1
|
Jia Q, Li F, Li C, Guo C, Wu S, Hao L, Li Z. Human epidermal growth factor receptor 2(Her2)-targeted pH-responsive MR/NIRF bimodal imaging-mediated nano-delivery system for the diagnosis and treatment of undifferentiated thyroid cancer. Drug Deliv Transl Res 2025; 15:2099-2115. [PMID: 39438429 DOI: 10.1007/s13346-024-01727-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Undifferentiated thyroid cancer (ATC) is highly malignant and does not respond well to sorafenib (SRF) treatment owing to the lack of specificity of SRF targeting. Drug delivery nanosystems can improve the efficiencies of drug in treating various cancer types. However, many conventional drug delivery nanosystems lack targeting and exhibit unresponsive drug release. Therefore, we developed a pH-responsive nano-targeted drug delivery systems using human serum albumin (HSA) as a carrier to generate manganese dioxide (MnO2)@HSA nanoparticles (NPs), then encapsulated SRF and the fluorescent dye indocyanine green (ICG) and finally modifyed the targeting antibody pertuzumab in the outer layer of the nano complexes, resulting in SRF/ICG/MnO2@HSA-pertuzumab (HISMP) NPs. This system targets human epidermal growth factor receptor 2 on the cell membrane surface of thyroid cancer cells and is designed to accumulate at tumor sites. Then, pH-responsive release of divalent manganese ions, ICG, and SRF enables magnetic resonance/fluorescence (MR/NIRF) dual-modality imaging and precise drug delivery for diagnostic and therapeutic integration. Various characterization analyses including transmission electron microscopy, Fourier infrared spectroscopy, and particle size analysis confirm that we successfully synthesized HISMP NPs with a diameter of 150.709 nm. The results of CCK8 cytotoxicity and apoptosis assays show that HISMP NPs exhibited high cytotoxicity and induce apoptosis in thyroid cancer cells. In vivo MR/NIRF imaging experiments confirmed that the HISMP NPs specifically aggregated at tumor sites and have good in vivo MR/NIRF imaging ability and effective anti-tumor activity. The nano-delivery system is expected to provide a theoretical foundation for the efficient ATC diagnosis and therapy.
Collapse
MESH Headings
- Humans
- Thyroid Neoplasms/drug therapy
- Thyroid Neoplasms/diagnostic imaging
- Thyroid Neoplasms/diagnosis
- Hydrogen-Ion Concentration
- Animals
- Cell Line, Tumor
- Manganese Compounds/chemistry
- Manganese Compounds/administration & dosage
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/antagonists & inhibitors
- Nanoparticles/chemistry
- Nanoparticles/administration & dosage
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/chemistry
- Sorafenib/administration & dosage
- Sorafenib/chemistry
- Sorafenib/pharmacology
- Indocyanine Green/chemistry
- Indocyanine Green/administration & dosage
- Magnetic Resonance Imaging
- Oxides/chemistry
- Oxides/administration & dosage
- Serum Albumin, Human/chemistry
- Serum Albumin, Human/administration & dosage
- Drug Delivery Systems
- Drug Liberation
- Optical Imaging
- Mice, Nude
- Mice
- Mice, Inbred BALB C
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/chemistry
Collapse
Affiliation(s)
- Qiushi Jia
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, 101006, China
| | - Fulin Li
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, 101006, China
| | - Chunxiang Li
- Department of Molecular Imaging, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, 101006, China
| | - Changzhi Guo
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, 101006, China
| | - Shuang Wu
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, 101006, China
| | - Liguo Hao
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, 101006, China.
| | - Zhongyuan Li
- Department of Molecular Imaging, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, 101006, China.
| |
Collapse
|
2
|
Hu J, Jia X, Li M, Duan G, Man K, Dai H, Wen L, Geng H. Enhanced Delivery of Photothermal Gelatin Nanoparticle for Redox Balanced Nanocatalytic Tumor Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411018. [PMID: 40159797 DOI: 10.1002/smll.202411018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/13/2025] [Indexed: 04/02/2025]
Abstract
Nanocatalytic platforms are promising in cancer therapeutics via combining multiple treatments, which can be leveraged through the metabolic dysfunction in cancer progression. However, the lack of effective tumor delivery platforms hampers this approach. Here, a gelatin-based platform is designed that is preloaded with gold nanoparticles and photothermal polypyrrole (GNPs@AuNPs-PPy) with an acid-induced doping enhancement. Benefiting from the tumor associated overexpression of H2O2, peroxidase-like Au nanoparticles induce a burst of oxidative reactive oxygen species in the local tumor microenvironment (TME). Subsequent orchestration of redox surroundings recruits immune cells, showcasing an effective antineoplastic pathway. Under near infrared light (NIR) irradiation, nanohybrids exhibit dual pH/NIR enhanced drug release within the TME, while allowing for multimodal imaging-guided theranostics. Leveraging this modality, GNPs@AuNPs-PPy delivers quercetin (a natural antitumor mediator) in TME, boosting anti-tumor therapy. The gelatin-mediated nanomedicine provides an alternative platform for combinatorial dynamic antitumor treatment.
Collapse
Affiliation(s)
- Jiayi Hu
- Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Key Laboratory of Active Proteins and Peptides Green Biomanufacturing of Guangdong Higher Education Institutes, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Xiaoyu Jia
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Manlin Li
- Department of Radiology, The Fourth Affiliated Hospital of Soochow University, Medical Centre of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Guangxin Duan
- Department of Radiology, The Fourth Affiliated Hospital of Soochow University, Medical Centre of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Kwan Man
- Department of Surgery, HKU-SZH & Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Ling Wen
- Department of Radiology, The Fourth Affiliated Hospital of Soochow University, Medical Centre of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Hongya Geng
- Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Key Laboratory of Active Proteins and Peptides Green Biomanufacturing of Guangdong Higher Education Institutes, Tsinghua University, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
3
|
Peng J, Quan DL, Yang G, Wei LT, Yang Z, Dong ZY, Zou YM, Hou YK, Chen JX, Lv L, Sun B. Multifunctional nanocomposites utilizing ruthenium (II) complex/manganese (IV) dioxide nanoparticle for synergistic reinforcing radioimmunotherapy. J Nanobiotechnology 2024; 22:735. [PMID: 39593029 PMCID: PMC11600833 DOI: 10.1186/s12951-024-03013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Radiotherapy (RT) stands as a frontline treatment modality in clinical breast oncology, yet challenges like ROS reduction, high toxicity, non-selectivity, and hypoxia hinder efficacy. Additionally, RT administered at different doses can induce varying degrees of radioimmunotherapy. High doses of radiation (>10 Gy) may result in immune suppression, while moderate doses (4-10 Gy), although capable of mitigating the immune suppression caused by high-dose radiation, are often insufficient in effectively killing tumor cells. Therefore, enhancing the generation of ROS and ameliorating the tumor hypoxic immune-suppressive microenvironment at moderate radiation doses could potentially drive radiation-induced immune responses, offering a fundamental solution to the limitations of RT. In this study, a novel multifunctional nanoplatform, RMLF, integrating a Ru (II) complex into folate-functionalized liposomes with BSA-MnO2 nanoparticles was proposed. Orthogonal experimental optimization enhances radiosensitization via increasing accumulation in cancer cells, elevating ROS, and contributing to a dual enhancement of the cGAS-STING-dependent type I IFN signaling pathway, aimed to overcome the insufficient DAMPs typically seen in the conventional RT at 4 Gy. Such a strategy effectively activated cytotoxic T lymphocytes for infiltration into tumor tissues and promoted the polarization of tumor-associated macrophages from the M2 to M1 phenotype, substantially bolstering immune memory responses. This pioneering approach represents the first use of a ruthenium complex in radioimmunotherapy, activating the cGAS-STING pathway to amplify immune responses, overcome RT resistance, and extend immunotherapeutic potential.
Collapse
Affiliation(s)
- Jian Peng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P.R. China
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, P.R. China
| | - Dong-Ling Quan
- Shenzhen Hospital of Southern Medical University, 1333 Xinhu Road, Bao'an District, Shenzhen, Guangdong Province, 518101, P.R. China
| | - Guang Yang
- Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, 519000, P.R. China
| | - Lin-Tao Wei
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P.R. China
| | - Zhuan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P.R. China
| | - Zhi-Ying Dong
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P.R. China
| | - Yi-Ming Zou
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P.R. China
| | - Ying-Ke Hou
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P.R. China
| | - Jin-Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P.R. China
| | - Lin Lv
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P.R. China.
| | - Bin Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P.R. China.
| |
Collapse
|
4
|
Cao Y, Xu R, Liang Y, Tan J, Guo X, Fang J, Wang S, Xu L. Nature-inspired protein mineralization strategies for nanoparticle construction: advancing effective cancer therapy. NANOSCALE 2024; 16:13718-13754. [PMID: 38954406 DOI: 10.1039/d4nr01536c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Recently, nanotechnology has shown great potential in the field of cancer therapy due to its ability to improve the stability and solubility and reduce side effects of drugs. The biomimetic mineralization strategy based on natural proteins and metal ions provides an innovative approach for the synthesis of nanoparticles. This strategy utilizes the unique properties of natural proteins and the mineralization ability of metal ions to combine nanoparticles through biomimetic mineralization processes, achieving the effective treatment of tumors. The precise control of the mineralization process between proteins and metal ions makes it possible to obtain nanoparticles with the ideal size, shape, and surface characteristics, thereby enhancing their stability and targeting ability in vivo. Herein, initially, we analyze the role of protein molecules in biomineralization and comprehensively review the functions, properties, and applications of various common proteins and metal particles. Subsequently, we systematically review and summarize the application directions of nanoparticles synthesized based on protein biomineralization in tumor treatment. Specifically, we discuss their use as efficient drug delivery carriers and role in mediating monotherapy and synergistic therapy using multiple modes. Also, we specifically review the application of nanomedicine constructed through biomimetic mineralization strategies using natural proteins and metal ions in improving the efficiency of tumor immunotherapy.
Collapse
Affiliation(s)
- Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Rui Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Yixia Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Jiabao Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Xiaotang Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Junyue Fang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Shibo Wang
- Institute of Smart Biomaterials, School of Materials Science and Engineering and Zhejiang Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| |
Collapse
|
5
|
Kandasamy G, Maity D. Inorganic nanocarriers for siRNA delivery for cancer treatments. Biomed Mater 2024; 19:022001. [PMID: 38181441 DOI: 10.1088/1748-605x/ad1baf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
RNA interference is one of the emerging methodologies utilized in the treatment of a wide variety of diseases including cancer. This method specifically uses therapeutic RNAs (TpRNAs) like small interfering RNAs (siRNAs) to regulate/silence the cancer-linked genes, thereby minimizing the distinct activities of the cancer cells while aiding in their apoptosis. But, many complications arise during the transport/delivery of these TpRNAs that include poor systemic circulation, instability/degradation inside the body environment, no targeting capacity and also low cellular internalization. These difficulties can be overcome by using nanocarriers to deliver the TpRNAs inside the cancer cells. The following are the various categories of nanocarriers-viral vectors (e.g. lentivirus and adenovirus) and non-viral nanocarriers (self-assembling nanocarriers and inorganic nanocarriers). Viral vectors suffer from disadvantages like high immunogenicity compared to the non-viral nanocarriers. Among non-viral nanocarriers, inorganic nanocarriers gained significant attention as their inherent properties (like magnetic properties) can aid in the effective cellular delivery of the TpRNAs. Most of the prior reports have discussed about the delivery of TpRNAs through self-assembling nanocarriers; however very few have reviewed about their delivery using the inorganic nanoparticles. Therefore, in this review, we have mainly focussed on the delivery of TpRNAs-i.e. siRNA, especially programmed death ligand-1 (PD-L1), survivin, B-cell lymphoma-2 (Bcl-2), vascular endothelial growth factor and other siRNAs using the inorganic nanoparticles-mainly magnetic, metal and silica nanoparticles. Moreover, we have also discussed about the combined delivery of these TpRNAs along with chemotherapeutic drugs (mainly doxorubicin) andin vitroandin vivotherapeutic effectiveness.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Department of Biomedical Engineering, School of Electrical and Communication, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, India
| | - Dipak Maity
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, United States of America
| |
Collapse
|
6
|
Cai C, Tian F, Ma J, Yu Z, Yang M, Yi C. BSA-templated synthesis of Ir/Gd bimetallic oxide nanotheranostics for MR/CT imaging-guided photothermal and photodynamic synergistic therapy. NANOSCALE 2023; 15:4457-4468. [PMID: 36752324 DOI: 10.1039/d2nr06306a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Precision medicine urges the development of theranostics which can efficiently integrate precise diagnosis and effective therapy. In this study, a facile synthesis of Ir/Gd bimetallic oxide nanotheranostics (termed BSA@Gd2O3/IrO2 NPs) with good biocompatibility was demonstrated using a biomineralization method where bovine serum albumin (BSA) served as a versatile template. BSA@Gd2O3/IrO2 NPs exhibited high longitudinal relaxivity (5.2 mM-1 s-1) and X-ray absorption capability (14.5 Hu mM-1), illustrating them to be a good contrast agent for magnetic resonance (MR) and computed tomography (CT) dual-modal imaging. Moreover, BSA@Gd2O3/IrO2 NPs can act as not only a photothermal conversion agent with ultrahigh efficiency (66.7%) as well as a good photosensitizer, but also an effective catalase to decompose endogenous H2O2 to produce O2, thus relieving hypoxia and enhancing the phototherapeutic effect. Both in vitro and in vivo experiments demonstrated the high effectiveness of BSA@Gd2O3/IrO2 NPs in MR/CT dual-modal imaging and photothermal and photodynamic synergistic tumor treatments. This work sheds new light on the development of versatile nanotheranostic systems using mild and robust biomineralization methods.
Collapse
Affiliation(s)
- Chao Cai
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen Campus, 518107, China.
| | - Feng Tian
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Junping Ma
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen Campus, 518107, China.
| | - Zipei Yu
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen Campus, 518107, China.
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Changqing Yi
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen Campus, 518107, China.
| |
Collapse
|
7
|
Liang Y, Wang PY, Li YJ, Liu ZY, Wang RR, Sun GB, Sun HF, Xie SY. Multistage O 2-producing liposome for MRI-guided synergistic chemodynamic/chemotherapy to reverse cancer multidrug resistance. Int J Pharm 2023; 631:122488. [PMID: 36521638 DOI: 10.1016/j.ijpharm.2022.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Reduced drug uptake and elevated drug efflux are two major mechanisms in cancer multidrug resistance (MDR). In the present study, a new multistage O2-producing liposome with NAG/R8-dual-ligand and stimuli-responsive dePEGylation was developed to address the abovementioned issues simultaneously. The designed C-NAG-R8-PTXL/MnO2-lip could also achieve magnetic resonance imaging (MRI)-guided synergistic chemodynamic/chemotherapy (CDT/CT). In vitro and in vivo studies showed that C-NAG-R8-PTXL/MnO2-lip enhanced circulation time by PEG and targeted the tumor site. After tumor accumulation, endogenous l-cysteine was administered, and the PEG-attached disulfide bond was broken, resulting in the dissociation of PEG shells. The previously hidden positively charged R8 by different lengths of PEG chains was exposed and mediated efficient internalization. In addition, the oxygen (O2) generated by C-NAG-R8-PTXL/MnO2-lip relieved the hypoxic environment within the tumor, thus reducing the efflux of chemotherapeutic drug. O2 was able to burst liposomes and triggered the release of PTXL. The toxic hydroxyl radical (·OH), which was produced by H2O2 and Mn2+, strengthened CDT/CT. C-NAG-R8-PTXL/MnO2-lip was also used as MRI contrast agent, which blazed the trail to rationally design theranostic agents for tumor imaging.
Collapse
Affiliation(s)
- Yan Liang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, QingDao, ShanDong 266071, PR China
| | - Ping-Yu Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Ze-Yun Liu
- School of International Studies, Binzhou Medical University, YanTai, ShanDong, 264003, PR China
| | - Ran-Ran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Guang-Bin Sun
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Hong-Fang Sun
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Shu-Yang Xie
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, QingDao, ShanDong 266071, PR China; Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China.
| |
Collapse
|
8
|
Luo S, Jiang Y, Anfu Zheng, Zhao Y, Wu X, Li M, Du F, Chen Y, Deng S, Chen M, Li W, Li X, Gu L, Sun Y, Xiao Z, Shen J. Targeting hypoxia-inducible factors for breast cancer therapy: A narrative review. Front Pharmacol 2022; 13:1064661. [PMID: 36532768 PMCID: PMC9751339 DOI: 10.3389/fphar.2022.1064661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/18/2022] [Indexed: 09/15/2023] Open
Abstract
Hypoxia-inducible factors (HIFs), central regulators for cells to adapt to low cellular oxygen levels, are often overexpressed and activated in breast cancer. HIFs modulate the primary transcriptional response of downstream pathways and target genes in response to hypoxia, including glycolysis, angiogenesis and metastasis. They can promote the development of breast cancer and are associated with poor prognosis of breast cancer patients by regulating cancer processes closely related to tumor invasion, metastasis and drug resistance. Thus, specific targeting of HIFs may improve the efficiency of cancer therapy. In this review, we summarize the advances in HIF-related molecular mechanisms and clinical and preclinical studies of drugs targeting HIFs in breast cancer. Given the rapid progression in this field and nanotechnology, drug delivery systems (DDSs) for HIF targeting are increasingly being developed. Therefore, we highlight the HIF related DDS, including liposomes, polymers, metal-based or carbon-based nanoparticles.
Collapse
Affiliation(s)
- Shuang Luo
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- Department of Pharmacy, The Second People’s Hospital of Jiangyou, Mianyang, China
| | - Yu Jiang
- Department of Pharmacy, The People’s Hospital of Wusheng, Guang’an, China
| | - Anfu Zheng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zhangang Xiao
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
9
|
Li Y, Tang K, Zhang X, Pan W, Li N, Tang B. Tumor microenvironment responsive nanocarriers for gene therapy. Chem Commun (Camb) 2022; 58:8754-8765. [PMID: 35880654 DOI: 10.1039/d2cc02759c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli responsive nanocarriers are important non-viral gene carriers for gene therapy. We discuss the stimulus conditions and then highlight various stimuli responsive nanocarriers in the tumor microenvironment for cancer gene therapy. We hope that this review will inspire readers to develop more effective stimuli responsive nanocarriers for delivering genes.
Collapse
Affiliation(s)
- Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Kun Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xia Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
10
|
Xu W, Qing X, Liu S, Yang D, Dong X, Zhang Y. Hollow Mesoporous Manganese Oxides: Application in Cancer Diagnosis and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106511. [PMID: 35043579 DOI: 10.1002/smll.202106511] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/30/2021] [Indexed: 06/14/2023]
Abstract
The precision, minimal invasiveness, and integration of diagnosis and treatment are critical factors for tumor treatment at the present. Although nanomedicine has shown the potential in tumor precision treatment, nanocarriers with high efficiency, excellent targeting, controlled release, and good biocompatibility still need to be further explored. Hollow mesoporous manganese oxides nanomaterials (HM-MONs), as an efficient drug delivery carrier, have attracted substantial attention in applications of tumor diagnosis and therapy due to their unique properties, such as tumor microenvironment stimuli-responsiveness, prominent catalytic activity, excellent biodegradation, and outstanding magnetic resonance imaging ability. The HM-MONs can not only enhance the therapeutic efficiency but also realize multimodal diagnosis of tumors. Consequently, it is necessary to introduce applications based on HM-MONs in cancer diagnosis and therapy. In this review, the representative progress of HM-MONs in synthesis is discussed. Then, several promising applications in drug delivery, bio-imaging, and bio-detection are highlighted. Finally, the challenges and perspectives of the anticancer applications are summarized, which is expected to provide meaningful guidance on further research.
Collapse
Affiliation(s)
- Wenjing Xu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xin Qing
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Shengli Liu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yewei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| |
Collapse
|
11
|
Zhang X, He C, Xiang G. Engineering nanomedicines to inhibit hypoxia-inducible Factor-1 for cancer therapy. Cancer Lett 2022; 530:110-127. [PMID: 35041892 DOI: 10.1016/j.canlet.2022.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/18/2021] [Accepted: 01/10/2022] [Indexed: 11/02/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1), an essential promoter of tumor progression, has attracted increasing attention as a therapeutic target. In addition to hypoxic cellular conditions, HIF-1 activation can be triggered by cancer treatment, which causes drug tolerance and therapeutic failure. To date, a series of effective strategies have been explored to suppress HIF-1 function, including silencing the HIF-1α gene, inhibiting HIF-1α protein translation, degrading HIF-1α protein, and inhibiting HIF-1 transcription. Furthermore, nanoparticle-based drug delivery systems have been widely developed to improve the stability and pharmacokinetics of HIF-1 inhibitors or achieve HIF-1-targeted combination therapies as a nanoplatform. In this review, we summarize the current literature on nanomedicines targeting HIF-1 to combat cancer and discuss their potential for future development.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chuanchuan He
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Sun Y, Zhou Z, Yang S, Yang H. Modulating hypoxia inducible factor-1 by nanomaterials for effective cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1766. [PMID: 34713633 DOI: 10.1002/wnan.1766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022]
Abstract
Hypoxia, which is induced by abnormal tumor growth when it outstrips its oxygen supply, is a major character of cancer. The reaction of cells against hypoxia is mainly concentrated on the hypoxia-induced transcription factors (HIFs), especially HIF-1, which remain stabilized during hypoxia. Additionally, the oxygen-independent mechanism of regulating HIF-1 acts a vital part in different stages of tumor progression as well as chemo-/radio-/PDT resistance, resulting in poor curative effects and prognosis. In this review, we will outline the up-to-date information about how HIF-1 interferes with tumor metastasis and therapy resistance, followed by a detailed introduction of motivating techniques based on various nanomaterials to interfere with HIF signaling for effective cancer therapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Yun Sun
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Zhiguo Zhou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Shiping Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Hong Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| |
Collapse
|
13
|
Pengnam S, Plianwong S, Yingyongnarongkul BE, Patrojanasophon P, Opanasopit P. Delivery of small interfering RNAs by nanovesicles for cancer therapy. Drug Metab Pharmacokinet 2021; 42:100425. [PMID: 34954489 DOI: 10.1016/j.dmpk.2021.100425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022]
Abstract
Small interfering ribonucleic acids (siRNAs) are originally recognized as an intermediate of the RNA interference (RNAi) pathway. They can inhibit or silence various cellular pathways by knocking down specific messenger RNA molecules. In cancer cells, siRNAs can suppress the expression of several multidrug-resistant genes, leading to the increased deposition of chemotherapeutic drugs at the tumor site. siRNA therapy can be used to selectively increase apoptosis of cancer cells or activate an immune response to the cancer. However, delivering siRNAs to the targeted location is the main limitation in achieving safe and effective delivery of siRNAs. This review highlights some representative examples of nonviral delivery systems, especially nanovesicles such as exosomes, liposomes, and niosomes. Nanovesicles can improve the delivery of siRNAs by increasing their intracellular delivery, and they have demonstrated excellent potential for cancer therapy. This review focuses on recent discoveries of siRNA targets for cancer therapy and the use of siRNAs to successfully silence these targets. In addition, this review summarizes the recent progress in designing nanovesicles (liposomes or niosomes) for siRNA delivery to cancer cells and the effects of a combination of anticancer drugs and siRNA therapy in cancer therapy.
Collapse
Affiliation(s)
- Supusson Pengnam
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | | | - Boon-Ek Yingyongnarongkul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
14
|
Wang J, Hu Y, Wang X, Gao S, Zhong Y, Liu J, Bai F. Trace-Water-Induced Competitive Coordination Synthesis and Functionalization of Porphyrinic Metal-Organic Framework Nanoparticles for Treatment of Hypoxic Tumors. ACS APPLIED BIO MATERIALS 2021; 4:7322-7331. [PMID: 35006961 DOI: 10.1021/acsabm.1c00852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Controlling the size and morphology of metal-organic frameworks (MOF) has received increasing research interest but remains a great challenge. In this work, we demonstrate a trace-water-induced competitive coordination procedure to controllably synthesize porphyrinic MOFs including needle-shaped nanomaterials, hollow nanotubes, and nanocubes, using 5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin as organic linkers and Zr4+ as inorganic building blocks. These three MOFs exhibited shape-dependent singlet oxygen (1O2) production under 655 nm laser irradiation. The designed nanocubes were functionalized by coating a MnO2 shell, which can effectively generate 1O2 in the tumor microenvironment (TME) to improve photodynamic therapy (PDT). Moreover, they reacted with GSH, and the resulted Mn2+ions generated hydroxyl radicals (·OH) for chemodynamic therapy (CDT). Therefore, the designed MOFs@MnO2 nanoparticles were responsive to the hypoxic TME to improve the efficiency of PDT and incorporate CDT for tumor ablation.
Collapse
Affiliation(s)
- Jinghan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China.,Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
| | - Yaoqing Hu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xiao Wang
- Henan and Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shanqing Gao
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Yong Zhong
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| |
Collapse
|
15
|
Nano-delivery systems focused on tumor microenvironment regulation and biomimetic strategies for treatment of breast cancer metastasis. J Control Release 2021; 333:374-390. [PMID: 33798666 DOI: 10.1016/j.jconrel.2021.03.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022]
Abstract
Breast cancer metastasis and recurrence accounts for vast majority of breast cancer-induced mortality. Tumor microenvironment (TME) plays an important role at each step of metastasis, evasion of immunosurveillance, and therapeutic resistance. Consequently, TME-targeting alternatives to traditional therapies focused on breast cancer cells are gaining increasing attention. These new therapies involve the use of tumor cells, and key TME components or secreted bioactive molecules as therapeutic targets, alone or in combination. Recently, TME-related nanoparticles have been developed to deliver various agents, such as bioactive ingredients extracted from natural sources or chemotherapeutic agents, genes, proteins, small interfering RNAs, and vaccines; they have shown great therapeutic potential against breast cancer metastasis. Among various types of nanoparticles, biomimetic nanovesicles are a promising means of addressing the limitations of conventional nanocarriers. This review highlights various nanoparticles related to or mediated by TME according to the key TME components responsible for metastasis. Furthermore, TME-related biomimetic nanoparticles against breast cancer metastasis have garnered attention owing to their promising efficiency, especially in payload delivery and therapeutic action. Here, we summarize recent representative studies on nanoparticles related to cancer-associated fibroblasts, extracellular matrix, endothelial cells, angiogenesis, and immune cells, as well as advanced biomimetic nanoparticles. Future challenges and opportunities in the field are also discussed.
Collapse
|
16
|
Wang M, Cheng X, Luo L, Liu Y, Cao F, Zhao S, Peng H, Hong C, Jin L, Deng L, Xin H, Wang X. A multi-effective and long-acting immunotherapy through one single hydrogel based injection. Biomater Sci 2021; 9:1374-1380. [PMID: 33367315 DOI: 10.1039/d0bm01974g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dual-effective (photothermal and immune) therapy employing gold nanorods (AuNRs) with a drug (two macrophage migration inhibitory factor (MIF) inhibitors) sustained release hydrogel was designed in this paper. The subsequent cellular and animal studies demonstrated that the proposed therapy can not only inhibit the proliferation, migration, and recurrence of cancer cells, but also improve the immune function (increase the infiltration of CD8+ killer T cells in tumors) without the traditional multiple injections of expensive immune drugs.
Collapse
Affiliation(s)
- Manyu Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li J, Tan T, Zhao L, Liu M, You Y, Zeng Y, Chen D, Xie T, Zhang L, Fu C, Zeng Z. Recent Advancements in Liposome-Targeting Strategies for the Treatment of Gliomas: A Systematic Review. ACS APPLIED BIO MATERIALS 2020; 3:5500-5528. [PMID: 35021787 DOI: 10.1021/acsabm.0c00705] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Malignant tumors represent some of the most intractable diseases that endanger human health. A glioma is a tumor of the central nervous system that is characterized by severe invasiveness, blurred boundaries between the tumor and surrounding normal tissue, difficult surgical removal, and high recurrence. Moreover, the blood-brain barrier (BBB) and multidrug resistance (MDR) are important factors that contribute to the lack of efficacy of chemotherapy in treating gliomas. A liposome is a biofilm-like drug delivery system with a unique phospholipid bilayer that exhibits high affinities with human tissues/organs (e.g., BBB). After more than five decades of development, classical and engineered liposomes consist of four distinct generations, each with different characteristics: (i) traditional liposomes, (ii) stealth liposomes, (iii) targeting liposomes, and (iv) biomimetic liposomes, which offer a promising approach to promote drugs across the BBB and to reverse MDR. Here, we review the history, preparatory methods, and physicochemical properties of liposomes. Furthermore, we discuss the mechanisms by which liposomes have assisted in the diagnosis and treatment of gliomas, including drug transport across the BBB, inhibition of efflux transporters, reversal of MDR, and induction of immune responses. Finally, we highlight ongoing and future clinical trials and applications toward further developing and testing the efficacies of liposomes in treating gliomas.
Collapse
Affiliation(s)
- Jie Li
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Tiantian Tan
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Liping Zhao
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Mengmeng Liu
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Yu You
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yiying Zeng
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Dajing Chen
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Tian Xie
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Lele Zhang
- School of Medicine, Chengdu University, Chengdu 610106, Sichuan, China
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Zhaowu Zeng
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| |
Collapse
|
18
|
Miao Y, Qiu Y, Zhang M, Yan K, Zhang P, Lu S, Liu Z, Shi X, Zhao X. Aqueous Self-Assembly of Block Copolymers to Form Manganese Oxide-Based Polymeric Vesicles for Tumor Microenvironment-Activated Drug Delivery. NANO-MICRO LETTERS 2020; 12:124. [PMID: 34138110 PMCID: PMC7770723 DOI: 10.1007/s40820-020-00447-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/21/2020] [Indexed: 05/04/2023]
Abstract
HIGHLIGHTS The formation of manganese oxide induces self-assembly of block copolymers to form polymeric vesicles. The polymeric vesicles possessed strong stability and high drug loading capacity. The drug-loaded polymeric vesicles have been demonstrated, especially in in vivo studies, to exhibit a higher efficacy of tumor suppression without known cardiotoxicity. ABSTRACT Molecular self-assembly is crucially fundamental to nature. However, the aqueous self-assembly of polymers is still a challenge. To achieve self-assembly of block copolymers [(polyacrylic acid–block–polyethylene glycol–block–polyacrylic acid (PAA68–b–PEG86–b–PAA68)] in an aqueous phase, manganese oxide (MnO2) is first generated to drive phase separation of the PAA block to form the PAA68–b–PEG86–b–PAA68/MnO2 polymeric assembly that exhibits a stable structure in a physiological medium. The polymeric assembly exhibits vesicular morphology with a diameter of approximately 30 nm and high doxorubicin (DOX) loading capacity of approximately 94%. The transformation from MnO2 to Mn2+ caused by endogenous glutathione (GSH) facilitates the disassembly of PAA68–b–PEG86–b–PAA68/MnO2 to enable its drug delivery at the tumor sites. The toxicity of DOX-loaded PAA68–b–PEG86–b–PAA68/MnO2 to tumor cells has been verified in vitro and in vivo. Notably, drug-loaded polymeric vesicles have been demonstrated, especially in in vivo studies, to overcome the cardiotoxicity of DOX. We expect this work to encourage the potential application of polymer self-assembly. [Image: see text] ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (10.1007/s40820-020-00447-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yalei Miao
- Green Catalysis Center, College of Chemistry, and Laboratory Animal Center, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Yudian Qiu
- Green Catalysis Center, College of Chemistry, and Laboratory Animal Center, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Mengna Zhang
- Green Catalysis Center, College of Chemistry, and Laboratory Animal Center, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Ke Yan
- Green Catalysis Center, College of Chemistry, and Laboratory Animal Center, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Panke Zhang
- Green Catalysis Center, College of Chemistry, and Laboratory Animal Center, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry, and Laboratory Animal Center, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Zhongyi Liu
- Green Catalysis Center, College of Chemistry, and Laboratory Animal Center, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Xiaojing Shi
- Green Catalysis Center, College of Chemistry, and Laboratory Animal Center, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Xubo Zhao
- Green Catalysis Center, College of Chemistry, and Laboratory Animal Center, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
19
|
Ding B, Zheng P, Ma P, Lin J. Manganese Oxide Nanomaterials: Synthesis, Properties, and Theranostic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905823. [PMID: 31990409 DOI: 10.1002/adma.201905823] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/23/2019] [Indexed: 05/20/2023]
Abstract
Despite the comprehensive applications in bioimaging, biosensing, drug/gene delivery, and tumor therapy of manganese oxide nanomaterials (MONs including MnO2 , MnO, Mn2 O3 , Mn3 O4 , and MnOx ) and their derivatives, a review article focusing on MON-based nanoplatforms has not been reported yet. Herein, the representative progresses of MONs on synthesis, heterogene, properties, surface modification, toxicity, imaging, biodetection, and therapy are mainly introduced. First, five kinds of primary synthetic methods of MONs are presented, including thermal decomposition method, exfoliation strategy, permanganates reduction method, adsorption-oxidation method, and hydro/solvothermal. Second, the preparations of hollow MONs and MON-based composite materials are summarized specially. Then, the chemical properties, surface modification, and toxicity of MONs are discussed. Next, the diagnostic applications including imaging and sensing are outlined. Finally, some representative rational designs of MONs in photodynamic therapy, photothermal therapy, chemodynamic therapy, sonodynamic therapy, radiotherapy, magnetic hyperthermia, chemotherapy, gene therapy, starvation therapy, ferroptosis, immunotherapy, and various combination therapy are highlighted.
Collapse
Affiliation(s)
- Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Pan Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
20
|
Xu K, Zhao Z, Zhang J, Xue W, Tong H, Liu H, Zhang W. Albumin-stabilized manganese-based nanocomposites with sensitive tumor microenvironment responsivity and their application for efficient SiRNA delivery in brain tumors. J Mater Chem B 2020; 8:1507-1515. [PMID: 32003397 DOI: 10.1039/c9tb02341k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mn(iv)-Based nanoparticles (NPs) are effective in improving tumor oxygenation (hypoxia) and reducing endogenous hydrogen peroxide and acidity in the tumor region. However, the optimized reduction conditions of conventional Mn(iv)-based NPs are generally reported at pH ≤ 6.5, while the usual pH range of the tumor microenvironment (TME) is 6.5-7.0. The dissatisfactory imaging performance in the weakly acidic environment may limit their further application in tumor diagnosis. In this study, Mn(iii) was introduced in a nanoplatform, because it is reduced into Mn(ii) in weakly acidic environments. Arg-Gly-Asp (RGD) peptide-decorated bovine serum albumin (BSA) was employed as the stabilizer and scaffold to fabricate Mn(iii)- and Mn(iv)-integrated nanocomposites (RGD-BMnNPs) with suitable size, good stability, and excellent biocompatibility. The as-prepared NPs showed clear contrast enhancement at pH 6.5-6.9 in vitro as well as sensitive and rapid T1-weighted imaging performance within the tumor region in a glioblastoma (U87MG) orthotopic model, owing to the intrinsic disproportionation reaction of Mn(iii) in the weakly acidic environment. In addition, these NPs could be used for efficient siRNA delivery. They showed superior advantages in this process, including increased tumour uptake, improved tumor accumulation and enhanced therapeutic effects with the modulation of the TME. These novel albumin-stabilized manganese-based NPs combined with efficient drug delivery capacity hold great potential to serve as intelligent theranostic agents for further clinical translation.
Collapse
Affiliation(s)
- Kai Xu
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Liang K, Chen H. Protein-based nanoplatforms for tumor imaging and therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1616. [PMID: 31999083 DOI: 10.1002/wnan.1616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022]
Abstract
Cancer is one of the leading causes of death all over the world. The development of nanoplatform provides a promising strategy for the diagnosis and treatment of cancer. As the foundation of the nanoplatform, the composition of nanocarrier decides the basic properties. Protein exists in all kinds of life and participates in any life activities, having great potentials to serve as a nanocarrier because of its excellent biocompatibility, abundance of functional groups, and inherent biological activity. As a result, protein-based nanoplatforms have evoked extensive interests for tumor imaging and therapy. This review presents the latest progresses on the advancement of protein-based nanoplatforms, introducing the most common protein nanocarriers (such as human/bovine serum albumin, ferritin, human transferrin) thoroughly including their physiochemical properties and specific applications. Also, other kinds of protein are briefly involved. Finally, the prospects and challenges of the development of protein-based nanoplatforms are summarized. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Kaicheng Liang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|