Mass Spectrometry-Based Assay. Angew Chem Int Ed Engl 2023; 62:e202215556. [PMID: 36478519 DOI: 10.1002/anie.202215556] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Lysophosphatidylcholine acyltransferase-1 (LPCAT1) plays a critical role in the remodeling of phosphatidylcholines (PCs) in cellular lipidome. However, evidence is scarce regarding its sn-selectivity, viz. the preference of assembling acyl-Coenzyme A (CoA) at the C1 or C2-hydroxyl on a glycerol backbone because of difficulty to quantify the thus-formed PC sn-isomers. We have established a multiplexed assay to measure both sn- and acyl-chain selectivity of LPCAT1 toward a mixture of acyl-CoAs by integrating isomer-resolving tandem mass spectrometry. Our findings reveal that LPCAT1 shows exclusive sn-1 specificity regardless of the identity of acyl-CoAs. We further confirm that elevated PC 18 : 1/16:0 relative to its sn-isomer results from an increased expression of LPCAT1 in human hepatocellular carcinoma (HCC) tissue as compared to normal liver tissue. MS imaging via desorption electrospray ionization of PC 18 : 1/16:0 thus enables visualization of HCC margins in human liver tissue at a molecular level.
Collapse
Affiliation(s)
- Xue Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiaqi Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | | | - Ruijun Jian
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yao Qian
- State key laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Yunfang Wang
- Hepato-pancreato-biliary Center, Beijing Tsinghua Changgung Hospital, Institute for Precision Medicine, Tsinghua University, Beijing, 102218, China
| | - Zhiying Guo
- Hepato-pancreato-biliary Center, Beijing Tsinghua Changgung Hospital, Institute for Precision Medicine, Tsinghua University, Beijing, 102218, China
| | - Wenpeng Zhang
- State key laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center for Life Sciences, and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Hang Yin
- School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center for Life Sciences, and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
26
|
Song Y, Song Q, Liu W, Li J, Tu P. High-confidence structural identification of metabolites relying on tandem mass spectrometry through isomeric identification: A tutorial. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
27
|
Jiao B, Zhou W, Liu Y, Zhang W, Ouyang Z. In-situ sampling of lipids in tissues using a porous membrane microprobe for direct mass spectrometry analysis. Mater Today Bio 2022; 16:100424. [PMID: 36157050 PMCID: PMC9490171 DOI: 10.1016/j.mtbio.2022.100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
Direct sampling of lipids from tissues for direct mass spectrometry (MS) analysis allows a quick profiling of lipidome, which is important for biomedical applications. In this work, we developed a polyporous polymeric membrane (PPM) microprobe for highly efficient sampling of lipids directly from tissue samples. The PPM was prepared by polypropylene with pores as large of 10 μm, facilitating the permeation of lipids from tissue surfaces. The PPM was coated onto a stainless steel wire with a thickness of ∼100 μm. The entire analysis procedure includes sampling of the lipids in tissue, washing the probe, and extraction spray ionization for MS analysis. The effectiveness was validated by analyzing mouse brain tissue samples. It showed high recoveries for a series of lipid classes in comparison with total lipid extraction method. Further demonstration was carried out with analysis of tissue samples from mouse liver, stomach, kidney and legs. With high physical strength and good chemical stability, the microprobe was also demonstrated for sampling lipids inside mouse kidney tissue samples. By incorporating a photochemical derivatization, a workflow was also developed for fast detection of lipid C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>C isomers in tissue samples. Finally, a microprobe array was also developed for simultaneous sampling of lipids from multiple sites on tissue surfaces.
Collapse
|
28
|
Isomer analysis by mass spectrometry in clinical science. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Young RSE, Flakelar CL, Narreddula VR, Jekimovs LJ, Menzel JP, Poad BLJ, Blanksby SJ. Identification of Carbon-Carbon Double Bond Stereochemistry in Unsaturated Fatty Acids by Charge-Remote Fragmentation of Fixed-Charge Derivatives. Anal Chem 2022; 94:16180-16188. [DOI: 10.1021/acs.analchem.2c03625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Reuben S. E. Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Clare L. Flakelar
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane 4014, Queensland, Australia
| | - Venkateswara R. Narreddula
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Lachlan J. Jekimovs
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Jan P. Menzel
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Berwyck L. J. Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Stephen J. Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| |
Collapse
|
30
|
Chen X, Tang S, Freitas D, Hirtzel E, Cheng H, Yan X. Characterization of glycerophospholipids at multiple isomer levels via Mn(II)-catalyzed epoxidation. Analyst 2022; 147:4838-4844. [PMID: 36128870 PMCID: PMC9704799 DOI: 10.1039/d2an01174c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Characterization of glycerophospholipid isomers is of significant importance as they play different roles in physiological and pathological processes. In this work, we present a novel and bifunctional derivatization method utilizing Mn(II)-catalyzed epoxidation to simultaneously identify carbon-carbon double bond (CC bond)- and stereonumbering (sn)-positional isomers of phosphatidylcholine. Mn(II) coordinates with picolinic acid and catalyzes epoxidation of unsaturated lipids by peracetic acid. Collision-induced dissociation (CID) of the epoxides generates diagnostic ions that can be used to locate CC bond positions. Meanwhile, CID of Mn(II) ion-lipid complexes produces characteristic ions for determination of sn positions. This bifunctional derivatization takes place in seconds, and the diagnostic ions produced in CID are clear and easy to interpret. Moreover, relative quantification of CC bond-and sn-positional isomers was achieved. The capability of this method in identifying lipids at multiple isomer levels was shown using lipid standards and lipid extracts from complex biological samples.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Shuli Tang
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Dallas Freitas
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Erin Hirtzel
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Heyong Cheng
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| |
Collapse
|
31
|
Lillja J, Lanekoff I. Quantitative determination of sn-positional phospholipid isomers in MS n using silver cationization. Anal Bioanal Chem 2022; 414:7473-7482. [PMID: 35731255 PMCID: PMC9482905 DOI: 10.1007/s00216-022-04173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
Glycerophospholipids are one of the fundamental building blocks for life. The acyl chain connectivity to the glycerol backbone constitutes different sn-positional isomers, which have great diversity and importance for biological function. However, to fully realize their impact on function, analytical techniques that can identify and quantify sn-positional isomers in chemically complex biological samples are needed. Here, we utilize silver ion cationization in combination with tandem mass spectrometry (MSn) to identify sn-positional isomers of phosphatidylcholine (PC) species. In particular, a labile carbocation is generated through a neutral loss (NL) of AgH, the dissociation of which provides diagnostic product ions that correspond to acyl chains at the sn-1 or sn-2 position. The method is comparable to currently available methods, has a sensitivity in the nM-µM range, and is compatible with quantitative imaging using mass spectrometry in MS4. The results reveal a large difference in isomer concentrations and the ion images show that the sn-positional isomers PC 18:1_18:0 are homogeneously distributed, whereas PC 18:1_16:0 and PC 20:1_16:0 show distinct localizations to sub-hippocampal structures.
Collapse
Affiliation(s)
- Johan Lillja
- Department of Chemistry - BMC (576), Uppsala University, 751 23, Uppsala, Sweden
| | - Ingela Lanekoff
- Department of Chemistry - BMC (576), Uppsala University, 751 23, Uppsala, Sweden.
| |
Collapse
|
32
|
Liu X, Jiao B, Cao W, Ma X, Xia Y, Blanksby SJ, Zhang W, Ouyang Z. Development of a Miniature Mass Spectrometry System for Point-of-Care Analysis of Lipid Isomers Based on Ozone-Induced Dissociation. Anal Chem 2022; 94:13944-13950. [PMID: 36176011 DOI: 10.1021/acs.analchem.2c03112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Disorder of lipid homeostasis is closely associated with a variety of diseases. Although mass spectrometry (MS) approaches have been well developed for the characterization of lipids, it still lacks an integrated and compact MS system that is capable of rapid and detailed lipid structural characterization and can be conveniently transferred into different laboratories. In this work, we describe a novel miniature MS system with the capability of both ozone-induced dissociation (OzID) and collision-induced dissociation (CID) for the assignment of sites of unsaturation and sn-positions in glycerolipids. A miniature ozone generator was developed, which can be operated at a relatively high pressure. By maintaining high-concentration ozone inside the linear ion trap, OzID efficiency was significantly improved for the identification of C═C locations in unsaturated lipids, with reaction times as short as 10 ms. Finally, the miniature OzID MS system was applied to the analysis of C═C locations and sn-positions of lipids from biological samples. Direct sampling and fast detection of changes in phospholipid isomers were demonstrated for the rapid discrimination of breast cancer tissue samples, showing the potential of the miniature OzID MS system for point-of-care analysis of lipid isomer biomarkers in complex samples.
Collapse
Affiliation(s)
- Xinwei Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Bin Jiao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Wenbo Cao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Xiaoxiao Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Stephen J Blanksby
- Central Analytical Research Facility and School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Yang T, Tang S, Kuo S, Freitas D, Edwards M, Wang H, Sun Y, Yan X. Lipid Mass Tags via Aziridination for Probing Unsaturated Lipid Isomers and Accurate Relative Quantification**. Angew Chem Int Ed Engl 2022; 61:e202207098. [DOI: 10.1002/anie.202207098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Tingyuan Yang
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Shuli Tang
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Syuan‐Ting Kuo
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Dallas Freitas
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Madison Edwards
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Hongying Wang
- Department of Nutrition Texas A&M University 373 Olsen Blvd. College Station TX 77845 USA
| | - Yuxiang Sun
- Department of Nutrition Texas A&M University 373 Olsen Blvd. College Station TX 77845 USA
| | - Xin Yan
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| |
Collapse
|
34
|
Tang S, Chen X, Ke Y, Wang F, Yan X. Voltage-Controlled Divergent Cascade of Electrochemical Reactions for Characterization of Lipids at Multiple Isomer Levels Using Mass Spectrometry. Anal Chem 2022; 94:12750-12756. [PMID: 36087069 PMCID: PMC10386884 DOI: 10.1021/acs.analchem.2c02375] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cascading divergent reactions in a single system is highly desirable for their intrinsic efficiency and potential to achieve multilevel structural characterization of complex biomolecules. In this work, two electrochemical reactions, interfacial electro-epoxidation and cobalt anodic corrosion, are divergently cascaded in nanoelectrospray (nESI) and can be switched at different voltages. We applied these reactions to lipid identification at multiple isomer levels using mass spectrometry (MS), which remains a great challenge in structural lipidomics. The divergent cascade reactions in situ derivatize lipids to produce epoxidized lipids and cobalt-adducted lipids at different voltages. These lipids are then fragmented upon low-energy collision-induced dissociation (CID), generating diagnostic fragments to indicate C═C locations and sn-positions that cannot be achieved by the low-energy CID of native lipids. We have demonstrated that lipid structural isomers show significantly different profiles in the analysis of healthy and cancerous mouse prostate samples using this strategy. The application of divergent cascade reactions in lipid identification allows the four-in-one analysis of lipid headgroups, fatty acyl chains, C═C locations, and sn-positions simply by tuning the nESI voltages within a single experiment. This feature as well as its low sample consumption, no need for an extra apparatus, and quantitative analysis capability show its great potential in lipidomics.
Collapse
Affiliation(s)
- Shuli Tang
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Xi Chen
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Yuepeng Ke
- Center for Translational Cancer Research, Texas A&M Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Fen Wang
- Center for Translational Cancer Research, Texas A&M Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| |
Collapse
|
35
|
Kuo ST, Tang S, Russell DH, Yan X. Characterization of lipid carbon-carbon double-bond isomerism via ion mobility-mass spectrometry (IMS-MS) combined with cuprous ion-induced fragmentation. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2022; 479:116889. [PMID: 37577146 PMCID: PMC10421641 DOI: 10.1016/j.ijms.2022.116889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Characterization of phospholipid isomers is challenging due to their identical masses and similarities in structures. Here, we report that copper (I) ion complexed with phospholipids can be used to characterize both carbon-carbon double-bond (C=C bond) positional and geometric isomers. We investigate the distinct fragmentation patterns induced by the π-Cu+ interaction and developed strategies to rapidly characterize the isomerism of phospholipids. The multi-stage fragmentation of Cu+-adducted lipids by collision-induced dissociation can generate diagnostic ions to locate C=C bonds in unsaturated lipids. Furthermore, the collision cross sections of Cu+-adducted parent lipids and product ions can be used as molecular descriptors in distinguishing C=C bond geometric isomers. A bovine heart lipid extract containing Z-configuration lipids spiked with an E-configuration lipid was analyzed to demonstrate rapidness and effectiveness of the method in distinguishing lipid geometric isomers from a real sample.
Collapse
Affiliation(s)
| | | | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
36
|
Yang T, Tang S, Kuo ST, Freitas D, Edwards M, Wang H, Sun Y, Yan X. Lipid Mass Tags via Aziridination for Probing Unsaturated Lipid Isomers and Accurate Relative Quantification. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Shuli Tang
- Texas A&M University Chemistry UNITED STATES
| | | | | | | | - Hongying Wang
- Texas A&M University Department of Nutrition UNITED STATES
| | - Yuxiang Sun
- Texas A&M University Department of Nutrition UNITED STATES
| | - Xin Yan
- Texas A&M University Chemistry 580 Ross St 77840 College Station UNITED STATES
| |
Collapse
|
37
|
Zhang W, Jian R, Zhao J, Liu Y, Xia Y. Deep-lipidotyping by mass spectrometry: recent technical advances and applications. J Lipid Res 2022; 63:100219. [PMID: 35489417 PMCID: PMC9213770 DOI: 10.1016/j.jlr.2022.100219] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/18/2022] Open
Abstract
In-depth structural characterization of lipids is an essential component of lipidomics. There has been a rapid expansion of mass spectrometry methods that are capable of resolving lipid isomers at various structural levels over the past decade. These developments finally make deep-lipidotyping possible, which provides new means to study lipid metabolism and discover new lipid biomarkers. In this review, we discuss recent advancements in tandem mass spectrometry (MS/MS) methods for identification of complex lipids beyond the species (known headgroup information) and molecular species (known chain composition) levels. These include identification at the levels of carbon-carbon double bond (C=C) location and sn-position as well as characterization of acyl chain modifications. We also discuss the integration of isomer-resolving MS/MS methods with different lipid analysis workflows and their applications in lipidomics. The results showcase the distinct capabilities of deep-lipidotyping in untangling the metabolism of individual isomers and sensitive phenotyping by using relative fractional quantitation of the isomers.
Collapse
Affiliation(s)
- Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, P. R. China
| | - Ruijun Jian
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yikun Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, P. R. China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
38
|
Lin Q, Li P, Jian R, Xia Y. Localization of Intrachain Modifications in Bacterial Lipids Via Radical-Directed Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:714-721. [PMID: 35195000 DOI: 10.1021/jasms.2c00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intrachain modifications of membrane glycerophospholipids (GPLs) due to formation of the carbon-carbon double bond (C═C), cyclopropane ring, and methyl branching are crucial for bacterial membrane homeostasis. Conventional collision-induced dissociation (CID) of even-electron ions of GPL favors charge-directed fragmentation channels, and thus little structurally informative fragments can be detected for locating intrachain modifications. In this study, we report a radical-directed dissociation (RDD) approach for characterization of the intrachain modifications within phosphoethanolamines (PEs), a major lipid component in bacterial membrane. In this method, a radical precursor that can produce benzyl or pyridine methyl radical upon low-energy CID at high efficiency is conjugated onto the amine group of PEs. The carbon-centered radical ions subsequently initiate RDD along the fatty acyl chain, producing fragment patterns key to the assignment and localization of intrachain modifications including C═C, cyclopropane rings, and methyl branching. Besides intrachain fragmentation, RDD on the glycerol backbone produces fatty acyl loss as radicals, allowing one to identify the fatty acyl chain composition of PE. Moreover, RDD of lyso-PEs produces radical losses for distinguishing the sn-isomers. The above RDD approach has been incorporated onto a liquid chromatography-mass spectrometry workflow and applied for the analysis of lipid extracts from Escherichia coli and Bacillus subtilis.
Collapse
Affiliation(s)
- Qiaohong Lin
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| | - Pengyun Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ruijun Jian
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| | - Yu Xia
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| |
Collapse
|
39
|
A novel on-tissue cycloaddition reagent for mass spectrometry imaging of lipid C=C position isomers in biological tissues. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Macias LA, Brodbelt JS. Enhanced Characterization of Cardiolipins via Hybrid 193 nm Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2022; 94:3268-3277. [PMID: 35135194 PMCID: PMC9284920 DOI: 10.1021/acs.analchem.1c05071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiolipins (CLs) constitute a structurally complex class of glycerophospholipids with a unique tetraacylated structure accompanied by distinctive functional roles. Aberrations in the composition of this lipid class have been associated with disease states, spurring interest in the development of new approaches to differentiate the structures of diverse CLs in complex mixtures. The structural characterization of these complex lipids using conventional methods, however, suffers from limited resolution and frequently proves unable to discern subtle yet biologically significant features such as unsaturation sites or acyl chain position assignments. Here, we describe the synergistic use of chemical derivatization and hybrid dissociation techniques to characterize CL from complex biological mixtures with both double bond and sn positional isomer resolution in a shotgun mass spectrometry strategy. Utilizing (trimethylsilyl)diazomethane (TMSD), CL phosphate groups were methylated to promote positive-mode ionization by the production of metal-cationized lipids, enabling structural interrogation via hybrid higher-energy collisional activation/ultraviolet photodissociation (HCD/UVPD). This combination of TMSD derivatization and HCD/UVPD fragmentation results in diagnostic product ions that permit distinction and relative quantitation of sn-stereoisomers and the localization of double bonds. Applying this strategy to a total lipid extract from a thyroid carcinoma revealed a previously unreported 18:2/18:1 motif, elucidating a structural feature unique to the lipid class.
Collapse
Affiliation(s)
- Luis A Macias
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
41
|
Jian R, Zhao X, Lin Q, Xia Y. Profiling of branched-chain fatty acids via nitroxide radical-directed dissociation integrated on an LC-MS/MS workflow. Analyst 2022; 147:2115-2123. [DOI: 10.1039/d2an00266c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By coupling O-benzylhydroxylamine derivatization and tandem mass spectrometry, nitroxide radical-induced dissociation can be initiated via collisional activation which enables the analysis of methyl branching(s) in fatty acids.
Collapse
Affiliation(s)
- Ruijun Jian
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xue Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiaohong Lin
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
42
|
Lin Q, Li P, Fang M, Zhang D, Xia Y. Deep Profiling of Aminophospholipids Reveals a Dysregulated Desaturation Pattern in Breast Cancer Cell Lines. Anal Chem 2021; 94:820-828. [PMID: 34931817 DOI: 10.1021/acs.analchem.1c03494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphatidylethanolamines (PEs), ether-PEs, and phosphatidylserines (PSs) are glycerophospholipids harboring a primary amino group in their headgroups. They are key components of mammalian cell membranes and play pivotal roles in cell signaling and apoptosis. In this study, a liquid chromatography-mass spectrometry (LC-MS) workflow for deep profiling of PEs, ether-PEs, and PSs has been developed by integrating two orthogonal derivatizations: (1) derivatization of the primary amino group by 4-trimethylammoniumbutyryl-N-hydroxysuccinimide (TMAB-NHS) for enhanced LC separation and MS detection and (2) the Paternò-Büchi (PB) reaction for carbon-carbon double bond (C═C) derivatization and localization. Significant improvement of the limit of identification down to the C═C location has been achieved for the standards of PSs (3 nM) and ether-PEs (20 nM). This workflow facilitates an identification of more than 200 molecular species of aminophospholipids in the porcine brain, two times more than those identified without TMAB-NHS derivatization. Importantly, we discovered that the n-10 isomers in C16:1 and C18:1 of aminophospholipids showed elevated contribution among other isomers, which correlated well with an increased transcription of the corresponding desaturase (FADS2) in the human breast cancer cell line (MDA-MB-231) relative to that in the normal cell line (HMEC). The abovementioned data suggest that lipid reprograming via forming different C═C location isomers might be an alternative mechanism in cancer cells.
Collapse
Affiliation(s)
- Qiaohong Lin
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| | - Pengyun Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Mengxuan Fang
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China.,School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Donghui Zhang
- Department of Precision Instrument, Tsinghua University, Beijing 10084, China
| | - Yu Xia
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| |
Collapse
|
43
|
Han Y, Chen P, Li Z, Wang X, Sun C. Multi-wavelength visible-light induced [2+2] cycloaddition for identification of lipid isomers in biological samples. J Chromatogr A 2021; 1662:462742. [PMID: 34923306 DOI: 10.1016/j.chroma.2021.462742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
Ultraviolet (UV) light-catalyzed Paternò-Büchi (PB) reaction has been developed as an efficient lipid C=C double bond (DB) derivatization strategy, which can accurately assign the position of C=C bond in unsaturated lipids when coupled with tandem mass spectrometry (MS/MS). Inspired by this, here we proposed a novel visible-light induced [2+2] cycloaddition reaction combined with ESI-MS/MS and MALDI-MS/MS to identify lipid C=C position isomers. Benz[g]isoquinoline-5,10-dione (BIQD) and 6,9-difluorobenzo[g]isoquinoline-5,10-dione (DF-BIQD) were developed as a new type of [2+2] cycloaddition reagent, which can not only react with C=C bond under 254 nm UV light irradiation, but also quickly combine with lipid C=C bond under the irradiation of 405 nm visible-light and > 400 nm compact fluorescent lamp visible-light. High cycloaddition reaction conversion efficiency can be achieved by irradiating under compact fluorescent lamp light for 2 min. Moreover, we discovered that 437 nm, 489 nm, 545 nm, 581 nm, and 613 nm monochromatic light appearing in compact fluorescent lamp can individually induce the [2 + 2] cycloaddition reaction between DF-BIQD and unsaturated lipids. Using this method, we found that the expressions of lipid DB-positional isomers in rat heart, brain, lung, spleen, thymus, kidney, liver and plasma vary greatly. The relative content of FA-18:1 (Δ9) in rat heart is only 1.49 times that of FA-18:1 (Δ11), while the relative content of FA-18:1 (Δ9) in rat plasma is 5.20 times that of FA-18:1 (Δ11). The above results offer new insight into the development of photocatalytic reagent for visible-light induced [2+2] cycloaddition and structural lipidomic studies.
Collapse
Affiliation(s)
- Yuhao Han
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Panpan Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Zhichao Li
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Chenglong Sun
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
44
|
Deng J, Yang Y, Zeng Z, Xiao X, Li J, Luan T. Discovery of Potential Lipid Biomarkers for Human Colorectal Cancer by In-Capillary Extraction Nanoelectrospray Ionization Mass Spectrometry. Anal Chem 2021; 93:13089-13098. [PMID: 34523336 DOI: 10.1021/acs.analchem.1c03249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Discovering cancer biomarkers is of significance for clinical medicine and disease diagnosis. In this article, we develop an in-capillary extraction nanoelectrospray ionization mass spectrometry (ICE-nanoESI-MS) method to rapidly and in situ investigate human colorectal cancer for discovering lipid biomarkers. The ICE-nanoESI-MS method is performed using a tungsten microdissecting probe for in situ microsampling of surgical human colorectal cancer tumors and their paired distal noncancerous tissues during/after surgery. After sampling, the tungsten probe and the adhered tissues are inserted into a nanospray tip prefilled with some solvent for simultaneous in-capillary extraction and nanoESI-MS detection under ambient and open-air conditions. Online coupling of the Paternò-Büchi reaction and radical-direct fragmentation with ICE-nanoESI-MS is easily realized, which provides the opportunity to precisely determine carbon-carbon double bond (C═C) locations and stereospecific numbering (sn) positions of lipid biomarkers. Subsequently, a total of 12 pairs of colorectal cancer tumors and distal noncancerous tissues from different patients are investigated by our proposed ICE-nanoESI-MS method. A significant increase in lysophospholipids and fatty acids as well as a significant decrease in ceramides are discovered, and lysophospholipids are found as the potential biomarkers related to the formation and pathogenesis of human colorectal cancer.
Collapse
Affiliation(s)
- Jiewei Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yunyun Yang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Zhaolei Zeng
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510070, China
| | - Xue Xiao
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Jiajie Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Tiangang Luan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.,Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.,School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
45
|
Huang W, Zhou H, Yuan M, Lan L, Hou A, Ji S. Comprehensive characterization of the chemical constituents in Platycodon grandiflorum by an integrated liquid chromatography-mass spectrometry strategy. J Chromatogr A 2021; 1654:462477. [PMID: 34433124 DOI: 10.1016/j.chroma.2021.462477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
Platycodon grandiflorum (PG), as a well-known medicine food homology species, possess various pharmacological effects and health benefits. Aiming to facilitate in-depth and global characterization of the chemical compositions of PG, a profiling method based on ultra-high performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry (UPLC/IM-QTOF-MS) was conducted. Consequently, as many as 187 compounds were plausibly or unambiguously identified. Most importantly, phospholipids (PLs) were first observed and identified in PG. Due to their widely confirmed bioactivities, an analysis scheme was developed by hydrophilic interaction liquid chromatography and electrospray ionization tandem mass spectrometry combined with the online Paternò-Büchi reaction (HILIC-PB-MS/MS). The fatty acyl chains and C=C locations of 180 PLs molecular species, which fell into four classes, were unprecedently characterized. This exposure strategy of multi-type constituents greatly enriches the chemical profiling of PG, and helps promoting the further development of therapeutic agents and nutraceutical products from PG.
Collapse
Affiliation(s)
- Weizhen Huang
- School of Pharmacy, Fudan University, Shanghai 201203, PR China; NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, PR China
| | - Heng Zhou
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, PR China
| | - Ming Yuan
- Waters Corporation (China), Shanghai 201206, PR China
| | - Lan Lan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, PR China.
| | - Aijun Hou
- School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| | - Shen Ji
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, PR China.
| |
Collapse
|
46
|
Macias LA, Garza KY, Feider CL, Eberlin LS, Brodbelt JS. Relative Quantitation of Unsaturated Phosphatidylcholines Using 193 nm Ultraviolet Photodissociation Parallel Reaction Monitoring Mass Spectrometry. J Am Chem Soc 2021; 143:14622-14634. [PMID: 34486374 PMCID: PMC8579512 DOI: 10.1021/jacs.1c05295] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Structural characterization of glycerophospholipids beyond the fatty acid level has become a major endeavor in lipidomics, presenting an opportunity to advance the understanding of the intricate relationship between lipid metabolism and disease state. Distinguishing subtle lipid structural features, however, remains a major challenge for high-throughput workflows that implement traditional tandem mass spectrometry (MS/MS) techniques, stunting the molecular depth of quantitative strategies. Here, reversed phase liquid chromatography is coupled to parallel reaction mass spectrometry utilizing the double bond localization capabilities of ultraviolet photodissociation (UVPD) mass spectrometry to produce double bond isomer specific responses that are leveraged for relative quantitation. The strategy provides lipidomic characterization at the double bond level for phosphatidylcholine phospholipids from biological extracts. In addition to quantifying monounsaturated lipids, quantitation of phospholipids incorporating isomeric polyunsaturated fatty acids is also achieved. Using this technique, phosphatidylcholine isomer ratios are compared across human normal and tumor breast tissue to reveal significant structural alterations related to disease state.
Collapse
Affiliation(s)
- Luis A Macias
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kyana Y Garza
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Clara L Feider
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
47
|
Yu S, Fan J, Zhang L, Qin X, Li Z. Assessment of Biphasic Extraction Methods of Mouse Fecal Metabolites for Liquid Chromatography-Mass Spectrometry-Based Metabolomic Studies. J Proteome Res 2021; 20:4487-4494. [PMID: 34435490 DOI: 10.1021/acs.jproteome.1c00450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the increasing knowledge about the important roles of gut microbiota on the biological system, a systematic strategy to profile the fecal metabolome is urgently needed. Thus, an unbiased, efficient, and reproducible fecal metabolite extraction protocol needs to be established; however, the effect of biphasic extraction methods for the fecal samples remains unclear. In this study, five different methods were assessed in the extraction of polar and non-polar metabolites for the liquid chromatography-mass spectrometry (LC-MS)-based mouse fecal metabolomic study. First, the detection coverage of two extraction systems, the Bligh and Dyer extraction method (M1, chloroform/methanol/water, 2/2/1.8) and Matyash method (M2, methyl tert-butyl ether (MTBE)/methanol/water, 10/3/2.5), was compared; then, MTBE/methanol/water system with different solvent ratios (M3, 2.6/2.0/2.4; M4, 4.5/1/2.5; and M5, 3/2.5/2.5) were further evaluated. The results showed that M2 showed higher detection coverage than M1. For the MTBE/methanol/water system with different solvent ratios, M3 showed the largest detection coverage based on peak numbers and numbers of putatively annotated metabolites, while M4 presented the least overlap between two phases, higher peak intensities of metabolites, and superior reproducibility. Based on the above evidence, M4 was recommended for the biphasic extraction of fecal metabolites in the LC-MS-based mouse fecal metabolomic study.
Collapse
Affiliation(s)
- Shuting Yu
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, People's Republic of China
| | - Jianxin Fan
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, People's Republic of China
| | - Lin Zhang
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, People's Republic of China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, People's Republic of China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, People's Republic of China
| |
Collapse
|
48
|
Tu A, Garrard KP, Said N, Muddiman DC. In situ detection of fatty acid C=C positional isomers by coupling on-tissue mCPBA epoxidation with infrared matrix-assisted laser desorption electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9119. [PMID: 33942403 PMCID: PMC8988907 DOI: 10.1002/rcm.9119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Unsaturated fatty acids (UFAs) play vital roles in regulating cellular functions. In-depth structural characterization of UFAs such as localizing carbon-carbon double bonds is fundamentally important but poses considerable challenges in mass spectrometry (MS) given that the most widely accessible ion activation method, low-energy collision-induced dissociation (CID), primarily generates uninformative fragments (e.g., neutral loss of CO2 ) that are not suggestive of the double-bond positions. METHODS m-Chloroperoxybenzoic acid (mCPBA) was uniformly deposited onto the sample slides using a TM Sprayer, converting the carbon-carbon double bonds into epoxides under ambient conditions. The epoxidation product was ionized in situ by infrared matrix-assisted laser desorption electrospray ionization mass spectrometry (IR-MALDESI-MS), and subsequently cleaved via CID, generating a diagnostic ion pair associated with the double-bond position. The reaction efficiency, sensitivity and relative quantification capability of the method were validated with five UFA standards dried on glass slides, and then this strategy was demonstrated on thin tissue sections of rat liver and human bladder. RESULTS The mCPBA reaction yielded conversion rates in the range of 44-60% in 10 min with high specificity and sensitivity. Further tandem mass spectrometry (MS/MS) of the mono-epoxidized products generated informative fragment ions specific to the double-bond positions, and relative quantification of positional isomers in binary mixtures was performed across a wide mole fraction from 0 to 1. An innovative spiral scan pattern was utilized during data acquisition, elucidating the major isomeric compositions of multiple UFAs from a tissue section in a single run. CONCLUSIONS The on-tissue mCPBA epoxidation was implemented into an ambient MS imaging workflow to offer a rapid and simple way for in situ identification and relative quantification of double-bond positional isomers without the requirement for instrument modification. The method can be readily implemented on many other MS platforms to reveal the role of double-bond positional isomers in lipid biology and to discover potential biomarkers.
Collapse
Affiliation(s)
- Anqi Tu
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kenneth P Garrard
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
- Precision Engineering Consortium, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, 27695, USA
| | - Neveen Said
- Departments of Cancer Biology, Pathology, and Urology, Wake Forest University School of Medicine, Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC, 27157, USA
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
49
|
Magny R, Regazzetti A, Kessal K, Baudouin C, Mélik-Parsadaniantz S, Laprévote O, Brignole-Baudouin F, Auzeil N, Roulland E. Deepening of lipidome annotation by associating cross-metathesis reaction with mass spectrometry: application to an in vitro model of corneal toxicity. Anal Bioanal Chem 2021; 413:4825-4836. [PMID: 34125263 DOI: 10.1007/s00216-021-03438-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022]
Abstract
The in-depth knowledge of lipid biological functions needs a comprehensive structural annotation including a method to locate fatty acid unsaturations, which remains a thorny problem. For this purpose, we have associated Grubbs' cross-metathesis reaction and liquid chromatography hyphenated to tandem mass spectrometry to locate double bond positions in lipid species. The pretreatment of lipid-containing samples by Grubbs' catalyst and an appropriate alkene generates substituted lipids through cross-metathesis reaction under mild, chemoselective, and reproducible conditions. A systematic LC-MS/MS analysis of the reaction mixture allows locating unambiguously the double bonds in fatty acid side chains of phospholipids, glycerolipids, and sphingolipids. This method has been successfully applied at a nanomole scale to commercial standard mixtures consisting of 10 lipid subclasses as well as in lipid extracts of human corneal epithelial (HCE) cell line allowing to pinpoint double bond of more than 90 species. This method has also been useful to investigate the lipid homeostasis alteration in an in vitro model of corneal toxicity, i.e., HCE cells incubated with benzalkonium chloride. The association of cross-metathesis and tandem mass spectrometry appears suitable to locate double bond positions in lipids involved in relevant biological processes.
Collapse
Affiliation(s)
- Romain Magny
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012, Paris, France.,C-TAC, CiTCoM, UMR 8038, CNRS Université de Paris, Faculté de Pharmacie, 75006, Paris, France
| | - Anne Regazzetti
- C-TAC, CiTCoM, UMR 8038, CNRS Université de Paris, Faculté de Pharmacie, 75006, Paris, France
| | - Karima Kessal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012, Paris, France.,CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 75012, Paris, France
| | - Christophe Baudouin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012, Paris, France.,CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 75012, Paris, France.,Départment d'Ophthalmologie, Hôpital Ambroise Parée, AP HP, 92100, Boulogne, France.,Université Versailles St Quentin en Yvelines, 78180, Paris Saclay, Montigny-Le-Bretonneux, France
| | | | - Olivier Laprévote
- C-TAC, CiTCoM, UMR 8038, CNRS Université de Paris, Faculté de Pharmacie, 75006, Paris, France.,Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 75015, Paris, France
| | - Françoise Brignole-Baudouin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012, Paris, France.,C-TAC, CiTCoM, UMR 8038, CNRS Université de Paris, Faculté de Pharmacie, 75006, Paris, France.,CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 75012, Paris, France
| | - Nicolas Auzeil
- C-TAC, CiTCoM, UMR 8038, CNRS Université de Paris, Faculté de Pharmacie, 75006, Paris, France.
| | - Emmanuel Roulland
- C-TAC, CiTCoM, UMR 8038, CNRS Université de Paris, Faculté de Pharmacie, 75006, Paris, France.
| |
Collapse
|
50
|
Li Z, Cheng S, Lin Q, Cao W, Yang J, Zhang M, Shen A, Zhang W, Xia Y, Ma X, Ouyang Z. Single-cell lipidomics with high structural specificity by mass spectrometry. Nat Commun 2021; 12:2869. [PMID: 34001877 PMCID: PMC8129106 DOI: 10.1038/s41467-021-23161-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
Single-cell analysis is critical to revealing cell-to-cell heterogeneity that would otherwise be lost in ensemble analysis. Detailed lipidome characterization for single cells is still far from mature, especially when considering the highly complex structural diversity of lipids and the limited sample amounts available from a single cell. We report the development of a general strategy enabling single-cell lipidomic analysis with high structural specificity. Cell fixation is applied to retain lipids in the cell during batch treatments prior to single-cell analysis. In addition to tandem mass spectrometry analysis revealing the class and fatty acyl-chain for lipids, batch photochemical derivatization and single-cell droplet treatment are performed to identify the C=C locations and sn-positions of lipids, respectively. Electro-migration combined with droplet-assisted electrospray ionization enables single-cell mass spectrometry analysis with easy operation but high efficiency in sample usage. Four subtypes of human breast cancer cells are correctly classified through quantitative analysis of lipid C=C location or sn-position isomers in ~160 cells. Most importantly, the single-cell deep lipidomics strategy successfully discriminates gefitinib-resistant cells from a population of wild-type human lung cancer cells (HCC827), highlighting its unique capability to promote precision medicine.
Collapse
Affiliation(s)
- Zishuai Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Simin Cheng
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Qiaohong Lin
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Wenbo Cao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Jing Yang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Minmin Zhang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Aijun Shen
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Xiaoxiao Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|