1
|
Zhang J, Liu Y, Guan Y, Zhang Y. A single-injection vaccine providing protection against two HPV types. J Mater Chem B 2024; 12:11237-11250. [PMID: 39373456 DOI: 10.1039/d4tb00606b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Prophylactic human papillomavirus (HPV) vaccines against cervical cancer were successfully developed; however, challenges such as high cost and low compliance still remain to be overcome. In addition, because many HPV types can cause cervical cancer, antigens of multiple HPV types are needed to achieve broad protection. In this study, a bivalent single-injection HPV vaccine was designed in which virus-like particles (VLPs) of HPV 16 L1 and HPV 18 L1 were used as antigens. A recently developed drug carrier that uses tannic acid/polyethylene glycol films as the erodible layer was employed to accomplish multiple pulsatile releases of the antigens. Monovalent single-injection vaccines for HPV 16 and HPV 18 were first designed. A bivalent single-injection vaccine was then obtained by simply mixing the two monovalent vaccines. The bivalent vaccine provided protection against both HPV types. More importantly, it elicited both humoral and cellular immune responses as potent as those elicited by the corresponding multiple dose vaccine because of their similar release profile of antigens. Cross-reactivity was observed between HPV 16 and 18 in terms of cellular immune responses, while no cross-reactivity was found in terms of humoral immune responses. Note that other multivalent single-injection vaccines could be designed in the same way. These vaccines are expected to help prevent cervical cancer because of their broad protection, enhanced compliance and lowered vaccination cost.
Collapse
Affiliation(s)
- Jianchen Zhang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yu Liu
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Ying Guan
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yongjun Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
2
|
Visan AI, Negut I. Development and Applications of PLGA Hydrogels for Sustained Delivery of Therapeutic Agents. Gels 2024; 10:497. [PMID: 39195026 DOI: 10.3390/gels10080497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) hydrogels are highly utilized in biomedical research due to their biocompatibility, biodegradability, and other versatile properties. This review comprehensively explores their synthesis, properties, sustained release mechanisms, and applications in drug delivery. The introduction underscores the significance of PLGA hydrogels in addressing challenges like short half-lives and systemic toxicity in conventional drug formulations. Synthesis methods, including emulsion solvent evaporation, solvent casting, electrospinning, thermal gelation, and photopolymerization, are described in detail and their role in tailoring hydrogel properties for specific applications is highlighted. Sustained release mechanisms-such as diffusion-controlled, degradation-controlled, swelling-controlled, and combined systems-are analyzed alongside key kinetic models (zero-order, first-order, Higuchi, and Peppas models) for designing controlled drug delivery systems. Applications of PLGA hydrogels in drug delivery are discussed, highlighting their effectiveness in localized and sustained chemotherapy for cancer, as well as in the delivery of antibiotics and antimicrobials to combat infections. Challenges and future prospects in PLGA hydrogel research are discussed, with a focus on improving drug loading efficiency, improving release control mechanisms, and promoting clinical translation. In summary, PLGA hydrogels provide a promising platform for the sustained delivery of therapeutic agents and meet diverse biomedical requirements. Future advancements in materials science and biomedical engineering are anticipated to further optimize their efficacy and applicability in clinical settings. This review consolidates the current understanding and outlines future research directions for PLGA hydrogels, emphasizing their potential to revolutionize therapeutic delivery and improve patient outcomes.
Collapse
Affiliation(s)
- Anita Ioana Visan
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| |
Collapse
|
3
|
Zhou X, Wang H, Zhang J, Guan Y, Zhang Y. Single-injection subunit vaccine for rabies prevention using lentinan as adjuvant. Int J Biol Macromol 2024; 254:128118. [PMID: 37977452 DOI: 10.1016/j.ijbiomac.2023.128118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Current rabies vaccines require 5 doses to provide full protection from the deadly virus, which significantly reduce the compliance of recipients. To minimize the number of immunizations herein single injection vaccines were developed. First a single injection vaccine was designed using rabies virus glycoprotein (G protein) as antigen. A time-controlled release system which uses dynamic layer-by-layer films as erodible coating was employed to accomplish multiply pulsatile releases of G protein. The single-injection vaccine elicits potent humoral and cellular immune responses comparable to the corresponding multi-dose ordinary vaccines because of their similar release pattern of G protein. To further improve its performance, a second single injection vaccine, in which lentinan was added as adjuvant, was designed. This single-injection vaccine again elicits humoral and cellular immune responses comparable to the corresponding multi-dose ordinary vaccines because of their similar release pattern of antigen and adjuvant. In addition, the second single-injection vaccine elicits higher level immune response and provides higher efficiency on virus inhibition than the first one because lentinan can booster immune response.
Collapse
Affiliation(s)
- Xiaoyong Zhou
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haozheng Wang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jianchen Zhang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ying Guan
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yongjun Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
4
|
Utatsu K, Motoyama K, Nakamura T, Onodera R, Higashi T. Tannic acid-based sustained-release system for protein drugs. Int J Pharm 2023; 643:123229. [PMID: 37454828 DOI: 10.1016/j.ijpharm.2023.123229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/23/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
In recent years, protein drug development has gained momentum, and simple and facile controlled-release systems without loss of activity are required. Herein, we developed a sustained-release system for protein drugs by exploiting the "astringency" mechanism, namely insoluble precipitate formation by interacting with tannic acid. Tannic acid formed insoluble precipitates with various protein drugs, such as nisin, insulin, lysozyme, ovalbumin, hyaluronidase, and human immunoglobulin G, through hydrophobic interactions and hydrogen bonds. The lysozyme/tannic acid complex retained in vitro lytic activity. Precipitates of the insulin/tannic acid complex prolonged hypoglycemic effects without loss of activity after subcutaneous administration. The ovalbumin/tannic acid complex enhanced anti-ovalbumin antibody production induced by ovalbumin, which may be attributed to its sustained-release profile. Accordingly, tannic acid is useful as a simple and user-friendly drug delivery system for protein drugs.
Collapse
Affiliation(s)
- Kosei Utatsu
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Teruya Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
5
|
Valente SA, Lopes GR, Ferreira I, Galrinho MF, Almeida M, Ferreira P, Cruz MT, Coimbra MA, Passos CP. Polysaccharide-Based Carriers for Pulmonary Insulin Delivery: The Potential of Coffee as an Unconventional Source. Pharmaceutics 2023; 15:pharmaceutics15041213. [PMID: 37111698 PMCID: PMC10144660 DOI: 10.3390/pharmaceutics15041213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Non-invasive routes for insulin delivery are emerging as alternatives to currently painful subcutaneous injections. For pulmonary delivery, formulations may be in powdered particle form, using carriers such as polysaccharides to stabilise the active principle. Roasted coffee beans and spent coffee grounds (SCG) are rich in polysaccharides, namely galactomannans and arabinogalactans. In this work, the polysaccharides were obtained from roasted coffee and SCG for the preparation of insulin-loaded microparticles. The galactomannan and arabinogalactan-rich fractions of coffee beverages were purified by ultrafiltration and separated by graded ethanol precipitations at 50% and 75%, respectively. For SCG, galactomannan-rich and arabinogalactan-rich fractions were recovered by microwave-assisted extraction at 150 °C and at 180 °C, followed by ultrafiltration. Each extract was spray-dried with insulin 10% (w/w). All microparticles had a raisin-like morphology and average diameters of 1-5 µm, which are appropriate for pulmonary delivery. Galactomannan-based microparticles, independently of their source, released insulin in a gradual manner, while arabinogalactan-based ones presented a burst release. The microparticles were seen to be non-cytotoxic for cells representative of the lung, specifically lung epithelial cells (A549) and macrophages (Raw 264.7) up to 1 mg/mL. This work shows how coffee can be a sustainable source of polysaccharide carriers for insulin delivery via the pulmonary route.
Collapse
Affiliation(s)
- Sara A Valente
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Guido R Lopes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel F Galrinho
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Margarida Almeida
- CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula Ferreira
- CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria T Cruz
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cláudia P Passos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
Zeng Z, Hou W, Hu Z, Liu L, Liu Z, Shi Y, Li M, Chen Y. Long-Acting Insulin-Zwitterionic Polymer Conjugate Mitigates Hypoglycemia. Chemistry 2023; 29:e202203460. [PMID: 36445789 DOI: 10.1002/chem.202203460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Insulin, a main medication to control glycemia of type 1 and advanced type 2 diabetes, faces problems of a short half-life and poor stability during its clinical use. Zwitterionic polymer shows unique properties of antifouling and low immunogenicity. Here, we have synthesized a new insulin-zwitterionic polymer conjugate (INS-PMPC) through grafting-from strategy by controlled radical polymerization. Apart from showing excellent stability upon mechanical agitation, the resulting INS-PMPC conjugate provided over 20 h of glycemic control due to improved pharmacokinetics in diabetic mice with one single subcutaneous injection. Most importantly, this insulin-zwitterionic polymer conjugate significantly decreases the incidence of hypoglycemia.
Collapse
Affiliation(s)
- Zhipeng Zeng
- Laboratory of Biomaterials and Translational Medicine Center for Nanomedicine The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, P. R. China
| | - Wangmeng Hou
- School of Materials Science and Engineering Center of Functional Biomaterials Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhitao Hu
- School of Materials Science and Engineering Center of Functional Biomaterials Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Lixin Liu
- School of Materials Science and Engineering Center of Functional Biomaterials Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhijia Liu
- School of Materials Science and Engineering Center of Functional Biomaterials Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yi Shi
- School of Materials Science and Engineering Center of Functional Biomaterials Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine Center for Nanomedicine The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, P. R. China
| | - Yongming Chen
- Laboratory of Biomaterials and Translational Medicine Center for Nanomedicine The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, P. R. China.,School of Materials Science and Engineering Center of Functional Biomaterials Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
7
|
Single-injection COVID-19 subunit vaccine elicits potent immune responses. Acta Biomater 2022; 151:491-500. [PMID: 35948176 PMCID: PMC9357281 DOI: 10.1016/j.actbio.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 12/27/2022]
Abstract
Current vaccination schedules, including COVID-19 vaccines, require multiple doses to be administered. Single injection vaccines eliciting equivalent immune response are highly desirable. Unfortunately because unconventional release kinetics are difficult to achieve it still remains a huge challenge. Herein a single-injection COVID-19 vaccine was designed using a highly programmable release system based on dynamic layer-by-layer (LBL) films. The antigen, S1 subunit of SARS-CoV-2 spike protein, was loaded in CaCO3 microspheres, which were further coated with tannic acid (TA)/polyethylene glycol (PEG) LBL films. The single-injection vaccine was obtained by mixing the microspheres coated with different thickness of TA/PEG films. Because of the unique constant-rate erosion behavior of the TA/PEG coatings, this system allows for distinct multiple pulsatile release of antigen, closely mimicking the release profile of antigen in conventional multiple dose vaccines. Immunization with the single injection vaccine induces potent and persistent S1-specific humoral and cellular immune responses in mice. The sera from the vaccinated animal exhibit robust in vitro viral neutralization ability. More importantly, the immune response and viral inhibition induced by the single injection vaccine are as strong as that induced by the corresponding multiple dose vaccine, because they share the same antigen release profile. STATEMENT OF SIGNIFICANCE: Vaccines are the most powerful and cost-effective weapons against infectious diseases such as COVID-19. However, current vaccination schedules, including the COVID-19 vaccines, require multiple doses to be administered. Herein a single-injection COVID-19 vaccine is designed using a highly programmable release system. This vaccine releases antigens in a pulsatile manner, closely mimicking the release pattern of antigens in conventional multiple dose vaccines. As a result, one single injection of the new vaccine induces an immune response and viral inhibition similar to that induced by the corresponding multiple-dose vaccine approach.
Collapse
|
8
|
Wang H, Cui L, Luo Y, Zhou X, Liu R, Chen Q, Guan Y, Zhang Y. Construction of single-injection vaccine using new time-controlled release system. BIOMATERIALS ADVANCES 2022; 137:212812. [PMID: 35929251 DOI: 10.1016/j.bioadv.2022.212812] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 03/18/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Single-injection vaccines may overcome issues, such as high cost and poor patient compliance, of the multi-bolus regimes dominantly used in vaccination. However no such vaccine has been commercialized because time-controlled release, an unconventional release kinetics, is difficult to achieve. Here a new time-controlled release system using dynamic layer-by-layer (LBL) film as erodible coating was used to design single-injection vaccine. Unlike commonly used degradable polymers, dynamic LBL film disintegrates at a constant rate, thus allowing distinct pulsatile release of antigen at predetermined intervals. The release pattern of the single-injection vaccine mimics closely to that of ordinary multi-dose regimes. It elicits both humoral and cellular immune responses which are comparable to or even stronger than the corresponding multi-dose regime. In addition, it inhibits tumor growth more effectively. The new vaccine will not only improve patient compliance but also therapeutic outcome.
Collapse
Affiliation(s)
- Haozheng Wang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lei Cui
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ying Luo
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Xiaoyong Zhou
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rui Liu
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qianbing Chen
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ying Guan
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yongjun Zhang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; School of Chemistry, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
9
|
Lu R, Zhang X, Cheng X, Zan X, Geng W. Secondary Structure-Dominated Layer-by-Layer Growth Mode of Protein Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13000-13011. [PMID: 34723563 DOI: 10.1021/acs.langmuir.1c02062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Benefiting from the luxury functions of proteins, protein coatings have been extended to various applications, including tissue engineering scaffolds, drug delivery, antimicrobials, sensing and diagnostic equipment, food packaging, etc. Fast construction of protein coatings is always interesting to materials science and significant to industrialization. Here, we report a layer-by-layer (LbL) multilayer-constructed coating of tannic acid (TA) and lysozyme (Lyz), in which the secondary conformations of Lyz dominate the growth rate of the TA/Lyz coating. As well characterized by various techniques (quartz crystal microbalance with dissipation (QCM-D), circular dichroism (CD) spectra, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), contact angle, etc.), TA-induced conformational transition of Lyz to α-helices occurs at pH 8 from other secondary structures (β-sheets, β-turns, and random coils), which leads to the very fast growth of TA/Lyz with a number of deposited bilayers, with thicknesses of more than 90 nm for six bilayers. In contrast to the leading conformation of α-helices at pH 8, Lyz displayed multiple conformations (α-helices, β-sheets, β-turns, and random coils) at pH 6, which resulted in coating thicknesses of less than 30 nm for six bilayers. By the addition of NaCl, Tween 20, and urea, we further confirmed that the secondary conformations of Lyz relied greatly on the interactions between TA and Lyz and dominated the growth rate of the multilayers. We believe that these findings will help to understand the transformation of secondary conformations by TA or other polyphenols and inspire a new route to quickly build protein coatings.
Collapse
Affiliation(s)
- Ruofei Lu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqiang Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxiu Cheng
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingjie Zan
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Wujun Geng
- Wenzhou Key Laboratory of Perioperative Medicine, Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
10
|
Huang H, Belwal T, Li L, Xu Y, Zou L, Lin X, Luo Z. Amphiphilic and Biocompatible DNA Origami-Based Emulsion Formation and Nanopore Release for Anti-Melanogenesis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104831. [PMID: 34608748 DOI: 10.1002/smll.202104831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Programmable engineered DNA origami provides infinite possibilities for customizing nanostructures with controllable precision and configurable functionality. Here, a strategy for fabricating an amphiphilic triangular DNA origami with a central nanopore that integrates phase-stabilizing, porous-gated, and affinity-delivering effects is presented. By introducing the DNA origami as a single-component surfactant, the water-in-oil-in-water (W/O/W) emulsion is effectively stabilized with decreased interfacial tension. Microscopic observation validates the attachment of the DNA origami onto the water-in-oil and oil-in-water interfaces. Furthermore, fluorescence studies and molecular docking simulations indicate the binding interactions of DNA origami with arbutin and coumaric acid at docking sites within central nanopores. These central nanopores are functionalized as molecular gates and affinity-based scaffold for the zero-order release of arbutin and coumaric acid at a constant rate regardless of concentration gradient throughout the whole releasing period. In vivo zebrafish results illustrate the advantages of this zero-order release for anti-melanogenesis therapy over direct exposure or Fickian diffusion. The DNA origami-based W/O/W emulsion presents anti-melanogenic effects against UV-B exposure without cardiotoxicity or motor toxicity. These results demonstrate that this non-toxic amphiphilic triangular DNA origami is capable of solely stabilizing the W/O/W emulsion as well as serving as nanopore gates and affinity-based scaffold for constant release.
Collapse
Affiliation(s)
- Hao Huang
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Tarun Belwal
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Li Li
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yanqun Xu
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Ligen Zou
- Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Xingyu Lin
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Zisheng Luo
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| |
Collapse
|
11
|
Wang Y, Wang H, Zhu XX, Guan Y, Zhang Y. Smart microneedle patches for rapid, and painless transdermal insulin delivery. J Mater Chem B 2021; 8:9335-9342. [PMID: 32969458 DOI: 10.1039/d0tb01822h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Insulin administration at mealtimes for the control of postprandial glucose is a major part of basal-bolus insulin therapy; however, painful subcutaneous (SC) injections lead to poor patient compliance. The microneedle (MN) patch, which allows painless transdermal drug delivery, is a promising substitute; however, it remains a big challenge to deliver insulin as rapidly as by SC injection. Here a novel MN patch is designed in which the MNs are coated with insulin/poly-l-glutamic acid (PGA) layer-by-layer (LBL) films at pH 3.0. This coating is pH-sensitive because the net charge of insulin turns from positive to negative when the pH increases from 3.0 to 7.4. As a result, when transferred to pH 7.4 media, e.g., when inserted into skin, the coating dissociates instantly and releases insulin rapidly. A brief epidermal application (<1 min) of the coated MNs is enough for complete film dissociation. More importantly, the coated MN patch exhibits a pharmacokinetic and a pharmacodynamic profile comparable to that of insulin administrated by SC injection, suggesting the coated MN patch can deliver insulin as rapidly as the SC injection. In addition, the patch exhibits excellent biocompatibility and storage stability. The new MN patch is expected to become a painless, convenient method for the control of postprandial glucose.
Collapse
Affiliation(s)
- Yuanpeng Wang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Haozheng Wang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - X X Zhu
- Département de Chimie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Ying Guan
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yongjun Zhang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
12
|
Wang H, Liu R, Wang S, Guan Y, Zhang Y. A highly programmable platform for sequential release of protein therapeutics. J Mater Chem B 2021; 9:1616-1624. [PMID: 33475126 DOI: 10.1039/d0tb02657c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drug carriers capable of releasing multiple protein therapeutics in an appropriate sequence are highly desirable for the treatment of many diseases. However current systems only allow the sequential release of two or three proteins, and it is difficult to adjust the time intervals between them. Here to solve these problems a new system is designed. The proteins are first encapsulated in CaCO3 microspheres. Then the microspheres are coated with hydrogen-bonded tannic acid (TA)/polyethylene glycol (PEG) layer-by-layer films. The encapsulated protein does not release from the microsphere until the TA/PEG coating is fully disintegrated. As the TA/PEG coating is eroded at a constant rate, the lag time for protein release is proportional to the coating thickness. To achieve sequential release, one can simply coat the protein-encapsulated microspheres with different thickness TA/PEG films and then mix them. Both in vitro and in vivo tests demonstrate that the proteins can be released from the mixed samples in a sequence according to the thickness of the TA/PEG coatings. The time intervals between the protein releases can be facilely adjusted by adjusting the thickness of the TA/PEG coatings. In addition, sequential release of more than 3 proteins can be facilely achieved.
Collapse
Affiliation(s)
- Haozheng Wang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Rui Liu
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Sha Wang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Ying Guan
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yongjun Zhang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China. and School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
13
|
Pahal S, Badnikar K, Ghate V, Bhutani U, Nayak MM, Subramanyam DN, Vemula PK. Microneedles for Extended Transdermal Therapeutics: A Route to Advanced Healthcare. Eur J Pharm Biopharm 2021; 159:151-169. [PMID: 33388372 DOI: 10.1016/j.ejpb.2020.12.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022]
Abstract
Sustained release of drugs over a pre-determined period is required to maintain an effective therapeutic dose for variety of drug delivery applications. Transdermal devices such as polymeric microneedle patches and other microneedle-based devices have been utilized for sustained release of their payload. Swift clearing of drugs can be prevented either by designing a slow-degrading polymeric matrix or by providing physiochemical triggers to different microneedle-based devices for on-demand release. These long-acting transdermal devices prevent the burst release of drugs. This review highlights the recent advances of microneedle-based devices for sustained release of vaccines, hormones, and antiretrovirals with their prospective safe clinical translation.
Collapse
Affiliation(s)
- Suman Pahal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India.
| | - Kedar Badnikar
- Department of Electronics Systems Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Vivek Ghate
- Department of Electronics Systems Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Utkarsh Bhutani
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India
| | - Mangalore Manjunatha Nayak
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | | | - Praveen Kumar Vemula
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India.
| |
Collapse
|
14
|
Tian J, Xu R, Wang H, Guan Y, Zhang Y. Precise and tunable time-controlled drug release system using layer-by-layer films as erodible coatings. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111244. [DOI: 10.1016/j.msec.2020.111244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/21/2020] [Accepted: 06/27/2020] [Indexed: 12/29/2022]
|
15
|
Lu R, Zhang X, Cheng X, Zhang Y, Zan X, Zhang L. Medical Applications Based on Supramolecular Self-Assembled Materials From Tannic Acid. Front Chem 2020; 8:583484. [PMID: 33134280 PMCID: PMC7573216 DOI: 10.3389/fchem.2020.583484] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
Polyphenol, characterized by various phenolic rings in the chemical structure and an abundance in nature, can be extracted from vegetables, grains, chocolates, fruits, tea, legumes, and seeds, among other sources. Tannic acid (TA), a classical polyphenol with a specific chemical structure, has been widely used in biomedicine because of its outstanding biocompatibility and antibacterial and antioxidant properties. TA has tunable interactions with various materials that are widely distributed in the body, such as proteins, polysaccharides, and glycoproteins, through multimodes including hydrogen bonding, hydrophobic interactions, and charge interactions, assisting TA as important building blocks in the supramolecular self-assembled materials. This review summarizes the recent immense progress in supramolecular self-assembled materials using TA as building blocks to generate different materials such as hydrogels, nanoparticles/microparticles, hollow capsules, and coating films, with enormous potential medical applications including drug delivery, tumor diagnosis and treatment, bone tissue engineering, biofunctional membrane material, and the treatment of certain diseases. Furthermore, we discuss the challenges and developmental prospects of supramolecular self-assembly nanomaterials based on TA.
Collapse
Affiliation(s)
- Ruofei Lu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqiang Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinxiu Cheng
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yagang Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China.,Department of Chemical and Environmental Engineering, Xinjiang Institute of Engineering, Urumqi, China.,School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingjie Zan
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Letao Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
16
|
Fu M, Zhuang X, Zhang T, Guan Y, Meng Q, Zhang Y. Hydrogen-Bonded Films for Zero-Order Release of Leuprolide. Macromol Biosci 2020; 20:e2000050. [PMID: 32633851 DOI: 10.1002/mabi.202000050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/19/2020] [Indexed: 01/16/2023]
Abstract
Leuprolide has been widely used in androgen deprivation therapy for the treatment of advanced prostate cancer, but its use is still limited due to its short half-life. Herein, hydrogen-bonded layer-by-layer films are fabricated from PEGylated leuprolide (PEG-LEU) and tannic acid (TA). Because of its dynamic nature, the film disintegrates gradually in water and releases PEG-LEU and TA. The in vitro release profile indicated perfect zero-order kinetics, which is explained by the unique release mechanism. When implanted subcutaneously in male rats, the films maintain a constant serum drug level. For a 60-bilayer film, the serum drug level is maintained constant for ≈24 days. No initial burst release is observed, suggesting that the in vivo release also follows zero-order kinetics. Initially, an increase in the level of serum testosterone is induced by the released drug, followed by testosterone suppression to a constant level below the castrate level, which could be maintained as long as a constant serum drug level is maintained. Since the new drug carriers avoid an initial burst release of the drug and maintain a constant serum drug level and hence a constant serum testosterone level below the castrate level, these carriers are highly promising for androgen deprivation therapy.
Collapse
Affiliation(s)
- Mian Fu
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Tianhong Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Ying Guan
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Yongjun Zhang
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|