1
|
Nishiuchi T, Takeuchi S, Kubo T. [5]Cumulene Bridged Tri(9-anthryl)Methyl Dimer. Chem Asian J 2025:e202401868. [PMID: 40289888 DOI: 10.1002/asia.202401868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Toward the synthesis and evaluation of stable radical-based 2D frameworks, a diacetylene-bridged tri(9-anthryl)methyl (TAntM) radical dimer was designed and synthesized. X-ray crystallographic analysis revealed a strong spin-spin interaction between TAntM radical units through the diacetylene linker, resulting in a closed-shell [5]cumulene structure as the stable form. Variable-temperature (VT) 1H-NMR measurements at high temperatures showed signal broadening for aromatic protons, indicating an increased population of thermally excited triplet species as a metastable form. To facilitate spin-state modulation by external stimuli, mechanical grinding in the solid state was conducted. Due to its reactivity, mechanical grinding partially induced structural changes to radical species in the solid state.
Collapse
Affiliation(s)
- Tomohiko Nishiuchi
- Department of Chemistry, Graduate School of Science, The University of Osaka, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives, (ISC-OTRI), The University of Osaka, Japan
| | - Shino Takeuchi
- Department of Chemistry, Graduate School of Science, The University of Osaka, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science, The University of Osaka, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives, (ISC-OTRI), The University of Osaka, Japan
- Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives (SRN-OTRI), The University of Osaka, Japan
| |
Collapse
|
2
|
Dzieszkowski K, Pawlicki M. Open-Shell States in Dynamic Diradicaloids. Chempluschem 2025:e202500033. [PMID: 40099690 DOI: 10.1002/cplu.202500033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/01/2025] [Indexed: 03/20/2025]
Abstract
The open-shell organic and carbon-based systems, with either a doublet, triplet or higher spin-states, play a key role in contemporary research, opening potential applicability for several crucial fields. Among those derivatives, specific attention has been given to p-phenylene-based systems derived from the original Thiele hydrocarbon. These systems stabilize an open-shell diradicaloid resonance structure with a thermally accessible triplet state and are derived from a quinone-benzene (Clar's sextet) equilibrium. In our discussion, we very carefully choose examples which focus on fundamental derivatives that merge diatropic subunits, ready to stabilize two unpaired electrons via a dynamic modulation of geometry. This process provides an additional factor to the resonance energy of aromatics, mostly responsible for stabilization of two unpaired electrons.
Collapse
Affiliation(s)
- Krzysztof Dzieszkowski
- Department Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Miłosz Pawlicki
- Department Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| |
Collapse
|
3
|
Shu Y, Huang J, Yang J, Shangguan Z, Ma J, Li C, Zhang G, Peng Q, Zhang XS, Fan Q, Wang B, Zhang D. Heptene end-capped Thiele hydrocarbons with tunable configuration and emission and on-surface transformation via annulation. Chem Commun (Camb) 2025; 61:3994-3997. [PMID: 39945625 DOI: 10.1039/d5cc00053j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
We report a para-quinodimethane skeleton (p-QDM)-based polycyclic aromatic hydrocarbon (PAH) with heptenes as end-capping groups and F-substituents in the central six-membered ring. This compound shows the syn-configuration in one crystal form with relative strong emission (ΦF = 0.25), and the anti-configuration in another crystal form with weak emission. Furthermore, this compound was transformed into the more annulated PAHs via on-surface C-F bond activations.
Collapse
Affiliation(s)
- Yilin Shu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianmin Huang
- Hefei National Research Center for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junfang Yang
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhichun Shangguan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Junlong Ma
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Qian Peng
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xi-Sha Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Qitang Fan
- Hefei National Research Center for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bing Wang
- Hefei National Research Center for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Deka R, Chattopadhyay S, Orthaber A. Contorting the hetero phosphaquinoid: synthesis and electronic insights into a non-planar, ferrocenyl phosphaquinoid. Dalton Trans 2025; 54:3113-3117. [PMID: 39898758 DOI: 10.1039/d4dt03542a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
We report a highly contorted phosphaquinoid by substituting one of the exocyclic CC bonds of an anthraquinodimethane unit with a phosphaalkene unit (-CP-Mes*, Mes* = 2,4,6-tri-tbutylbenzene) and end-capping the opposite terminus with 'C(Fc)Ph'. Both isomers (E,Z) exhibit butterfly-like distortion of the anthracene core and demonstrate remarkable stability towards air and moisture.
Collapse
Affiliation(s)
- Rajesh Deka
- Synthetic Molecular Chemistry, Department of Chemistry Ångström Laboratory, Uppsala University, BOX 523, 75120 Uppsala, Sweden.
| | - Samir Chattopadhyay
- Physical Chemistry, Department of Chemistry Ångström Laboratory. Uppsala University, BOX 523, 75120 Uppsala, Sweden
| | - Andreas Orthaber
- Synthetic Molecular Chemistry, Department of Chemistry Ångström Laboratory, Uppsala University, BOX 523, 75120 Uppsala, Sweden.
| |
Collapse
|
5
|
Sujilkumar S, Hari A, Hariharan M. Through-space conjugation driven luminescence enhancement in crystalline butterfly architectures. Chem Commun (Camb) 2025; 61:3331-3334. [PMID: 39899390 DOI: 10.1039/d4cc05351f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Through-space conjugation in organic chromophores offers significant potential for developing highly efficient luminescent materials. Herein, we investigate the luminescencent properties of crystalline tetra-naphthalene connected dihydropentacene isomers, 1-NP and 2-NP, using both experimental and theoretical approaches, establishing the presence of through-space conjugation mediated luminescence enhancement.
Collapse
Affiliation(s)
- Suvarna Sujilkumar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India.
| | - Avinash Hari
- School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India.
| |
Collapse
|
6
|
Deka R, Asif Ansari M, Chattopadhyay S, Lomoth R, Thapper A, Orthaber A. Introducing Phosphorus into the Overcrowded Thiele's hydrocarbon Family: Unveiling Contorted Main Group Diradicaloids with Dynamic Redox Behavior. Angew Chem Int Ed Engl 2024; 63:e202406076. [PMID: 39159069 DOI: 10.1002/anie.202406076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Thiele's Hydrocarbons (THs) featuring a 9,10-anthrylene core with switchable geometric and electronic configurations offer exciting possibilities in advanced functional materials. Despite significant advances in main group-based diradicaloids in contemporary chemistry, main group THs containing an anthrylene cores have remained elusive, primarily due to the lack of straightforward synthetic strategies and the inherent high reactivity of these species. In this study, we utilize an anthracene-based phosphine synthon to demonstrate, for the first time, a facile and high-yielding synthetic strategy for robust P-functionalized overcrowded ethylenes (OCEs) within the TH family. These OCEs feature a non-symmetric environment, incorporating (thio) xanthyl and phosphaalkene termini. We systematically probe the electronic structures of these derivatives to illustrate the impact of the isolobal phosphaalkene motif on the quinoidal/diradicaloid character. Notably, the compounds exhibit dynamic redox behavior, leading to orthogonally twisted conformational changes upon oxidation, with a kinetically locked redox-couple.
Collapse
Affiliation(s)
- Rajesh Deka
- Department of Chemistry-Ångström laboratories (Synthetic Molecular Chemistry), Uppsala University, BOX 523, 75120, Uppsala, Sweden
| | - Mohd Asif Ansari
- Department of Chemistry-Ångström laboratories (Synthetic Molecular Chemistry), Uppsala University, BOX 523, 75120, Uppsala, Sweden
| | - Samir Chattopadhyay
- Department of Chemistry-Ångström laboratories (Physical Chemistry), Uppsala University, BOX 523, 75120, Uppsala, Sweden
| | - Reiner Lomoth
- Department of Chemistry-Ångström laboratories (Physical Chemistry), Uppsala University, BOX 523, 75120, Uppsala, Sweden
| | - Anders Thapper
- Department of Chemistry-Ångström laboratories (Synthetic Molecular Chemistry), Uppsala University, BOX 523, 75120, Uppsala, Sweden
| | - Andreas Orthaber
- Department of Chemistry-Ångström laboratories (Synthetic Molecular Chemistry), Uppsala University, BOX 523, 75120, Uppsala, Sweden
| |
Collapse
|
7
|
Shimizu M, Nishimura K, Mineyama M, Terao R, Sakurai T, Sakaguchi H. Bis(tricyclic) Aromatic Enes That Exhibit Efficient Fluorescence in the Solid State. Molecules 2024; 29:5361. [PMID: 39598750 PMCID: PMC11596714 DOI: 10.3390/molecules29225361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
We report herein that bis(tricyclic) aromatic enes (BAEs) consisting of 6-6-6-membered frameworks such as acridine, xanthene, thioxanthene, and thioxanthene-S,S-dioxide act as a new class of organic luminophores that exhibit blue-to-green fluorescence in the solid state and in polymer film with good to excellent quantum yields. The BAEs were prepared by the palladium-catalyzed double cross-coupling reaction of phenazastannines or 10,10-dimethyl-10H-phenothiastannin with 9-(dibromomethylene)xanthene, 9-(dibromomethylene)thioxanthene, or 9-(dibromomethylene)-9H-thioxanthene-10,10-dioxide. Microcrystals or powder samples of the BAEs exhibited brilliant fluorescence with good to high quantum yields (Φ = 0.45-0.88). Furthermore, more efficient emission of blue-to-green light (Φ = 0.59-0.91) was observed for the BAEs dispersed in the poly(methyl methacrylate) (PMMA) films. Density functional theory (DFT) calculations suggest that the photo-absorption of the (thio)xanthene moiety-containing BAEs proceeds via π-π* transitions, whereas the optical excitation of 10,10-dioxido-9H-thioxanthene moiety-containing BAEs involves an intramolecular charge transfer from the acridine/thioxanthene part to the electron-accepting 10,10-dioxido-9H-thioxanthene moiety.
Collapse
Affiliation(s)
- Masaki Shimizu
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, 1 Hashikami-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kenta Nishimura
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, 1 Hashikami-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mizuki Mineyama
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, 1 Hashikami-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Rin Terao
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, 1 Hashikami-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Tsuneaki Sakurai
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, 1 Hashikami-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroshi Sakaguchi
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji 611-0011, Japan
| |
Collapse
|
8
|
Sun Y, Wang K, Huang X, Wei S, Contreras E, Jain PK, Campos LM, Kulik HJ, Moore JS. Caged AIEgens: Multicolor and White Emission Triggered by Mechanical Activation. J Am Chem Soc 2024; 146:27117-27126. [PMID: 39306733 DOI: 10.1021/jacs.4c09926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Aggregation-induced emission luminogens (AIEgens) that respond to mechanical force are increasingly used as force probes, memory devices, and advanced security systems. Most of the known mechanisms to modulate mechanoresponsive AIEgens have been based on changes in aggregation states, involving only physical alterations. Instances that employ covalent bond cleavage are still rare. We have developed a novel mechanochemical uncaging strategy to unveil AIEgens with diverse emission characteristics using engineered norborn-2-en-7-one (NEO) mechanophores. These NEO mechanophores were covalently integrated into polymer molecules and activated in both the solution and solid states. This activation resulted in highly tunable fluorescence upon immobilization through solidification or aggregation, producing blue, green, yellow, and orange-red emissions. By designing the caged and uncaged forms as donor-acceptor pairs for Förster resonance energy transfer (FRET), we achieved multicolor mechanofluorescence, effectively broadening the color spectrum to include white emission. Additionally, we computationally explored the electronic structures of activated NEOs, providing insights into the observed regiochemical effects of the substituents. This understanding, together with the novel luminogenic characteristics of the caged and activated species, provides a highly tunable reporter that traces progress with continuous color evolution. This advancement paves the way for future applications of mechanoresponsive materials in areas like damage detection and bioimaging.
Collapse
Affiliation(s)
- Yunyan Sun
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kecheng Wang
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xiao Huang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shixuan Wei
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Enrique Contreras
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Prashant K Jain
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Heather J Kulik
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Ishigaki Y, Mizuno SI, Sugawara K, Hashimoto T, Suzuki S, Suzuki T. Thermal Equilibrium Between Quinoid/Biradical Forms Enhancing Electrochemical Amphotericity. Chemistry 2024; 30:e202400916. [PMID: 38644537 DOI: 10.1002/chem.202400916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 04/23/2024]
Abstract
Upon dibenzo annulation on Thiele's hydrocarbon (tetraphenyl-p-quinodimethane), the quinoid form and the biradical form adopt quite different geometries, and thus are no longer resonance structures. When these two forms can interconvert rapidly due to the small energy barrier (ΔG≠), the equilibrated mixture contains both forms in a ratio that is determined by the energy difference (ΔGo) between the two forms. For a series of tetrakis[5-(4-methoxyphenyl)-2-thienyl]-substituted derivatives, the more stable quinoid form and the metastable biradical form coexist in solution as an equilibrated mixture due to small ΔG≠ (<15 kcal mol-1) and ΔGo (1-4 kcal mol-1), in which the proportion of the two forms can be regulated by temperature. Since the biradical form can undergo easy two-electron (2e) oxidation to the corresponding dications as well as easy 2e-reduction to the dianions, it exhibits very high electrochemical amphotericity. This character with a record-small span for not only the first oxidation and reduction potentials but also the second those, [E1 sum≈E2 sum=E2 ox-E2 red=ca. 1.4 V], is attained through thermally enhanced conversion to the biradical form from the corresponding quinoid form, the latter of which is less amphoteric due to higher Eox and lower Ered values.
Collapse
Affiliation(s)
- Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Shin-Ichi Mizuno
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kazuma Sugawara
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Takumi Hashimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Shuichi Suzuki
- Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
10
|
Banachowicz P, Das M, Kruczała K, Siczek M, Sojka Z, Kijewska M, Pawlicki M. Breaking Global Diatropic Current to Tame Diradicaloid Character: Thiele's Hydrocarbon Under Macrocyclic Constraints. Angew Chem Int Ed Engl 2024; 63:e202400780. [PMID: 38407458 DOI: 10.1002/anie.202400780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024]
Abstract
A diradical/biradical character of organic derivatives is one of the key aspects of contemporary research focusing on the fundamental studies followed by potential applicability relying on the unique optical, electronic, or magnetic properties assigned to unpaired electrons. A precise involvement of two p-phenylenes into a cyclophane-like conjugated, diatropic system creates a flexible molecule with the two different characters of both subunits (benzene and quinone) imprinting into the structure a Kekulé delocalized system. A dynamic of both carbocyclic subunits, and their mutual interaction generates a singlet open-shell state (J=-1.25 kcal/mol) as documented spectroscopically (NMR and EPR). The extended theoretical analysis has proved a correlation between dihedral angle and the diradicaloid character that shifts from a closed-shell singlet to an open-shell state, eventually showing the y0=0.86 for 78 degrees and ΔEST=-0.34 kcal/mol.
Collapse
Affiliation(s)
- Piotr Banachowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Mainak Das
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Krzysztof Kruczała
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Miłosz Siczek
- Department of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50383, Wrocław, Poland
| | - Zbigniew Sojka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Monika Kijewska
- Department of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50383, Wrocław, Poland
| | - Miłosz Pawlicki
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| |
Collapse
|
11
|
Ishigaki Y, Harimoto T, Shimajiri T, Suzuki T. Carbon-based Biradicals: Structural and Magnetic Switching. Chem Rev 2023; 123:13952-13965. [PMID: 37948658 DOI: 10.1021/acs.chemrev.3c00376] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Sterically hindered C═C double bonds often deform into a bent or twisted geometry. Thus, many overcrowded ethylenes or anthraquinodimethanes can adopt multiple conformations, such as a folded form or a twisted form, which are interconvertible under the application of external stimuli. A perpendicular form with biradical character can also be adopted when designed to incorporate a stable carbon-based radical unit, which is involved in stimuli-responsive magnetic switching accompanied by a structural change. This review focuses on recent advances in the development of such strained π-electron systems and reveals the factors that affect the mutual interconversion and switching behavior. The energy barrier for the interconversion of conformational isomers is affected by the tricyclic skeleton or bulky substituents on the C═C double bonds, whereas the relative stability of the perpendicular biradical form increases with the additional insertion of 9,10-anthrylene units into the C═C double bonds.
Collapse
Affiliation(s)
- Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Harimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takuya Shimajiri
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Creative Research Institution, Hokkaido University, Sapporo 001-0021, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
12
|
Prajapati B, Ambhore MD, Dang DK, Chmielewski PJ, Lis T, Gómez-García CJ, Zimmerman PM, Stępień M. Tetrafluorenofulvalene as a sterically frustrated open-shell alkene. Nat Chem 2023; 15:1541-1548. [PMID: 37783726 PMCID: PMC10624625 DOI: 10.1038/s41557-023-01341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023]
Abstract
Electronic and steric effects are known to greatly influence the structure, characteristics and reactivity of organic compounds. A typical π bond is weakened by oxidation (corresponding to the removal of electrons from bonding orbitals), by reduction (through addition of electrons to antibonding orbitals) and by unpairing of the bonding electrons, such as in the triplet state. Here we describe tetrafluorenofulvalene (TFF), a twisted, open-shell alkene for which these general rules do not hold. Through the synthesis, experimental characterization and computational analysis of its charged species spanning seven redox states, the central alkene bond in TFF is shown to become substantially stronger in the tri- and tetraanion, generated by chemical reduction. Furthermore, although its triplet state contains a weaker alkene bond than the singlet, in the quintet state its bond order increases substantially, yielding a flatter structure. This behaviour originates from the doubly bifurcated topology of the underlying spin system and can be rationalized by the balancing effects of benzenoid aromaticity and spin pairing.
Collapse
Affiliation(s)
| | | | - Duy-Khoi Dang
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Tadeusz Lis
- Wydział Chemii, Uniwersytet Wrocławski, Wrocław, Poland
| | - Carlos J Gómez-García
- Departamento de Química Inorgánica and Instituto de Ciencia Molecular, Universidad de Valencia, Paterna, Spain
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, Wrocław, Poland.
| |
Collapse
|
13
|
Yuan K, Lv L, Xu Y, Liu Y, Li M, Zhao Y, Zhao X. Grape bunches of novel conjugated chain bonded fullerene oligomers: design of a potential electron trap carbonaceous molecular material. Phys Chem Chem Phys 2023; 25:5743-5757. [PMID: 36744403 DOI: 10.1039/d2cp05731j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Developing π electron conjugated groups as covalent bonded bridges between fullerenes in their oligomers is key to optimizing and maximizing functions of the fullerene-based materials. In this work, a series of novel conjugated chain bonded fullerene C60 oligomers (CBFOs) with a well-defined nano-architecture and "grape bunches" shapes are rationally designed and viably constructed based on fullerene-carbenes by means of DFT calculations. The results show that the presently designed CBFOs present a much better electron-accepting ability together with a much lower reorganization energy than the isolated fullerene C60, and characterized as the potential ideal candidate for electron acceptors. The frontier molecular orbital and electron density analysis can well support the results of diabatic electron affinity (EAa) and vertical electron affinity (EAv) calculations. Moreover, these CBFOs exhibit strong absorption in the visible region but no obvious absorption in the ultraviolet region. In addition, the optical properties of the CBFOs and two dimensional structure are also simulated and explored theoretically. We hope that the present study would be helpful for developing covalent-bonded-fullerene based electron trap molecular materials, building blocks of nano-devices and nano-machinery applications.
Collapse
Affiliation(s)
- Kun Yuan
- College of Chemical Engineering and Technology, Supercomputing Center, Tianshui Normal University, Tianshui 741001, China.
| | - Lingling Lv
- College of Chemical Engineering and Technology, Supercomputing Center, Tianshui Normal University, Tianshui 741001, China.
| | - Yan Xu
- College of Chemical Engineering and Technology, Supercomputing Center, Tianshui Normal University, Tianshui 741001, China.
| | - Yanzhi Liu
- College of Chemical Engineering and Technology, Supercomputing Center, Tianshui Normal University, Tianshui 741001, China.
| | - Mengyang Li
- School of Physics, Xidian University, Xi'an 710071, China
| | - Yaoxiao Zhao
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.,Institute of Molecular Science & Applied Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiang Zhao
- Institute of Molecular Science & Applied Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
14
|
Wang P, Hu J, Xu Z, Pu Z, Sato S, Zhang X, Hu W, Sun Z. Synthesis and structure elucidation of triarylmethyl radicals with anthryl substitution. Chem Commun (Camb) 2023; 59:2015-2018. [PMID: 36723079 DOI: 10.1039/d2cc06083c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two stable triarylmethyl radicals with one or two anthryl substitutions are synthesized in gram scale, and are isolated in the crystalline state. Detailed structural elucidation with X-ray crystallographic analysis and DFT calculations revealed that the twisted structure is more energetically favorable than the folded structure, and consequently, the spin density is mainly localized at the methyl carbon. The spin distribution leads to unique physical properties, making them promising open-shell organic materials.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin, 300072, China. .,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Jinlian Hu
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Zhuofan Xu
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Zhaofangzhou Pu
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Sota Sato
- Department of Applied Chemistry, Integrated Molecular Structure Analysis Laboratory, Social Cooperation Program, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Xiaotao Zhang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin, 300072, China. .,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
15
|
Hayashi Y, Suzuki S, Suzuki T, Ishigaki Y. Dibenzotropylium-Capped Orthogonal Geometry Enabling Isolation and Examination of a Series of Hydrocarbons with Multiple 14π-Aromatic Units. J Am Chem Soc 2023; 145:2596-2608. [PMID: 36606368 PMCID: PMC9896550 DOI: 10.1021/jacs.2c12574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A series of six dications composed of pure hydrocarbons with one to six non-substituted 9,10-anthrylene units end-capped with two dibenzotropyliums were designed and synthesized to elucidate the electronic properties of huge oligo(9,10-anthrylene) backbones. Their structures were successfully determined by X-ray analyses even in the case of eight planar 14π-electron units, revealing that all dications adopt almost orthogonally twisted structures between neighboring units. Spectroscopic and voltammetric analyses show that neither the significant overlap of orbitals nor the delocalization of electrons between 14π-electron units occurs due to the orthogonally twisted geometry even in solution. As a result, sequential oxidation processes were observed with the reversible formation of multivalent cations with the release of the same number of electrons as the number of anthrylene units. Upon two-electron reduction, a closed-shell butterfly-shaped form was obtained from the dication containing one anthrylene unit, whereas open-shell twisted biradicals were isolated as stable entities in the cases of derivatives containing three to six anthrylene units. Notably, from the derivative with two anthrylene units, a metastable open-shell isomer was obtained quantitatively and underwent slow thermal conversion to the most stable closed-shell isomer (Ea = 23.1 kcal mol-1). There is a drastic change in oxidation potentials between two neutral species (ΔE = 1.32 V in CH2Cl2). Since the present dications were regenerated upon oxidation of the isolated reduction products, these systems may contribute to the development of advanced response systems capable of switching color, magnetic properties, and oxidative properties by using a "cation-capped orthogonal geometry".
Collapse
Affiliation(s)
- Yuki Hayashi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
| | - Shuichi Suzuki
- Graduate
School of Engineering Science, Osaka University, Osaka 560-8531, Japan
| | - Takanori Suzuki
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
| | - Yusuke Ishigaki
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan,
| |
Collapse
|
16
|
Zhu X, Liu F, Ba X, Wu Y. Synthesis of Ladder-Type 9,9'-Bifluorenylidene-Based Conjugated Oligomers via a Pd-Catalyzed Tandem Suzuki Coupling/Heck Cyclization Approach. Org Lett 2022; 24:5851-5854. [PMID: 35904327 DOI: 10.1021/acs.orglett.2c02418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For new ladder-type oligomers and polymers with versatile and robust synthetic strategies, in this study, four fully conjugated ladder-type overcrowded 9,9'-bifluorenylidene-based compounds and oligomers (BFY1, BFY2, BFY3, and BFY4) were synthesized via a Pd-catalyzed tandem Suzuki coupling/Heck cyclization reaction. By monomer screening and route optimization, the target products were obtained in high yields and characterized by 1H and 13C NMR spectroscopy and high resolution mass spectroscopy.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Feng Liu
- College of Basic Medicine, Hebei University, Baoding 071002, PR China
| | - Xinwu Ba
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Yonggang Wu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| |
Collapse
|
17
|
Kim JM, Kang YM. Optical Fluorescence Imaging of Native Proteins Using a Fluorescent Probe with a Cell-Membrane-Permeable Carboxyl Group. Int J Mol Sci 2022; 23:ijms23105841. [PMID: 35628651 PMCID: PMC9143923 DOI: 10.3390/ijms23105841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/07/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
Although various methods for selective protein tagging have been established, their ap plications are limited by the low fluorescent tagging efficiency of specific terminal regions of the native proteins of interest (NPIs). In this study, the highly sensitive fluorescence imaging of single NPIs was demonstrated using a eukaryotic translation mechanism involving a free carboxyl group of a cell-permeable fluorescent dye. In living cells, the carboxyl group of cell-permeable fluorescent dyes reacted with the lysine residues of acceptor peptides (AP or AVI-Tag). Genetically encoded recognition demonstrated that the efficiency of fluorescence labeling was nearly 100%. Nickel-nitrilotriacetic acid (Ni-NTA) beads bound efficiently to a single NPI for detection in a cell without purification. Our labeling approach satisfied the necessary conditions for measuring fluorescently labeled NPI using universal carboxyl fluorescent dyes. This approach is expected to be useful for resolving complex biological/ecological issues and robust single-molecule analyses of dynamic processes, in addition to applications in ultra-sensitive NPIs detection using nanotechnology.
Collapse
Affiliation(s)
- Jung Min Kim
- BK21 FOUR R&E Center for Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02842, Korea
- Correspondence: ; Tel.: +82-2-3290-4778
| | - Young-Mi Kang
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| |
Collapse
|
18
|
Nishiuchi T, Aibara S, Yamakado T, Kimura R, Saito S, Sato H, Kubo T. Sterically Frustrated Aromatic Enes with Various Colors Originating from Multiple Folded and Twisted Conformations in Crystal Polymorphs. Chemistry 2022; 28:e202200286. [PMID: 35333427 DOI: 10.1002/chem.202200286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/11/2022]
Abstract
Overcrowded ethylenes composed of 10-methyleneanthrone and two bulky aromatic rings contain a twisted carbon-carbon double (C=C) bond as well as a folded anthrone unit. As such, they are unique frustrated aromatic enes (FAEs). Various colored crystals of these FAEs, obtained in different solvents, correspond to multiple metastable conformations of the FAEs with various twist and fold angles of the C=C bond, as well as various dihedral angles of attached aryl units with respect to the C=C bond. The relationships between color and these parameters associated with conformational features around the C=C bond were elucidated in experimental and computational studies. Owing to the fact that they are separated by small energy barriers, the variously colored conformations in the FAE crystal change in response to various external stimuli, such as mechanical grinding, hydrostatic pressure and thermal heating.
Collapse
Affiliation(s)
- Tomohiko Nishiuchi
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Seito Aibara
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Takuya Yamakado
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Ryo Kimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Shohei Saito
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Hiroyasu Sato
- Rigaku Corporation, 3-9-12 Matsubara, Akishima, Tokyo, 196-8666, Japan
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives, ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
19
|
Nishiuchi T, Aibara S, Sato H, Kubo T. Synthesis of π-Extended Thiele’s and Chichibabin’s Hydrocarbons and Effect of the π-Congestion on Conformations and Electronic States. J Am Chem Soc 2022; 144:7479-7488. [PMID: 35426674 PMCID: PMC9136924 DOI: 10.1021/jacs.2c02318] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The
biradicaloid of Chichibabin’s hydrocarbon exits in a
unique thermal equilibrium between closed-shell singlet and open-shell
triplet forms. Conceptually, the incorporation of nonplanar aromatic
groups, such as anthraquinodimethane (AQD), in these species could
bring about stabilization of the individual singlet and triplet spin
biradicaloids by creating a high energy barrier for conformational
interconversion between folded (singlet) and twisted (triplet) forms.
Moreover, this alteration could introduce the possibility of controlling
spin states through conformational changes induced by chemical and
physical processes. Herein, we report the preparation of AQD-containing,
π-extended Thiele’s (A-TH) and Chichibabin’s
(A-CH) hydrocarbons, which have highly π-congested
structures resulting from the presence of bulky 9-anthryl units. The
π-congestion in these substances leads to steric frustration
about carbon–carbon double bonds and creates flexible dynamic
motion with a moderate activation barrier between folded singlet and
twisted triplet states. These constraints make it possible to isolate
the twisted triplet state of A-CH. In addition, simple
mechanical grinding of the folded singlet of A-CH produces
the twisted triplet.
Collapse
Affiliation(s)
- Tomohiko Nishiuchi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives, (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Seito Aibara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hiroyasu Sato
- Rigaku Corporation, 3-9-12 Matsubara, Akishima, Tokyo 196-8666, Japan
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives, (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Harimoto T, Ishigaki Y. Redox‐Active Hydrocarbons: Isolation and Structural Determination of Cationic States toward Advanced Response Systems. Chempluschem 2022; 87:e202200013. [DOI: 10.1002/cplu.202200013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Takashi Harimoto
- Hokkaido University: Hokkaido Daigaku Department of Chemistry, Faculty of Science JAPAN
| | - Yusuke Ishigaki
- Hokkaido University: Hokkaido Daigaku Department of Chemistry, Faculty of Science North 10, West 8, North-ward 060-0810 Sapporo JAPAN
| |
Collapse
|
21
|
Mala R, Divya D, Vijayan P, Narayanasamy M, Thennarasu S. Two Imidazo[1,2‐a]pyridine Congeners Show Aggregation‐Induced Emission (AIE): Exploring AIE Potential for Sensor and Imaging Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202103408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ramanjaneyulu Mala
- Organic and bioorganic chemistry laboratory CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
| | - Dhakshinamurthy Divya
- Organic and bioorganic chemistry laboratory CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
| | - Priyadharshni Vijayan
- Biocontrol and microbial Metabolites Lab, Centre for Advanced Studies in Botany University of Madars Guindy Campus Chennai- 600025 India
| | - Mathivanan Narayanasamy
- Biocontrol and microbial Metabolites Lab, Centre for Advanced Studies in Botany University of Madars Guindy Campus Chennai- 600025 India
| | - Sathiah Thennarasu
- Organic and bioorganic chemistry laboratory CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
| |
Collapse
|
22
|
Li K, Xu Z, Xu J, Weng T, Chen X, Sato S, Wu J, Sun Z. Overcrowded Ethylene-Bridged Nanohoop Dimers: Regioselective Synthesis, Multiconfigurational Electronic States, and Global Hückel/Möbius Aromaticity. J Am Chem Soc 2021; 143:20419-20430. [PMID: 34817177 DOI: 10.1021/jacs.1c10170] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design and preparation of molecular systems with multiple geometric and electronic configurations are the cornerstones for multifunctional materials with stimuli-responsive behaviors. We describe here the regioselective and facile synthesis of two types of overcrowded ethylene-bridged nanohoop dimers, with folded and twisted geometric structures as well as closed-shell, diradical and dication electronic structures. The strained nanohoop structures have a profound effect on the overall molecular and electronic configurations, which resulted in the destabilized diradical state. X-ray crystallographic analysis revealed the folded molecular geometry for the neutral species and twisted geometry for the dication species. The unique molecular dynamics, optical properties, and dynamic redox properties were disclosed in the solution phase by spectroscopic and electrochemical methods. Furthermore, the global Hückel and Möbius aromaticity were revealed by a combination of experimental and theoretical approaches. Our studies shed light on the design of nanohoop-incorporated multiconfigurational materials with unique topologies and functions.
Collapse
Affiliation(s)
- Ke Li
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Zhuofan Xu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Jun Xu
- Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Taoyu Weng
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Xing Chen
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Sota Sato
- Department of Applied Chemistry, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Zhe Sun
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
23
|
Ishigaki Y, Tadokoro T, Harabuchi Y, Hayashi Y, Maeda S, Suzuki T. Anthraquinodimethane Ring-flip in Sterically Congested Alkenes: Isolation of Isomer and Elucidation of Intermediate through Experimental and Theoretical Approach. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomoki Tadokoro
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yu Harabuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Yuki Hayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Satoshi Maeda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
24
|
Liu T, Qi C, Zhou Q, Dai W, Lan Y, Xu L, Ren J, Pan Y, Yang L, Ge Y, Qu YK, Li W, Li H, Xiao S. Divergent Synthesis of Contorted Polycyclic Aromatics Containing Pentagons, Heptagon, and/or Azulene. Org Lett 2021; 24:472-477. [PMID: 34797076 DOI: 10.1021/acs.orglett.1c03498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Divergent synthesis of four contorted aromatics containing pentagons, a heptagon, and/or an azulene from the same difluorenyl pentacenediene precursor were realized in one step. The subtle differences in molecular structure were confirmed by X-ray crystallography. The mechanisms for the control of different products, which involve a ring-expansion rearrangement, Scholl reactions, and/or Mallory cyclization were proposed on the basis of control experiments and DFT calculations. Such development adds good structure versatility and materials accessibility to the study of contorted aromatics.
Collapse
Affiliation(s)
- Taifeng Liu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Chaoran Qi
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Qinghai Zhou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Wenying Dai
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Yuying Lan
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Lanting Xu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Junxia Ren
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Yangyang Pan
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Lei Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Yongchao Ge
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Yang-Kun Qu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Wenhua Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Shengxiong Xiao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
25
|
Wonink MBS, Corbet BP, Kulago AA, Boursalian GB, de Bruin B, Otten E, Browne WR, Feringa BL. Three-State Switching of an Anthracene Extended Bis-thiaxanthylidene with a Highly Stable Diradical State. J Am Chem Soc 2021; 143:18020-18028. [PMID: 34695359 PMCID: PMC8569810 DOI: 10.1021/jacs.1c05938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A multistable molecular switching system based on an anthracene-extended bis-thiaxanthylidene with three individually addressable states that can be interconverted by electrochemical, thermal, and photochemical reactions is reported. Besides reversible switching between an open-shell diradical- and a closed-shell electronic configuration, our findings include a third dicationic state and control by multiple actuators. This dicationic state with an orthogonal conformation can be switched electrochemically with the neutral open-shell triplet state with orthogonal conformation, which was characterized by EPR. The remarkably stable diradical shows kinetic stability as a result of a significant activation barrier for isomerization to a more stable neutral closed-shell folded geometry. We ascribe this activation barrier of ΔG⧧(293 K) = 25.7 kcal mol-1 to steric hindrance in the fjord region of the overcrowded alkene structure. The folded closed-shell state can be converted back to the diradical state by irradiation with 385 nm. The folded state can also be oxidized to the dicationic state. These types of molecules with multiple switchable states and in particular stable diradicals show great potential in the design of new functional materials such as memory devices, logic gates, and OFETs.
Collapse
Affiliation(s)
- Marco B S Wonink
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Brian P Corbet
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Artem A Kulago
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gregory B Boursalian
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Bas de Bruin
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Edwin Otten
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Wesley R Browne
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
26
|
Normal & reversed spin mobility in a diradical by electron-vibration coupling. Nat Commun 2021; 12:6262. [PMID: 34716307 PMCID: PMC8556253 DOI: 10.1038/s41467-021-26368-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 09/29/2021] [Indexed: 11/26/2022] Open
Abstract
π−conjugated radicals have great promise for use in organic spintronics, however, the mechanisms of spin relaxation and mobility related to radical structural flexibility remain unexplored. Here, we describe a dumbbell shape azobenzene diradical and correlate its solid-state flexibility with spin relaxation and mobility. We employ a combination of X-ray diffraction and Raman spectroscopy to determine the molecular changes with temperature. Heating leads to: i) a modulation of the spin distribution; and ii) a “normal” quinoidal → aromatic transformation at low temperatures driven by the intramolecular rotational vibrations of the azobenzene core and a “reversed” aromatic → quinoidal change at high temperatures activated by an azobenzene bicycle pedal motion amplified by anisotropic intermolecular interactions. Thermal excitation of these vibrational states modulates the diradical electronic and spin structures featuring vibronic coupling mechanisms that might be relevant for future design of high spin organic molecules with tunable magnetic properties for solid state spintronics. In this manuscript, Negri, Zheng, Casado et al develop a stable and flexible diradical. Using a combination of experimental and theoretical techniques, they show how heating leads to change in the electronic and spin delocalizations ocurring between quinoidal and aromatic forms, and elucidate a unique spin-vibrational coupling.
Collapse
|
27
|
Corbet BP, Wonink MBS, Feringa BL. Fast synthesis and redox switching of di- and tetra-substituted bisthioxanthylidene overcrowded alkenes. Chem Commun (Camb) 2021; 57:7665-7668. [PMID: 34254090 PMCID: PMC8330637 DOI: 10.1039/d1cc03098a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022]
Abstract
A rapid and efficient method for the synthesis of overcrowded alkenes using (trimethylsilyl)diazomethane provides a range of substituted bisthioxanthylidenes. We show large conformational redox switching from folded to orthogonal states, which tolerates many substitution patterns. The facile access to bisthioxanthylidene switches with the potential for further functionalization, in combination with the reliable redox chemistry, provides major opportunities for the design of electrochemically responsive systems.
Collapse
Affiliation(s)
- Brian P Corbet
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands.
| | - Marco B S Wonink
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands.
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands.
| |
Collapse
|
28
|
Xiang Q, Xu J, Guo J, Dang Y, Xu Z, Zeng Z, Sun Z. Unveiling the Hidden σ-Dimerization of a Kinetically Protected Olympicenyl Radical. Chemistry 2021; 27:8203-8213. [PMID: 33783053 DOI: 10.1002/chem.202100631] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 11/05/2022]
Abstract
The σ-dimer of a kinetically protected olympicenyl radical, which evaded the experimental detection, was revealed by conversion into biolympicenylidene with E-configuration in a regioselective manner. The complicated stereochemistry and energetics of the σ-dimers derived from C2v symmetry and uneven spin distribution of the olympicenyl radical were revealed by the theoretical calculations, and the energetic preference of π-dimer over σ-dimer by a minute gap was disclosed. The E-biolympicenylidene, a polycyclic ene structure previously considered as reactive intermediate in the phenalenyl radical system, exhibited exceptional stability, which allowed for a detailed investigation on its singlet diradical character and physical properties by means of X-ray crystallography, UV-vis-NIR absorption/emission spectroscopy and cyclic voltammetry, and assisted by theoretical calculations. The E-biolympicenylidene showed high resistance towards both thermal and photochemical ring-cyclization reactions, which was attributed to high activation energies for the rate-determining electrocyclization operated on both disrotatory and conrotatory mode, as well as a small spin density at the bonding sites for the radical-radical coupling process.
Collapse
Affiliation(s)
- Qin Xiang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Jun Xu
- Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Jing Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Center for Aggregation-Induced Emission, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yanfeng Dang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Zhanqiang Xu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Center for Aggregation-Induced Emission, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zhe Sun
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| |
Collapse
|
29
|
Kumar N, Udayabhanu, Ali Alghamdi A, Basavaraj RB, Mahadevan KM, Nagaraju G. Sensing and sensitive visualization of latent fingerprints on various surfaces using a versatile fluorescent aggregation-induced emission-based coumarin derivative. LUMINESCENCE 2021; 36:1013-1023. [PMID: 33569853 DOI: 10.1002/bio.4027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 01/13/2023]
Abstract
The marked rise in criminal activity in society has made a difficult task for forensic scientists who aim to track any crime scene effectively, therefore visualization of latent fingerprints (LFPs) plays an increasingly vital role in forensics. In the present report, a highly sensitive solvatochromism, aggregation-induced emission-based 2-(4-nitrophenyl)-3H-benzocoumarin fluorescent dye (CFD) was fabricated using an ultrasonication protocol. The fluorescence properties of the CFD were analyzed using fluorescence spectrophotometer. The CFD produced a greenish yellow emission in solid and fluid states. An in-depth visualization of LFPs showed detailed ridge patterns under normal and ultraviolet light sources (254 and 365 nm) due to the excellent chemisorption of CFD onto the ridge patterns on the finger. All three types of ridge details were visualized without any background interference when using a simple and quick powder dusting method. Results revealed that, the present fluorescent dye can be used successfully for detection of latent fingerprints (LFPs) on various nonporous substrates surfaces, in organic light-emitting diodes applications (OLEDs), and for electrochemical sensing.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Studies and Research in Chemistry, Kuvempu University, P.G. Centre, Kadur, India
| | - Udayabhanu
- Energy Materials Research Laboratory, Department of Chemistry, Siddaganga Institute of Technology, Tumakuru, India
| | - Abdulaziz Ali Alghamdi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - R B Basavaraj
- Department of Physics, BMS Institute of Technology and Management, Bangalore, India
| | - K M Mahadevan
- Department of Studies and Research in Chemistry, Kuvempu University, P.G. Centre, Kadur, India
| | - G Nagaraju
- Energy Materials Research Laboratory, Department of Chemistry, Siddaganga Institute of Technology, Tumakuru, India
| |
Collapse
|
30
|
Chen Y, Wang HC, Tang Y, Zhou Y, Huang L, Cao J, Tang C, Zhang M, Shi J, Liu J, Ren X, Xu YX, Hong W. Modulation of charge transport through single-molecule bilactam junctions by tuning hydrogen bonds. Chem Commun (Camb) 2021; 57:1935-1938. [PMID: 33498077 DOI: 10.1039/d0cc07423c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bilactam derivatives with different side groups were synthesized and the twisting angle tuning effect induced by the intramolecular hydrogen bond on the charge transport through their single-molecule junctions was investigated. Molecules with strong intramolecular hydrogen bonds exhibited twice higher conductance because of the reduced dihedral twisting, which was reversible with the addition of hydrogen bond destroying solvent. Our findings reveal that the presence of intramolecular hydrogen bonds promotes the planarization of the molecular structure without additional transmission channels, offering a new strategy for controlling molecular switches via tuning the molecular twisting.
Collapse
Affiliation(s)
- Yaorong Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hua-Chun Wang
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yongxiang Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Longfeng Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jian Cao
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Chun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Manxi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiancheng Ren
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yun-Xiang Xu
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. and Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
31
|
Li M, Zhao Y, Yuan K, Han Y, Zhang J, Wu Y, Ehara M, Nagase S, Zhao X. Lithium–bromine exchange reaction on C 60: first theoretical proposal of a stable singlet fullerene carbene without the heteroatom. Org Chem Front 2021. [DOI: 10.1039/d0qo01589j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A stable singlet fullerene carbene without heteroatom is firstly proposed, and two indexes are firstly suggested to estimate the occurrence of carbene insertion or addition. The interaction between LiBr and carbon atom in LiBr-compounds is explored.
Collapse
Affiliation(s)
- Mengyang Li
- Institute of Molecular Science & Applied Chemistry
- School of Chemistry
- Xi'an Jiaotong University
- Xi'an
- China
| | - Yaoxiao Zhao
- Institute of Molecular Science & Applied Chemistry
- School of Chemistry
- Xi'an Jiaotong University
- Xi'an
- China
| | - Kun Yuan
- College of Chemical Engineering and Technology
- Tianshui Normal University
- Tianshui
- China
| | - Yanbo Han
- Institute of Molecular Science & Applied Chemistry
- School of Chemistry
- Xi'an Jiaotong University
- Xi'an
- China
| | - Jie Zhang
- Institute of Molecular Science & Applied Chemistry
- School of Chemistry
- Xi'an Jiaotong University
- Xi'an
- China
| | - Yong Wu
- Institute of Molecular Science & Applied Chemistry
- School of Chemistry
- Xi'an Jiaotong University
- Xi'an
- China
| | | | - Shigeru Nagase
- Fukui Institute for Fundamental Chemistry
- Kyoto University
- Kyoto 606-8103
- Japan
| | - Xiang Zhao
- Institute of Molecular Science & Applied Chemistry
- School of Chemistry
- Xi'an Jiaotong University
- Xi'an
- China
| |
Collapse
|
32
|
Sánchez-Ruiz A, Rodríguez-López J, Garzón-Ruiz A, Jiménez-Pulido SB, Illán-Cabeza NA, Navarro A, García-Martínez JC. Shedding Light on the Origin of Solid-State Luminescence Enhancement in Butterfly Molecules. Chemistry 2020; 26:13990-14001. [PMID: 32667100 DOI: 10.1002/chem.202002920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/13/2020] [Indexed: 01/18/2023]
Abstract
Different molecular strategies have been carefully evaluated to produce solid-state luminescence enhancement (SLE) in compounds that show dark states in solution. A set of α-phenylstyrylarene derivatives with a butterfly shape have been designed and synthesised, for the first time, with the aim of improving the solid-state fluorescence emission of their parent styrylarene compounds. Although these butterfly molecules are not fluorescent in solution, one of them (1,2,4,5-tetra(α-phenylstyryl)benzene) exhibits a fluorescence quantum yield as high as 68 % in a drop-cast sample and 31 % in its crystalline form. In contrast, 1,3,5-tris(α-phenylstyryl)benzene and 4,6-bis(α-phenylstyryl)pyrimidine do not show SLE. A range of fluorescence spectroscopy experiments and DFT calculations were carried out to unravel the origin of different photophysical behaviour of these compounds in the solid state. The results indicate that a rational strategy to control the SLE effect in luminogens depends on a delicate balance between molecular properties and inter-/intramolecular interactions in the solid state.
Collapse
Affiliation(s)
- Antonio Sánchez-Ruiz
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia, Universidad de Castilla-La Mancha, C/ José María Sánchez Ibañez s/n, 02008 Albacete (Spain), Centro Regional de Investigaciones Biomédicas (CRIB), C/ Almansa s/n, 02008, Albacete, Spain
| | - Julián Rodríguez-López
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela 10, 13071, Ciudad Real, Spain
| | - Andrés Garzón-Ruiz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, C/ José María Sánchez Ibañez s/n, 02008, Albacete, Spain
| | - Sonia B Jiménez-Pulido
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Nuria A Illán-Cabeza
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Amparo Navarro
- Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Joaquín C García-Martínez
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia, Universidad de Castilla-La Mancha, C/ José María Sánchez Ibañez s/n, 02008 Albacete (Spain), Centro Regional de Investigaciones Biomédicas (CRIB), C/ Almansa s/n, 02008, Albacete, Spain
| |
Collapse
|
33
|
Jiménez VG, Mayorga-Burrezo P, Blanco V, Lloveras V, Gómez-García CJ, Šolomek T, Cuerva JM, Veciana J, Campaña AG. Dibenzocycloheptatriene as end-group of Thiele and tetrabenzo-Chichibabin hydrocarbons. Chem Commun (Camb) 2020; 56:12813-12816. [PMID: 32966400 DOI: 10.1039/d0cc04489j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Thiele (Th) and tetrabenzo-Chichibabin (TBC) derivatives with terminal dibenzocycloheptatriene (DBHept) units were prepared. A clear correlation between their electronic and molecular structures was stablished. Insights into their closed- or open-shell ground states were gained, where particular contribution of the heptagonal carbocycles as end-groups was proved. Remarkably, a thermally accessible triplet diradical configuration was confirmed for the DBHept-TBC compound.
Collapse
Affiliation(s)
- Vicente G Jiménez
- Department of Organic Chemistry, Unidad de Excelencia de Química aplicada a Biomedicina y Medio Ambiente, University of Granada (UGR), C. U. Fuentenueva, Granada 18071, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Saalfrank C, Fantuzzi F, Kupfer T, Ritschel B, Hammond K, Krummenacher I, Bertermann R, Wirthensohn R, Finze M, Schmid P, Engel V, Engels B, Braunschweig H. cAAC-Stabilized 9,10-diboraanthracenes-Acenes with Open-Shell Singlet Biradical Ground States. Angew Chem Int Ed Engl 2020; 59:19338-19343. [PMID: 32662218 PMCID: PMC7589216 DOI: 10.1002/anie.202008206] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 12/19/2022]
Abstract
Narrow HOMO-LUMO gaps and high charge-carrier mobilities make larger acenes potentially high-efficient materials for organic electronic applications. The performance of such molecules was shown to significantly increase with increasing number of fused benzene rings. Bulk quantities, however, can only be obtained reliably for acenes up to heptacene. Theoretically, (oligo)acenes and (poly)acenes are predicted to have open-shell singlet biradical and polyradical ground states, respectively, for which experimental evidence is still scarce. We have now been able to dramatically lower the HOMO-LUMO gap of acenes without the necessity of unfavorable elongation of their conjugated π system, by incorporating two boron atoms into the anthracene skeleton. Stabilizing the boron centers with cyclic (alkyl)(amino)carbenes gives neutral 9,10-diboraanthracenes, which are shown to feature disjointed, open-shell singlet biradical ground states.
Collapse
Affiliation(s)
- Christian Saalfrank
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Felipe Fantuzzi
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institut für Physikalische und Theoretische ChemieJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
| | - Thomas Kupfer
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Benedikt Ritschel
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Kai Hammond
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Rüdiger Bertermann
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Raphael Wirthensohn
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Maik Finze
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Paul Schmid
- Institut für Physikalische und Theoretische ChemieJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
| | - Volker Engel
- Institut für Physikalische und Theoretische ChemieJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
| | - Bernd Engels
- Institut für Physikalische und Theoretische ChemieJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
| | - Holger Braunschweig
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
35
|
Kawamura A, Xie J, Boyn JN, Jesse KA, McNeece AJ, Hill EA, Collins KA, Valdez-Moreira JA, Filatov AS, Kurutz JW, Mazziotti DA, Anderson JS. Reversible Switching of Organic Diradical Character via Iron-Based Spin-Crossover. J Am Chem Soc 2020; 142:17670-17680. [PMID: 32948091 DOI: 10.1021/jacs.0c08307] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Airi Kawamura
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jiaze Xie
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jan-Niklas Boyn
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kate A. Jesse
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Andrew J. McNeece
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ethan A. Hill
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kelsey A. Collins
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Alexander S. Filatov
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Josh W. Kurutz
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - David A. Mazziotti
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - John S. Anderson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
36
|
Zhang H, Zhao Z, Turley AT, Wang L, McGonigal PR, Tu Y, Li Y, Wang Z, Kwok RTK, Lam JWY, Tang BZ. Aggregate Science: From Structures to Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001457. [PMID: 32734656 DOI: 10.1002/adma.202001457] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/15/2020] [Indexed: 05/05/2023]
Abstract
Molecular science entails the study of structures and properties of materials at the level of single molecules or small interacting complexes of molecules. Moving beyond single molecules and well-defined complexes, aggregates (i.e., irregular clusters of many molecules) serve as a particularly useful form of materials that often display modified or wholly new properties compared to their molecular components. Some unique structures and phenomena such as polymorphic aggregates, aggregation-induced symmetry breaking, and cluster excitons are only identified in aggregates, as a few examples of their exotic features. Here, by virtue of the flourishing research on aggregation-induced emission, the concept of "aggregate science" is put forward to fill the gaps between molecules and aggregates. Structures and properties on the aggregate scale are also systematically summarized. The structure-property relationships established for aggregates are expected to contribute to new materials and technological development. Ultimately, aggregate science may become an interdisciplinary research field and serves as a general platform for academic research.
Collapse
Affiliation(s)
- Haoke Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Zheng Zhao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Andrew T Turley
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK
| | - Lin Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, 999077, China
| | - Paul R McGonigal
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK
| | - Yujie Tu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Yuanyuan Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Zhaoyu Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology, Tianhe Qu, Guangzhou, 510640, China
| |
Collapse
|
37
|
Saalfrank C, Fantuzzi F, Kupfer T, Ritschel B, Hammond K, Krummenacher I, Bertermann R, Wirthensohn R, Finze M, Schmid P, Engel V, Engels B, Braunschweig H. cAAC‐stabilisierte 9,10‐Diboraanthracene – offenschalige Singulettbiradikale. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christian Saalfrank
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Felipe Fantuzzi
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Physikalische und Theoretische Chemie Julius-Maximilians-Universität Würzburg Emil-Fischer-Straße 42 97074 Würzburg Germany
| | - Thomas Kupfer
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Benedikt Ritschel
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Kai Hammond
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Rüdiger Bertermann
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Raphael Wirthensohn
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Maik Finze
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Paul Schmid
- Institut für Physikalische und Theoretische Chemie Julius-Maximilians-Universität Würzburg Emil-Fischer-Straße 42 97074 Würzburg Germany
| | - Volker Engel
- Institut für Physikalische und Theoretische Chemie Julius-Maximilians-Universität Würzburg Emil-Fischer-Straße 42 97074 Würzburg Germany
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie Julius-Maximilians-Universität Würzburg Emil-Fischer-Straße 42 97074 Würzburg Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
38
|
Synthesis and characterization of an unexpected mechanochromicbistricyclic aromatic ene. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Ishigaki Y, Hashimoto T, Sugawara K, Suzuki S, Suzuki T. Switching of Redox Properties Triggered by a Thermal Equilibrium between Closed-Shell Folded and Open-Shell Twisted Species. Angew Chem Int Ed Engl 2020; 59:6581-6584. [PMID: 31930668 DOI: 10.1002/anie.201916089] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Indexed: 11/06/2022]
Abstract
Thermally switchable redox properties have been reported to be due to a change in the spin state of newly designed overcrowded ethylenes, which can adopt closed-shell folded and open-shell twisted forms. In this study, tetrathienylanthraquinodimethane derivatives were designed to be in thermal equilibrium between a more stable folded form and less stable but more donating twisted diradical in solution, so that the oxidation potential can be controlled by heating/cooling. This is the first example of a switching of redox properties based on a thermally equilibrated twisted diradical, which can be more readily oxidized to the twisted dication.
Collapse
Affiliation(s)
- Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Takumi Hashimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kazuma Sugawara
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Shuichi Suzuki
- Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
40
|
Ishigaki Y, Hashimoto T, Sugawara K, Suzuki S, Suzuki T. Switching of Redox Properties Triggered by a Thermal Equilibrium between Closed‐Shell Folded and Open‐Shell Twisted Species. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yusuke Ishigaki
- Department of ChemistryFaculty of ScienceHokkaido University Sapporo 060-0810 Japan
| | - Takumi Hashimoto
- Department of ChemistryFaculty of ScienceHokkaido University Sapporo 060-0810 Japan
| | - Kazuma Sugawara
- Department of ChemistryFaculty of ScienceHokkaido University Sapporo 060-0810 Japan
| | - Shuichi Suzuki
- Graduate School of Engineering ScienceOsaka University Osaka 560-8531 Japan
| | - Takanori Suzuki
- Department of ChemistryFaculty of ScienceHokkaido University Sapporo 060-0810 Japan
| |
Collapse
|
41
|
Nishiuchi T, Ito R, Stratmann E, Kubo T. Switchable Conformational Isomerization of an Overcrowded Tristricyclic Aromatic Ene. J Org Chem 2019; 85:179-186. [DOI: 10.1021/acs.joc.9b02432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomohiko Nishiuchi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Ryuoh Ito
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Erik Stratmann
- Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|